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Abstract.   In this paper, a novel semi-energy finite strip method (FSM) is developed based on the concept 
of first order shear deformation theory (FSDT) in order to attempt the post-buckling solution for thin and 
relatively thick functionally graded (FG) plates under uniform end-shortening.  In order to study the effects 
of through-the-thickness shear stresses on the post-buckling behavior of FG plates, two previously 
developed finite strip methods, i.e., semi-energy FSM based on the concept of classical laminated plate 
theory (CLPT) and a CLPT full-energy FSM, are also implemented. Moreover, the effects of aspect ratio on 
initial post-buckling stiffness of FG rectangular plates are studied. It has been shown that the variation of the 
ratio of initial post-buckling stiffness to pre-buckling stiffness (S

*
/S) with respect to aspects ratios is quite 

independent of volume fractions of constituents in thin FG plates. It has also been seen that the universal 
curve representing the variation of (S

*
/S) with aspect ratio of a FG plate demonstrate a saw shape curve. 

Moreover, it is revealed that for the thin FG plates in contrast to relatively thick plates, the variations of non-
dimensional load versus end-shortening is independent of ceramic-metal volume fraction index. This means 
that the post-buckling behavior of thin FG plates and the thin pure isotropic plates is similar. The results are 
discussed in detail and compared with those obtained from finite element method (FEM) of analysis. The 
study of the results may have a great influence in design of FG plates encountering post-buckling behavior. 
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1. Introduction 

 

Functionally graded materials (FGMs) are new classes of heterogeneous materials that are 

mainly used to improve the structural efficiency in many engineering applications (Suresh and 

Mortensen 1998). Originally, the researches on the FGMs began in 1984 by the material scientists 

to produce thermal barrier materials (Koizumi 1997). FGMs are usually made from a mixture of 

metals and ceramics. By gradually varying the volume fraction of constituent materials, the 

material properties of FGMs exhibit a smooth and continuous change from one surface to another, 
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thus eliminating interface problems. As a result, FGM has extended its applications in aerospace, 

mechanical, marine and structural engineering due to its advantages compared to the classically 

used laminated composites. With escalating application of functionally graded materials, the 

attention has been drawn to the investigation of the non-linear behavior of the structures made up 

of these materials. In order to get the reader acquainted with some of the past works, a brief review 

is provided. The transient nonlinear thermo-elastic behavior of a functionally graded ceramic/ 

metal plate is investigated by Praveen and Reddy (1998) applying the Von-Kármán plate theory 

and the finite element method. Reddy (2000) has investigated the geometrically nonlinear behavior 

of FGM plates subjected to transverse loads and provided several illustrative examples comparing 

the classical plate theory (CPT) to the first- and third-order shear deformation plate theories 

(SDPT). Woo and Meguid (2001) have given an analytical solution for large deflection of FGM 

plates and shallow shells. In their studies, the considered thermal load arises from the one-

dimensional steady heat conduction in the plate thickness direction, but the material properties are 

temperature independent. Yang and Shen (2003) have investigated the large deflection and post-

buckling responses of FG rectangular plates under transverse and in-plane loads by using a semi-

analytical approach. In their analysis, a perturbation technique in conjunction with one-

dimensional differential quadrature approximation and Galerkin procedure were employed. 

GhannadPour and Alinia (2006) have given an analytical solution for large deflection behavior of 

thin functionally graded plates under pressure load using CPT. Anandrao et al. (2010) have 

investigated the thermal post-buckling behavior of uniform slender FGM beams using the classical 

Rayleigh-Ritz formulation and the finite element method. Sadr et al. (2011) have studied the large 

deflection behavior of thick FG plates based on the third-order SDPT. In their studies, the material 

properties of the functionally graded plate are assumed to vary continuously through the thickness 

of the plate, according to the simple power law distribution in terms of the volume fractions of 

constituents and the solution was obtained using the multi term series approximation. Anandrao et 

al. (2012) have also studied the large amplitude free vibration and thermal post-buckling of shear 

flexible FG beams using finite element formulation based on first order Timoshenko beam theory. 

Kocaturk and Akbas (2012) have analyzed the post-buckling of functionally graded Timoshenko 

beam subjected to thermal loading by using the total Lagrangian Timoshenko beam element 

approximation. They also assumed that the material properties of the beam change in the thickness 

direction according to a power-law function.  

The post-buckling behavior of a plate can be analyzed by solving the Von-Kármán non-linear 

equations (Von-Karman 1910), together with the appropriate boundary conditions. Unfortunately, 

the Von-Kármán equations are coupled and forth-order and thus no rigorous solutions are 

available. This has prepared a ground for development of the approximate methods such as finite 

element method, finite strip method (FSM), etc.  

The finite strip method is one version of finite element method that is well suited to the 

accurate and efficient analysis of both single rectangular plates and complicated prismatic plate 

structures (Cheung 1976). Early works were concerned with the use of FSM in predicting the 

geometrically non-linear response of single rectangular plates while prismatic plate structures are 

those of Sridharan and Graves-Smith (1981), and Hancock (1981). In the field of linear buckling 

and vibration analysis, the method has been developed by Dawe (2002) for the analysis of 

complicated plate structures formed of composite laminated material having very general material 

properties. Recently, Kasaeian et al. (2011) have used the finite strip method in order to study the 

inelastic local buckling of curved isotropic plates. More recently, Cuong (2013) has used 3-nodal 

line semi-analytical Mindlin-Reissner finite strip in the buckling analysis of thin-walled members, 
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which are subjected to arbitrary loads. Moreover, Pham and Hancock (2013) have studied the shear 

buckling of channels using the semi-analytical and spline finite strip methods. In addition, Ovesy 

and his co-workers have made several contributions by developing two variants of finite strip 

methods, namely the full-energy (Ovesy et al. 2006, Ovesy and Ghannadpour 2007, Sherafat et al. 

2013) and semi-energy (Assaee and Ovesy 2007, 2008, Ovesy and Ghannadpour 2009, Ovesy and 

Assaee 2009, Ovesy et al. 2011, 2012, Assaee et al. 2012) finite strip approaches. These methods 

were applied to the analyses of the geometrically non-linear response of rectangular composite 

laminated plates with various lay-ups, loading and boundary conditions.  

The concept of second FSM variant, which was originally developed by authors of current 

paper, is based on semi-energy method as referred to by Rhodes and Harvey (1977). The semi-

energy method was first used by Marguerre (1937), and has since been used by various 

researchers. One of the main advantages of the semi-energy FSM is the fact that the semi-energy 

FSM is based on the closed form solution of Von-Kármán’s compatibility equation in order to 

derive analytical shape functions for in-plane displacement fields. This can be considered as the 

major difference between the semi-energy formulations and those based on the full-energy 

assumptions where the in-plane and out-plane displacements as well as the rotations are all 

postulated by the appropriate deflected forms in latter FSM. In the developed version of the semi-

energy finite strip approach (Assaee and Ovesy 2007, 2008, Ovesy and Ghannadpour 2009, Ovesy 

and Assaee 2009, Assaee et al. 2012), which is suitable for the post-buckling analysis of thin 

composite plate structures, the out-of-plane displacement field of the finite strip is the only 

displacement which is postulated by a deflected form due to the application of classic laminated 

plate theory (CLPT). More recently, Ovesy and his co-workers have enhanced the formulation of 

the previously developed CLPT semi-energy finite strip approach in order to investigate through-

the-thickness shearing effects for symmetric (Ovesy et al. 2011) and anti-symmetric angle-ply 

(Ovesy et al. 2012) laminate configurations under simply-supported boundary conditions at loaded 

ends by implementing the first order shear deformation theory (FSDT). Thus, in addition to the 

out-of-plane displacement field of the finite strip, the rotations with respect to x and y axes are also 

postulated by two deflected forms. It is noted that for symmetric lay-ups, the effects of postulated 

rotations have not appeared in the corresponding Von-Kármán’s compatibility equation and the 

subsequent in-plane displacements. Moreover, for anti-symmetric angle-ply laminates, these 

effects have appeared only through B13 and B23 terms of coupling stiffness matrix. It is realized 

that the difference between CLPT and FSDT semi-energy results has become noticeable as the 

thickness increases. 

In the current work, as distinct from the latter publications by the same authors (Ovesy et al. 

2011, 2012), the plate is assumed to be made from FGM and also under clamped boundary 

conditions at loaded ends. Thus, due to the bending-stretching coupling effects, the two postulated 

rotations have appeared in the corresponding Von-Kármán’s compatibility equation through the 

additional coupling terms (B11, B12, B22, B33) beside the assumed out-of-plane displacement. 

Having solved the Von-Kármán’s compatibility equation exactly, the corresponding forms of the 

in-plane stresses and displacements are obtained. The resulted in-plane displacements, in which 

the effects of independently assumed rotations have clearly been taken into account for FG plates, 

are therefore more sophisticated than those obtained in the earlier publications for symmetric and 

anti-symmetric angle-ply laminates under simply supported boundary conditions at loaded ends. 

The solution of Von-Kármán’s compatibility equation and the postulated deflected forms are then 

used to evaluate the potential energy of the respective finite strip. Finally, by invoking the 

Principle of Minimum Potential Energy, the unknown deflection coefficients are determined and 
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thus the problem is solved. Moreover, in order to investigate the effects of through-the-thickness 

shear stresses on the post-buckling behavior of FG plates, two finite strip methods based on the 

concept of classic laminated plate theory with full-energy and semi-energy assumptions are also 

employed. It is also noted that the solution of Von-Karman’s compatibility equation related to a 

thin FG clamped finite strip based on the concept of CLPT was first attempted in the conference 

papers (Ovesy et al. 2009, Assaee et al. 2010). In this paper the theoretical formulations of the 

previously developed CLPT FSM are also presented in further detail. The post-buckling behavior 

of thin and relatively thick rectangular FG plates with clamped out-of-plane boundary conditions 

at its loaded ends and simply-supported boundary conditions at unloaded edges is analyzed. In 

order to validate the FSM results, they are compared with those obtained from finite element 

method (FEM) of analysis. The FEM analysis has been carried out using general purpose ANSYS 

software. It has been shown that for a given level of accuracy in the results, the developed semi-

energy FSMs requires markedly lower number of degrees of freedom compared to that needed by 

full-energy FSM and FEM. Hence, the semi-energy FSM is more computationally efficient than 

the conventional energy based schemes. In addition, the effects of aspect ratio on buckling and 

initial post-buckling behavior of thin FG plates are studied. The analysis of  results has revealed 

that the ratio of initial post-buckling stiffness to pre-buckling stiffness (i.e., S
*
/S), for the thin FG 

plates analyzed in this paper, is only dependent on the aspect ratio of plates and independent of 

ceramic-metal volume fraction index. Moreover, the variations of S
*
/S with reference to FG aspect 

ratio for mentioned plates demonstrate a saw shape curve, which is highly influenced by buckling 

mode shape of FG plate. In addition, it has been shown that for the thin FG plates, the variations of 

non-dimensional load versus end-shortening is independent of ceramic-metal volume fraction 

index. It is also revealed that the post-buckling behavior of thin FG plates and the thin pure 

isotropic plates are equal.  

 
 
2. Theoretical formulations 

 

A FG rectangular plate of length L, width b and thickness h, made from a mixture of ceramics 

and metals is considered. The composition is assumed to be varied in such a way that the top 

surface of the plate (z=h/2) is ceramic-rich, whereas the bottom surface (z=-h/2) is metal-rich. 

Thus, the material properties of the FG plate, such as the Young’s modulus (E) and the shear 

modulus (G) are functions of depth (z). These functions are desired to be continuous, simple and 

capable of exhibiting curvature, both “concave upward” and “concave downward” (Markworth et 

al. 1995). In this study the simple power law, which has all the desired properties, is used. The 

function ϑ(z), which denotes a typical material property (E, G), is given as 

      

  bttbb

n

tb Where
h

z
z  










2

1

 

(1) 

where ϑt(z) and ϑb(z) denote values of the variables at top and bottom surfaces of plates, 

respectively. The parameter n, which is known as the volume fraction index and is a non-negative 

real number, indicates the material variation profile through the thickness direction. Whilst n=0 

corresponds to pure ceramic, the value of n can reach infinity, in the limit and in theory of course, 

corresponding to the pure metal plate. With the above assumptions, the plate stiffness coefficients 

are defined (Sadr et al. 2011, Shen 2009). In subsequent sections of the paper the fundamental 
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elements of the buckling and post-buckling analyses of rectangular FG plates are discussed in 

detail.  

 

 

3. Buckling analysis of FG rectangular plates using Rayleigh-Ritz approach based 

on CLPT assumptions 

 

For a rectangular FG plate of length L and width b a Right-Handed Cartesian Coordinate 

System is assumed. The x-axis lies parallel to the longitudinal edge and hence the y-axis is 

perpendicular to x-axis and parallel to transverse edge of rectangular plate. Moreover, z-axis is 

assumed to be normal to plate. u, υ and w are displacement functions in x, y and z directions, 

respectively. The plate is assumed to be uniformly loaded in x-direction and σx 
denotes the axial 

stress. The rectangular plates are assumed to be clamped out-of-plane at loaded ends (i.e., x=0, L) 

and hinged at the unloaded edges (i.e., y=0, b).  

It is noted that as the FGM may exhibit a coupling between in-plane loads and out-of-plane 

moments and twisting curvatures, it may be expected that abovementioned FG plate encounters 

out-of-plane deformations from the onset of loading and hence the buckling may not occur. 

However, with regard to justification proposed by Leissa (1986) for the cases under study in this 

paper, as the loaded edges of FG plate are clamped out-of-plane, it will remain flat up to the 

buckling load and hence, a bifurcation point will be occurred. 

To evaluate buckling load capacity of mentioned FG plates the Rayleigh-Ritz approach is 

considered. In this method which is based on minimization of total potential energy of FG plate 

due to the perturbations imposed to FG plate a series of buckling displacement functions should be 

defined. The following trigonometric displacement functions that satisfy the essential boundary 

conditions are found to be suitable for the buckling analysis (Allen and Bulson 1980). 
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(2) 

Where αi, βi and λi are the buckling displacement unknown coefficients. The linear middle 

surface strains in terms of plate displacements u and υ as well as linear bending and twisting 

curvatures of the middle surface in terms of w, which cause additional linear strains at positions 

away from the middle surface through the FG plate thickness based on CLPT assumptions, are 

given in Eq. (3). 
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(3) 

The total potential energy of FG plate is presented as following equation 
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Fig. 1 FG finite strip and related coordinates 
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(4) 

The matrices [A], [B] and [D] are the usual in-plane, coupling and flexural stiffness matrices of 

FG materials, respectively. By substituting u, υ and w in Eq. (3) and then substituting the resultant 

linear strains, bending and twisting curvatures in Eq. (4) and carrying out the integration, the strain 

energy in terms of the displacement unknown coefficients is derived. By invoking the principle of 

minimum potential energy, a set of linear algebraic equations will be obtained which corresponds 

to an eigen-value problem. The evaluated eigen-values are in fact the buckling load coefficients 

and the minimum eigen-value represents the critical buckling load capacity of the FG plate. 
 
 

4. Semi-energy finite strip formulation using FSDT 
 

The semi-energy post-buckling theory has been developed for an initially flat FG finite strip 

shown in Fig. 1. The FG strip is clamped out-of-plane at both ends (i.e., at end x=0 and L), and is 

subjected to a uniform end shortening u  at end x=L only. The degrees of freedom (DOF) are 

depicted in Fig. 2 for a finite strip with FSDT assumptions. It may be noted that u, v, w, υx & υy
 

correspond to the mid-plane displacements and rotations. The degrees of freedom are defined at 

each nodal line and inside the strip. The boundary conditions at loaded ends of the finite strip are 

summarized as follows 
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Fig. 2 Degrees of freedom for the FG finite strip with FSDT assumptions 

 
 

The Von Karman’s compatibility equation for large deflections of arbitrary lay-up laminated 

plates as given in Ref. (Chai 1989) is modified for FG plates as Eq. (6) in which the FSDT 

assumptions are incorporated 
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(6) 

Where A
*
 is the inverse of in-plane stiffness matrix of the FG plate (i.e., A

*
=A

−1
) and B

*
 is 

evaluated as B
*
=−A

*
B where B is coupling between in-plane and out-of-plane stiffness matrix, the 

function F (i.e., F=F(x,y)) is the so called Airy stress functions which are defined as follows 
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(7) 

Where Nx, Ny are the in-plane axial forces per width, Nxy
 
is the shear forces per width, Qx, Qy  

are shear stress resultant through-the-thickness and σxx, σyy, σxy, τxz, τyz
 
are the corresponding 

average stresses. The following functions are found to be suitable to represent the out-of-plane 

displacement and rotations fields with respect to x, y coordinates. 
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In the above expression 
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undetermined displacement parameters of the strip. The first subscript of the displacement 

parameters refers to interpolated values of the corresponding parameter at edge 1 (e.g., w1i), at bs/4 

distance away from edge 1 (e.g., 
i
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), or finally at edge 2 (e.g., w2i). The second subscript (i.e., i) 

refers to the corresponding harmonic terms. It is noted that the investigation on the sensitivity of 

the semi-energy FSM analysis to the number of harmonic terms in the postulated series has 

revealed that the early stages of the post-buckling behaviour of FG plates can be predicted with a 

very good accuracy by using three first harmonic terms (i.e., N=3in Eq. (8)). 

The displacement fields are then substituted into Eq. (6) in order to find the corresponding in-

plane displacement functions. In this process, the stress function F may be considered as follows 
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Substituting F from Eq. (9) and w, υx, υy
 
 from Eq. (8) into Eq. (6), a set of forth-order ordinary 

differential equations will be achieved as Eq. (10). 
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Post-buckling finite strip analysis of thick functionally graded plates 

It is noted that the prime sign designates the derivatives of the corresponding parameter with 

respect to y, thus, for example 4
0

4''''
0  /F = F y . It is also noted that Ψ0, Ψ1, Ψ2 … Ψ8 are known 

functions and can be derived analytically. The first equation can be solved easily, but the solutions 

for the remaining eight equations are composed of two parts, namely the particular integral 

solutions and the complementary function solutions. The particular integral solutions depend on 

the functions fi(y), gi(y), si(y) (where i=1,2,3) only, thus it can be conveniently evaluated. But, for 

the complementary function solutions three cases may appear in accordance with the sign of 

DELTA of the forth-order characteristic equation of the differential equations, which is given as 

       
    2211
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3312 42 AAAA
 

(11) 

Based on the sign of DELTA the following solutions can be considered for the mentioned 

stress function (see Eq. (9)). 
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In Eq. (12) the functions Φk(y) (where k=1,2,…8) are the particular integral solutions which 

depend on the functions fi(y), gi(y), si(y) (where i=1,2,3) only. 

It can be observed that regardless of the DELTA sign, 32 coefficients Ck1−Ck4 (where 

k=1,2,…8) are present in any of abovementioned solutions. For a given case, the sign of DELTA 

should be calculated first and consequently the proper solution for stress functions from Eq. (12) 

would be determined. It should be mentioned that for FG plates DELTA is always zero due to the 

isotropic properties of in-plane stiffness matrix. The 32 coefficients of Ck1−Ck4 (where k=1,2,…8) 

are unknown at the present, but it is assumed that these coefficients are known. By taking this 

assumption into account and imposing the appropriate boundary conditions from Eq. (5) and 

solving the stress-strain constitutive equations, the in-plane displacements will be derived 

analytically as Eqs. (13) and (14) 
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Post-buckling finite strip analysis of thick functionally graded plates 

The first term on the right hand side of Eq. (13) presents the prescribed uniform end shortening. 

The amplitude of the next eight terms evaluated at y=0 and y=bs (i.e.,
0

)(
y

u yf
k

 and  

s
k by

u yf


)( 8,..2,1k ) represents the local degrees of freedom u1k and u2k, respectively. It should 

be mentioned that by defining the degrees of freedom, as outlined above, the compatibility 

conditions will be ensured on the adjacent edges of two strips. 

)1052101680(
1680

1

)901202401680(
1680

1

)140210105702801680(
1680

1

)252841261683361680(
1680

1

)210840210

1055251051054201680(
1680

1

)280840

4901401401405601680(
1680

1

)420840420840420

2101052108408401680(
1680

1

)8408401260

8401680147016801680(
1680

1

])
2

(

)
2

3
(

8

1
)25

2

5
()

4
[(

)(

)8cos()7cos()6cos()5cos(

)4cos()3cos()2cos()cos()(

'

33

''

8

*

33

'

32

'

23

''

7

*

33

'

13

'

33

'

22

'

31

''

6

*

33

'

23

'

21

'

12

'

32

''

5

*

33

'

3

*

333

*

33

'

22

'

33

'

13

'

31

'

11

''

4

*

33

'

2

*

332

*

33

'

12

'

32

'

23

'

21

''

3

*

33

'

1

*

331

*

33

'

3

*

333

*

33

'

11

'

33

'

22

'

31

'

13

''

2

*

33

2

*

33

'

2

*

33

'

12

'

21

'

23

'

32

''

2

*

33

'

1*

11

*

12

*

21

0

'

3

'

1

'

2

'

3

'

131

2

3

2

2

2

1

2

*

11

*

211

00

1

*

11

*

21

68

77

66

55

44

33

22

11

222

87654321

8765

4321


































































fffFAf

fffffFAf

fffffffffFAf

fffffffffFAf

gBsBff

fffffffffFAf

gBsB

fffffffffFAf

gBsBgBsBff

fffffffffFAf

sBgBff

fffffffFAf

dys
A

BA

ffffffffff
A

A
I

where

ffffffff

xfxfxfxf

xfxfxfxfIy
L

u

A

A

u

u

u

u

u

u

u

u

y

yxy







































 

)1052101680(
1680

1

)901202401680(
1680

1

)140210105702801680(
1680

1

)252841261683361680(
1680

1

)210840210

1055251051054201680(
1680

1

)280840

4901401401405601680(
1680

1

)420840420840420

2101052108408401680(
1680

1

)8408401260

8401680147016801680(
1680

1

])
2

(

)
2

3
(

8

1
)25

2

5
()

4
[(

)(

)8cos()7cos()6cos()5cos(

)4cos()3cos()2cos()cos()(

'

33

''

8

*

33

'

32

'

23

''

7

*

33

'

13

'

33

'

22

'

31

''

6

*

33

'

23

'

21

'

12

'

32

''

5

*

33

'

3

*

333

*

33

'

22

'

33

'

13

'

31

'

11

''

4

*

33

'

2

*

332

*

33

'

12

'

32

'

23

'

21

''

3

*

33

'

1

*

331

*

33

'

3

*

333

*

33

'

11

'

33

'

22

'

31

'

13

''

2

*

33

2

*

33

'

2

*

33

'

12

'

21

'

23

'

32

''

2

*

33

'

1*

11

*

12

*

21

0

'

3

'

1

'

2

'

3

'

131

2

3

2

2

2

1

2

*

11

*

211

00

1

*

11

*

21

68

77

66

55

44

33

22

11

222

87654321

8765

4321


































































fffFAf

fffffFAf

fffffffffFAf

fffffffffFAf

gBsBff

fffffffffFAf

gBsB

fffffffffFAf

gBsBgBsBff

fffffffffFAf

sBgBff

fffffffFAf

dys
A

BA

ffffffffff
A

A
I

where

ffffffff

xfxfxfxf

xfxfxfxfIy
L

u

A

A

u

u

u

u

u

u

u

u

y

yxy







































 

)1052101680(
1680

1

)901202401680(
1680

1

)140210105702801680(
1680

1

)252841261683361680(
1680

1

)210840210

1055251051054201680(
1680

1

)280840

4901401401405601680(
1680

1

)420840420840420

2101052108408401680(
1680

1

)8408401260

8401680147016801680(
1680

1

])
2

(

)
2

3
(

8

1
)25

2

5
()

4
[(

)(

)8cos()7cos()6cos()5cos(

)4cos()3cos()2cos()cos()(

'

33

''

8

*

33

'

32

'

23

''

7

*

33

'

13

'

33

'

22

'

31

''

6

*

33

'

23

'

21

'

12

'

32

''

5

*

33

'

3

*

333

*

33

'

22

'

33

'

13

'

31

'

11

''

4

*

33

'

2

*

332

*

33

'

12

'

32

'

23

'

21

''

3

*

33

'

1

*

331

*

33

'

3

*

333

*

33

'

11

'

33

'

22

'

31

'

13

''

2

*

33

2

*

33

'

2

*

33

'

12

'

21

'

23

'

32

''

2

*

33

'

1*

11

*

12

*

21

0

'

3

'

1

'

2

'

3

'

131

2

3

2

2

2

1

2

*

11

*

211

00

1

*

11

*

21

68

77

66

55

44

33

22

11

222

87654321

8765

4321


































































fffFAf

fffffFAf

fffffffffFAf

fffffffffFAf

gBsBff

fffffffffFAf

gBsB

fffffffffFAf

gBsBgBsBff

fffffffffFAf

sBgBff

fffffffFAf

dys
A

BA

ffffffffff
A

A
I

where

ffffffff

xfxfxfxf

xfxfxfxfIy
L

u

A

A

u

u

u

u

u

u

u

u

y

yxy







































 

)1052101680(
1680

1

)901202401680(
1680

1

)140210105702801680(
1680

1

)252841261683361680(
1680

1

)210840210

1055251051054201680(
1680

1

)280840

4901401401405601680(
1680

1

)420840420840420

2101052108408401680(
1680

1

)8408401260

8401680147016801680(
1680

1

])
2

(

)
2

3
(

8

1
)25

2

5
()

4
[(

)(

)8cos()7cos()6cos()5cos(

)4cos()3cos()2cos()cos()(

'

33

''

8

*

33

'

32

'

23

''

7

*

33

'

13

'

33

'

22

'

31

''

6

*

33

'

23

'

21

'

12

'

32

''

5

*

33

'

3

*

333

*

33

'

22

'

33

'

13

'

31

'

11

''

4

*

33

'

2

*

332

*

33

'

12

'

32

'

23

'

21

''

3

*

33

'

1

*

331

*

33

'

3

*

333

*

33

'

11

'

33

'

22

'

31

'

13

''

2

*

33

2

*

33

'

2

*

33

'

12

'

21

'

23

'

32

''

2

*

33

'

1*

11

*

12

*

21

0

'

3

'

1

'

2

'

3

'

131

2

3

2

2

2

1

2

*

11

*

211

00

1

*

11

*

21

68

77

66

55

44

33

22

11

222

87654321

8765

4321


































































fffFAf

fffffFAf

fffffffffFAf

fffffffffFAf

gBsBff

fffffffffFAf

gBsB

fffffffffFAf

gBsBgBsBff

fffffffffFAf

sBgBff

fffffffFAf

dys
A

BA

ffffffffff
A

A
I

where

ffffffff

xfxfxfxf

xfxfxfxfIy
L

u

A

A

u

u

u

u

u

u

u

u

y

yxy







































)1052101680(
1680

1

)901202401680(
1680

1

)140210105702801680(
1680

1

)252841261683361680(
1680

1

)210840210

1055251051054201680(
1680

1

)280840

4901401401405601680(
1680

1

)420840420840420

2101052108408401680(
1680

1

)8408401260

8401680147016801680(
1680

1

])
2

(

)
2

3
(

8

1
)25

2

5
()

4
[(

)(

)8cos()7cos()6cos()5cos(

)4cos()3cos()2cos()cos()(

'

33

''

8

*

33

'

32

'

23

''

7

*

33

'

13

'

33

'

22

'

31

''

6

*

33

'

23

'

21

'

12

'

32

''

5

*

33

'

3

*

333

*

33

'

22

'

33

'

13

'

31

'

11

''

4

*

33

'

2

*

332

*

33

'

12

'

32

'

23

'

21

''

3

*

33

'

1

*

331

*

33

'

3

*

333

*

33

'

11

'

33

'

22

'

31

'

13

''

2

*

33

2

*

33

'

2

*

33

'

12

'

21

'

23

'

32

''

2

*

33

'

1*

11

*

12

*

21

0

'

3

'

1

'

2

'

3

'

131

2

3

2

2

2

1

2

*

11

*

211

00

1

*

11

*

21

68

77

66

55

44

33

22

11

222

87654321

8765

4321


































































fffFAf

fffffFAf

fffffffffFAf

fffffffffFAf

gBsBff

fffffffffFAf

gBsB

fffffffffFAf

gBsBgBsBff

fffffffffFAf

sBgBff

fffffffFAf

dys
A

BA

ffffffffff
A

A
I

where

ffffffff

xfxfxfxf

xfxfxfxfIy
L

u

A

A

u

u

u

u

u

u

u

u

y

yxy







































 
 

579



 

 

 

 

 

 

M. Hajikazemi, H.R. Ovesy, H. Assaee and M.H. Sadr 

)1052101680(
1680

1

)901202401680(
1680

1

)140210105702801680(
1680

1

)252841261683361680(
1680

1

)210840210

1055251051054201680(
1680

1

)280840

4901401401405601680(
1680

1

)420840420840420

2101052108408401680(
1680

1

)8408401260

8401680147016801680(
1680

1

])
2

(

)
2

3
(

8

1
)25

2

5
()

4
[(

)(

)8cos()7cos()6cos()5cos(

)4cos()3cos()2cos()cos()(

'

33

''

8

*

33

'

32

'

23

''

7

*

33

'

13

'

33

'

22

'

31

''

6

*

33

'

23

'

21

'

12

'

32

''

5

*

33

'

3

*

333

*

33

'

22

'

33

'

13

'

31

'

11

''

4

*

33

'

2

*

332

*

33

'

12

'

32

'

23

'

21

''

3

*

33

'

1

*

331

*

33

'

3

*

333

*

33

'

11

'

33

'

22

'

31

'

13

''

2

*

33

2

*

33

'

2

*

33

'

12

'

21

'

23

'

32

''

2

*

33

'

1*

11

*

12

*

21

0

'

3

'

1

'

2

'

3

'

131

2

3

2

2

2

1

2

*

11

*

211

00

1

*

11

*

21

68

77

66

55

44

33

22

11

222

87654321

8765

4321


































































fffFAf

fffffFAf

fffffffffFAf

fffffffffFAf

gBsBff

fffffffffFAf

gBsB

fffffffffFAf

gBsBgBsBff

fffffffffFAf

sBgBff

fffffffFAf

dys
A

BA

ffffffffff
A

A
I

where

ffffffff

xfxfxfxf

xfxfxfxfIy
L

u

A

A

u

u

u

u

u

u

u

u

y

yxy







































 

(14) 

The first term on the right hand side of Eq. (14) describes the transverse in-plane expansion of 

the strip, which translates to the Poisson’s ratio effect for an isotropic material. The second term 

(i.e., I
1υ

) describes the transverse in-plane movement of the lines parallel to x-axis across a strip. 

This movement, which is constant along a given line, varies from a minimum value of zero at edge 

y=0 to its maximum value at the edge y=bs. The next eight terms describe the in-plane waviness of 

the lines which lie parallel to x-axis. The amplitude of these terms evaluated at y=0 and y=bs (i.e.,  

0
)(

y
yf

k
 and

s
k by

yf


)( , 8,..2,1k ) represents the local degrees of freedom υ1k and υ2k, 

respectively. Finally, the eleventh term (which is equivalent to –(fυ1+fυ2+fυ3+fυ4+fυ5+fυ6+fυ7+fυ8)|y=0) 

and the twelfth term on the right hand side of Eq. (14) represents values which remain constant at 

all points on a given strip. The existence of the eleventh term on the right hand side of Eq. (14) 

allows the point (x=0, y=0) to be treated as a reference point in terms of its deflection being 

connected to another strip or being restrained.  

It is noted that in the above equations (i.e., Eqs. (13), (14)), functions Fk(y) (k=1,2,…8) are not 

yet fully known, due to the coefficients Ck1−Ck4 (where k=1,2,…8)) being unknown. These 

coefficients are obtained by treating them as unknown, and solving for them whiles all other 

parameters, including all DOFs 
i
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(i=1,2,3, k=1,2,…8), are assumed to be known. In this process, the following set of equations 

should be solved analytically. 
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(15) 

It should be mentioned that in the set of 32 equations presented in Eq. (15), all the equations are 

linear with respect to the undetermined coefficients of Ck1−Ck4 (where k=1,2,…8)). Thus, by 

implementing an analytical scheme, the 32 coefficients of Ck1−Ck4 (where k=1,2,…8)) are 

explicitly evaluated in terms of the degrees of freedom and other strip constants. 

Having derived the in-plane displacement functions (i.e., u and υ), the mid-plane strain and 

curvatures with respect to the von Karman’s assumptions can be derived as follow 
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Post-buckling finite strip analysis of thick functionally graded plates 

The strain energy for the FG finite strip in terms of mid-plane strains and curvatures is 

presented as follow 
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(17) 

Where [D] is the out-of-plane stiffness matrix, [E] is the shear stiffness matrix through the 

thickness and SCF is the shear correction factor. 

By invoking the principle of minimum potential energy the strip equilibrium equations can be 

obtained and subsequently rearranged into the non-linear stiffness matrix of the strip. Once strip 

equilibrium equations are determined for all strips, the equations are assembled to form a set of 

global equilibrium equations (i.e., a set of global stiffness equations) for the whole structure. After 

the application of any appropriate zero-displacement boundary conditions, the global equilibrium 

equations are then solved using the Newton-Raphson (N-R) iterative procedure. 

Once the global equilibrium equations are solved and the degrees of freedom are found for a 

particular prescribed end shortening and pressure loading, it is possible to calculate the out-of 

plane displacement w  and rotations with respect to x, y axes in any finite strip using Eq. (8) 

directly. The calculation of in-plane displacements u and υ is achieved after finding 

)(),( yfyF
kuk and )(yf

k
. Having obtained the functions Fk(y), the average stresses at any point of 

the strip is known by Eqs. (7)-(9).  

By integrating the stress resultants along and across a given FG strip, the total mean force 

acting on a strip will be derived as follows 

       L

dxdyN

P

L b

x

s

 
 0 0

 

(18) 

It is to be noted that the average in-plane stresses are evaluated by solving the von Karman’s 

compatibility equation on a FG strip and the derived in-plane displacement functions will satisfy 

the mentioned equation. Therefore, as the in-plane displacements are continuous along an adjacent 

edge of two FG strips, the average in-plane stresses will be compatible on this edge as a result of 

von Karman’s compatibility equation satisfaction. 

 
 
5. Semi-energy finite strip formulation using CLPT 

 

As mentioned in the previous section, the FG strip is clamped out-of-plane at both ends (i.e., at end 

x=0 and L), and is subjected to a uniform end shortening u  at end x=L only. Therefore, the 

boundary conditions at loaded ends of the FG finite strip are summarized as Eq. (19) with CLPT 

assumptions.  
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Fig. 3 Degrees of freedom for the FG finite strip with CLPT assumptions. 

 

 

The Von Karman’s compatibility equation for large deflections of arbitrary lay-up laminated 

plates as given in Ref. (Chai 1989) is modified as Eq. (20) for FG plates in which the CLPT 

assumptions are incorporated 
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(20) 

In this version of the semi-energy finite strip approach which is suitable for the post-buckling 

analysis of thin FG plate structures, the out-of-plane displacement field of the finite strip is the 

only displacement which is postulated by a deflected form due to the application of classic 

laminated plate theory (CLPT). The following function is found to be suitable to represent the out-

of-plane displacement field for the developed semi-energy finite strip formulation 
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(21) 

In the above expression w1i, θ1i, w2i, θ2i (where i = 1..N) are the undetermined out-of-plane 

nodal displacement parameters along edges 1 and 2 of the FG strip, respectively. The degrees of 

freedom (DOF), called nodal displacement parameters, are depicted in Fig. 3 for a FG finite strip 

with CLPT assumptions. Again, the investigation on the sensitivity of the semi-energy FSM 

analysis to the number of harmonic terms in out-of-plane deflection series has revealed that, the 

early stages of the post-buckling behavior of thin FG plates can be predicted with a very good 

accuracy by using three first harmonic terms (i.e., N=3 in Eq. (21)).    
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Similar to the procedure followed in the previous section with respect to the Von-Karman 

solution related to the FSDT case, the out-of-plane displacement w is then substituted into the 

Von-Karman’s compatibility equation in order to find the corresponding in-plane displacement 

functions. In this process, the stress function F may be considered as Eq. (9). Substituting F from 

Eq. (9) and w from Eq. (21) into Eq. (20), a set of fourth-order ordinary differential equations will 

be achieved as Eq. (22). 
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(22) 

It is also noted that Ψ0, Ψ1, Ψ2 … Ψ8 are known functions and can be derived analytically. With 

the establishment of the out-of-plane displacement field according to Eq. (21) and driving 

governing equations according to the above-mentioned ordinary differential equations, the rest of 

the analysis concerning to find in-plane displacement fields is carried out in the same manner as 

that already described with respect to the semi-energy finite strip method using first order shear 

deformation theory. In this process, the in-plane displacement fields will be obtained as follow 
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(24) 

It is noted that the all parameters in Eqs. (23) and (24) have the same meanings as those 

discussed earlier with respect to FSDT semi-energy FSM. One of the most important differences 

between the two methods (i.e., FSDT semi-energy FSM and CLPT semi-energy FSM) lies in the 

manner that the finite strip strain energy is computed for different methods. That is to say, in the 

classic laminated plate theory the shear strain energy at the thickness is assumed to be zero whilst 

in the first order shear deformation theory, the shear strain energy through the thickness is taken 

into account. Consequently strain energy for CLPT assumptions (by putting λ=0 in the Eq. (17)) 

will be derived as follows 
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Again, by invoking the principle of minimum potential energy the strip equilibrium equations, 

and subsequently the global equilibrium equations are obtained for the whole structure. 
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6. Full-energy finite strip formulation using CLPT 
 

In order to check the validity and numerical efficiency of the developed CLPT semi-energy 

FSM, a CLPT full-energy FSM based on Ovesy’s approach (Ovesy and Ghannadpour 2007) is 

implemented in the current work. The main difference between the semi-energy and the full-

energy methods lies on the fact that in the full-energy method, the in-plane displacements are 

postulated in addition to postulating a deflected form for the out-of-plane displacement by the 

appropriate deflected forms from the commencement of analysis as follows 
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(27) 

The rest of the analysis is carried out in the same manner as that already described with respect 

to the semi-energy FSM.  

 
 

7. Numerical results and discussions 
 

FG rectangular plates with loaded ends clamped out-of-plane and with the unloaded edges 

simply supported out-of-plane and free to move in-plane are considered. The set of FG materials 

considered is alumina and aluminum. Young’s modulus and Poisson’s ratio were selected as being 

70 GPa and 0.3 for aluminum, and 380 GPa and 0.3 for alumina, respectively. In all cases, the 

bottom surface is assumed to be metal (aluminum) and the top surface is assumed to be pure 

ceramic (alumina). The results are presented in terms of non-dimensional coefficients as follows 
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(28) 

Where Et 
is alumina’s Young modulus, Pcr is the total critical force acting on the plate in 

buckling point and D11, A11 are the members of flexural and in-plane stiffness matrices, 

respectively. 
 

7.1 Buckling behavior of FG plates  
 

The first step is to investigate the buckling behavior of FG plates using Rayleigh-Ritz approach 

based on CLPT assumption. To achieve this goal, the variation of buckling load capacity of FG  
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Fig. 4 Garland curves concerned with FG plates 

 

 

plates with respect to aspect ratio is examined. It is noted that aspect ratio of a rectangular plate is 

defined as the length to width ratio (i.e., L/b) and is denoted as AR in this paper. It is assumed that 

the width of plate is b=100 mm and thickness h is equal to 1 mm. The variation of non-

dimensional buckling coefficient K with aspect ratio of rectangular FG plate for different values of 

volume fraction index (i.e., n) is depicted in Fig. 4. The volume fraction values of n=0 and n=∞ 

correspond to two extreme cases of pure ceramic and pure metal materials, respectively. 

Therefore, the coupling effects between in-plane loads and out-of-plane moments and curvatures 

will be vanished. For the cases of n=0.5 and n=2 the related garland curves with regard to buckling 

performance of FG plates is also included in Fig. 4. It can be seen that the garland curves 

concerned with the mentioned volume fraction values lie between the curves related to extreme 

cases of n=0, ∞. Having analyzed the FG plates with different values of volume fraction index, it 

is concluded that for each specified aspect ratio the buckling coefficient of FG plate with an 

arbitrary volume fraction index is bounded among the buckling coefficient values corresponding to 

two limit cases of n=0 and n=∞. In addition, all the curves depicted in Fig. 4 are demonstrating 

sudden changes in curvature at identical aspect ratios. In fact these changes are related to change in 

buckling mode shape of FG plate. Moreover, each curve is divided into three zones. By checking 

the buckling mode shapes it is revealed that each mode is constructed of one half waves in 

transverse direction and one, two, three and more half waves in longitudinal direction of FG plate. 

Therefore, each zone specified in Fig. 4 is concerned with the number of half waves in 

longitudinal direction of FG plate. As the loaded ends of FG plate are clamped out-of-plane a 

minimum buckling coefficient and related natural half-wave length may not be evaluated. It has 

been shown that for an isotropic plate, transition between m to (m+1) half waves (i.e., m=1,2,3…) 

in axial direction will take place at the aspect ratios equal to )2( mm   (Allen and Bulson, 

1980). Similarly, for the extreme cases of n=0, ∞ as the FGM plates, a transition between one half 

wave to two half waves in length is experienced at AR of approximately 1.7 (i.e., 3AR ). 

Moreover, the transition from two half waves to three half waves for the cases of n=0, ∞ have seen 

to occur at AR of approximately 2.7 (i.e., 8AR ). It would be remarkable to note that;  
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Fig. 5 Variations of non-dimensional load versus dimensionless end- shortening for square 

thin FG plates (L/h=100) with various volume fraction index 

 

 

Fig. 6 Variations of non-dimensional load versus dimensionless out-of-plane central deflection 

for square thin FG plates (L/h=100) with various volume fraction index 

 

 

although, the FG plates with n=0.5 and 2 have a type of material properties including coupling 

between in-plane and out-of-plane loads and deformations, the transition of mode shape for these 

FG plates have taken place in almost the same aspect ratios as those correspond to the 

aforementioned pure material cases. Therefore, the effects of mentioned coupling on the transition 

point may be negligible. 

 

7.2 Post-buckling behavior of FG plates 
 

The second step is to investigate the post-buckling behavior of square FG plates subject to a 
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Post-buckling finite strip analysis of thick functionally graded plates 

uniform end shortening u  at one end only. The thickness of the plates is kept equal to 1 mm, and 

the length to thickness ratios are varied as L/h=100, L/h=40, L/h=20, L/h=10 and L/h=5 in order to 

investigate plates with different relative thicknesses. A set of convergence studies concerning the 

required number of strips that tends to a converged post-buckling solution has been carried out. 

The convergence studies have revealed that a total number of 8 finite strips (corresponding to 309 

and 192 DOFs in the case of semi-energy FSDT and CLPT FSM, respectively) and a total number 

of 64 finite strips (corresponding to 1488 DOFs in the case of full-energy FSM) will produce 

converged post-buckling solutions for the FG plates assumed in this paper. It should be mentioned 

that for semi-energy FSM analyses based on the concept of FSDT, the shear correction factor is 

assumed to be 5/6 for (n=0 & ) and 4/6 for (n=0.5 & 2). 

In addition to the semi-energy and full-energy finite strip analyses, a finite element study is also 

performed in this paper. The FEM analysis has been carried out using general purpose ANSYS 11 

software. The shell element (SHELL99) of the ANSYS library has been used. This element has 

eight nodes and each node incorporates six degrees of freedom. Within ANSYS software, the 

buckling analysis is a two-pass analysis. The first pass is a linear static analysis which determines 

the stresses for a given reference set of loads. The second pass is an eigen-value analysis which 

provides the results in terms of load factors (eigen-values) and mode shapes (eigen-vectors). 

Having obtained the mode shapes from an eigen value analysis in the manner described above, 

they are then used as postulated imperfections in order to perform an iterative nonlinear post-

buckling analysis. In this process, the corresponding mode shape is scaled by a small factor and 

the geometry of the structure is then updated by using scaled mode shape as an imperfection. 

Within nonlinear FEM analysis, the postulation of an imperfection is a necessary step if the post-

buckling path after bifurcation point is sought. The convergence study has revealed that a mesh 

arrangement composed of 400 square elements with the uniform size, for the FEM analysis is 

perfectly acceptable. It means that a total number of 7686 DOFs are used in FEM analysis. It is 

noted that the stiffness matrices of FG shell elements were computed outside of ANSYS 

environment and then entered into the software through user input real constants. 

The variation of load factor P
*
 with dimensionless end-shortening U

*
, and the variation of load 

factor P
*
 with dimensionless central deflection W

*
 for the very thin plate with L/h=100 are 

depicted in Figs. 5 and 6, respectively. Beside the presentation of the results obtained from the 

semi-energy FSM using FSDT and CLPT, the results obtained from finite element method and 

full-energy FSM are also presented for further validation.  

It is clearly seen in Figs. 5 and 6 that for all volume fraction indexes, the four sets of results 

compare very closely and hence that the present approaches for the post-buckling behaviours of 

thin FG plates under uniform end shortening are verified. It is noted that due to the high length to 

thickness ratio of plate, the effect of shear strain energy at the thickness is negligible, and thus the 

results obtained from CLPT theory (full-energy CLPT-FSM and semi-energy CLPT-FSM) and 

FSDT theory (i.e., FEM and semi-energy FSDT-FSM)  are very close. It is also seen in Figs. 5 and 

6 that for a given value of loading, among plates with different combinations of materials, the plate 

made up of pure aluminum (i.e., n=infinity) encounters the largest end-shortening and central 

deflection, whilst the smallest end-shortening and central deflection are encountered by the plate 

made up of pure alumina (i.e., n=0). This is due to the fact that the former plate has the lowest 

Young’s modulus (i.e., E=70 GPa), in contrast to the highest Young’s modulus of the latter plate 

(i.e., E=380 GPa). Moreover, from the computational economy point of view it is worth 

mentioning that the semi-energy FSM has incorporated very lower number of degrees of freedom 

(i.e., 309DOFs in semi-energy FSDT-FSM and 192DOFs in semi-energy CLPT-FSM) compared 
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to those of full-energy FSM (1488DOFs) and FEM (7686DOFs), thus the computational 

advantage of the developed semi-energy FSM is revealed. 

For the plates with L/h=40 & 20, the results obtained from the current semi-energy FSM 

analyses based on both CLPT and FSDT theories as well as FEM analyses are presented in Figs. 7 

and 8, respectively. It is clearly seen that the semi-energy FSM results obtained by the application 

of FSDT theory are very close to those obtained by FEM analysis. The differences between the 

FSM results obtained from CLPT theory and FSDT theory are due to the fact that for relatively 

thick plates the through-the-thickness shear strain energy is no longer negligible and thus needs to 

be accounted for. However, it is worth mentioning that at the expense of some loss in the accuracy,  

 

 

 

Fig. 7 Variations of non-dimensional load versus dimensionless end- shortening for square FG 

plates (L/h=40) with various volume fraction index 

 

 

Fig. 8 Variations of non-dimensional load versus dimensionless end- shortening for square FG 

plates (L/h=20) with various volume fraction index 
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Post-buckling finite strip analysis of thick functionally graded plates 

 

Fig. 9 Variations of non-dimensional load versus dimensionless end- shortening for square FG 

plates (L/h=10) with various volume fraction index 

 

 

Fig. 10 Variations of non-dimensional load versus dimensionless out-of-plane central 

deflection for square thin FG plates (L/h=10) with various volume fraction index 

 

 

the semi-energy CLPT-FSM analysis requires a significantly lower number of degrees of freedom 

(i.e., 192 DOF) compared to those required by the semi-energy FSDT-FSM analysis (i.e., 309 

DOF). Therefore, if the computational economy is concerned the CLPT-FSM post-buckling 

analysis may be suggested by obviously compromising on the precision of results. 

The effects of through-the-thickness shear strains are further investigated in Figs. 9 and 10 for 

significantly thicker FG plate (i.e., the plate with L/h=10). It is clearly seen that in the case of 

thicker plates, as expected, the differences between the FSM results obtained from CLPT and 

FSDT theories have become more pronounced. 
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Fig. 11 Variation of non-dimensional total axial mean force ratio versus non-dimensional end-

shortening ratio 
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Fig. 12  Variation of initial post-buckling stiffness ratio via aspect ratio of thin FG plates 

 

 

Finally, in order to study the effects of volume fraction index on post-buckling behavior of 

functionally graded plates, the variations of total axial mean force ratio )/( ****
crPP  versus non-

dimensional end-shortening ratio (
**U / **

crU ) are obtained and depicted in Fig. 11 for various  

length to thickness ratios (L/h=40, 20, 10 & 5) using FSDT FSM. It is clearly seen that for thin  

plates, the total axial mean force ratio )/( ****
crPP  is independent of volume fraction index and  

consequently the post-buckling response of FG plate (n=0.5 & 2) will be equal to those of pure 

plates (n=0 & ). However, it can be seen that the discrepancy between the results with various 

volume fraction index will be increased with increasing the thickness of plates.  
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7.3 Effects of aspect ratio on initial post-buckling stiffness ratio 
 

The next step is to investigate the effects of aspect ratio on the post-buckling stable equilibrium 

path of FG plates just after buckling point. It is assumed that the width of plate is b=100 mm and 

thickness h is equal to 1 mm.  

It is noted that the in-plane stiffness of plates will reduce as they encounter post-buckling 

behavior. Moreover, the initial post-buckling in-plane stiffness (S
*
) and its ratio to pre-buckling 

stiffness (S) is an important factor (S*/S) for design of plates encountering initial post-buckling 

behavior. The in-plane stiffness of plate is defined as the derivative of total mean force acting on 

plane (P) against end-shortening of plate (i.e., ∂P/∂ū). The pre-buckling stiffness is a constant 

value as the plate demonstrates a linear behavior and can be calculated using buckling analysis 

based on Rayleigh-Ritz approach; however, as the post-buckling behavior of a plate is non-linear 

in nature, the post-buckling stiffness varies as the applied end-shortening progresses in post-

buckling region. The initial post-buckling analyses are performed by incorporating full-energy 

CLPT FSM as well as semi-energy CLPT FSM for each aspect ratio. In this paper, (S
*
) denotes the 

initial post-buckling stiffness just after the buckling point. Fig. 12 shows the variation of (S*/S) 

against aspect ratio of FG plate. Moreover, the FG plates with different volume fraction indexes 

(i.e., n=0, 0.5, 2, ∞) are analyzed. Considering the results presented in Fig. 12, the following notes 

are remarkable.  

For different values of FG material volume fraction index, the initial post-buckling stiffness 

ratio (i.e., S*/S) is identical at each aspect ratio. It may lead to the hypothesis that the post-buckling 

stiffness ratio of thin FG plates might be independent of material properties (i.e., fraction of 

ceramic-metal components). Moreover, as the curves depicted in Fig. 12 are independent of base 

materials fraction index, they may be considered as a universal curve for a variety of material 

properties and may be used in sizing and preliminary design of thin FG plates encountering initial 

post-buckling behavior.  

As far as a comparison between Fig. 4 and Fig. 12 is concerned, Fig. 4 demonstrates a garland 

shape for variation of buckling coefficient against aspect ratio of plate; however, Fig. 12 depicts a 

schematic saw shape curve for variation of initial post-buckling stiffness ratio against aspect ratio 

of a FG plate. It may be noted that the initial post-buckling stiffness ratio is quite sensitive to the 

buckling mode shape of rectangular FG plate. Therefore, the aspect ratio may be considered as a 

major factor for design of FG rectangular plates encountering initial post-buckling behavior. 

 
 
8. Conclusions 

 

A geometrically non-linear multi-term semi-energy finite strip, based on the concept of first 

order shear deformation theory, for the post-buckling analysis of geometrically thin and relatively 

thick FG plates is developed. In order to study the effects of through-the-thickness shearing 

stresses, the semi-energy FSM and the full-energy FSM based on the concept of classical 

laminated plate theory are also implemented. In order to check the validity and numerical 

performance of the developed methods, the finite element method is also applied. The study of the 

results has revealed that the semi-energy formulation has very good convergence properties and 

produces very accurate results by incorporating significantly less number of degrees of freedom 

than those required by the full-energy FSM and FEM. It is revealed that for the thin FG plates, the 

variations of non-dimensional load versus end-shortening is independent of ceramic-metal volume 
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fraction index. This means that the post-buckling response of thin FG plates are equal to those of 

pure isotropic plates. The garland curves corresponding to buckling behavior of mentioned FG 

plates are obtained using a Rayleigh-Ritz approach. Moreover, the variation of initial post-

buckling behavior of thin FG plates with aspect ratio has been investigated. The analysis of results 

has revealed that initial post-buckling stiffness ratio of mentioned FG plates demonstrate a saw 

shape curve, which is independent of volume fraction index of base materials for FG plates. 

Moreover, the initial post-buckling stiffness ratio is highly influenced by the buckling mode shape 

of rectangular FG plates and by increasing the aspect ratio, a transition in buckle shape of plate 

will be occurred that leads to a drastic drop in initial post-buckling stiffness ratio. Finally, it may 

be concluded that when the design of thin FG rectangular plates for initial post-buckling behavior 

is concerned the aspect ratio of plate will play an important role in this behavior; however, the 

fraction of base materials may be negligible.  
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