
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 49, No. 5 (2014) 537-554 

DOI: http://dx.doi.org/10.12989/sem.2014.49.5.537                                                                                       537 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 
 

 

 
 
 

Higher order free vibration of sandwich curved beams with a 
functionally graded core 

 

K. Malekzadeh Fard

 

 
Department of Structural Analysis and Simulation, Space Research Institute, Malek Ashtar University of 

Technology, Tehran-Karaj Highway, PO Box. 14665-143, Tehran, Iran 

 
(Received July 25, 2013, Revised October 25, 2013, Accepted December 9, 2013) 

 
Abstract.   In this paper, free vibration of a sandwich curved beam with a functionally graded (FG) core was 
investigated. Closed-form formulations of two-dimensional (2D) refined higher order beam theory 
(RHOBT) without neglecting the amount of z/R was derived and used. The present RHOBT analysis 
incorporated a trapezoidal shape factor that arose due to the fact that stresses through the beam thickness 
were integrated over a curved surface. The solutions presented herein were compared with the available 
numerical and analytical solutions in the related literature and excellent agreement was obtained. Effects of 
some dimensionless parameters on the structural response were investigated to show their effects on 
fundamental natural frequency of the curved beam. In all the cases, variations of the material constant 
number were calculated and presented. Effect of changing ratio of core to beam thickness on the 
fundamental natural frequency depended on the amount of the material constant number. 
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1. Introduction 

 

Functionally graded materials (FGM) are microscopically inhomogeneous composites made 

from a mixture of materials by gradually varying volume fraction of the mixture and presenting 

smooth changes of properties from one side to another, which eliminates interface discontinuity 

problems. Natural frequencies are the basic and substantial issue for the design and use of such 

structural components, due to which free vibration of curved beams has been attracted intensive 

researches during the past few decades. Ahmed (1971) evaluated vibration characteristics of 

curved sandwich beams using finite elements with three to five degrees of freedom per node. He 

studied effects of factors such as core-to-face density ratio, core rigidity, core-to-face thickness 

and subtended angle on arch frequency. Many theories have been evolved to derive, simplify and 

solve the equations of motion for the free in-plane vibrations of the curved beams. In some of the 

studies, governing equations of motion are solved using the Rayleigh–Ritz method. Henrych 

(1981) derived the general expression of the equations of motion for a uniform circular arc based 

on the first-order equilibrium condition. Balasubramanian and Prathap (1989) explored the locking 

and field-consistency aspects of a shear flexible curved beam element for the vibration of stepped 
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arches. Qatu (1993) developed an exact as well as Ritz method-based approximate solutions for 

the vibration of laminated composite arches. He reported that, since the effects of shear 

deformation and rotatory inertia are neglected, natural frequencies may be inaccurate for a 

moderately deep arch with relatively soft transverse shear modulus and for highly anisotropic 

composites. In order to take into account these effects, the first order shear deformation theory for 

moderately deep arches was developed by Qatu. But it was failed to consider the trapezoidal shape 

factor (1+z/R) that arise due to the fact that the stresses over the thickness of the curved beam have 

to be integrated on cross-section of a curved beam element to obtain the accurate stress-resultants.  

Auciello and Rosa (1994) ignored the shear deformation and rotary inertia, and assumed that 

the curved axis is incompressible. They studied the vibrations of classical arches through Galerkin, 

Ritz and finite element methods. They examined the influence of cross-sectional variations and of 

flexible supports on the vibration of arches. Krishnan and Dharmaraj (1995) explored the role of 

subtended angle on the fundamental frequency of arches, with various end conditions. Khdeir and 

Reddy (1997) developed a third order theory for vibration studies of shallow composite arches 

(HOAT) which could be reduced to classical arch theory (CAT) and second order arch theory 

(SOAT) with proper definition of deformation parameters. Higher order shear deformation 

theories (HOAT) are good in predicting natural frequencies of slightly shallow thick laminated 

curved beams; but, they are unable to predict natural frequencies of thick laminated curved beams.  

Krishnan and Suresh (1998) developed a cubic element to study the effects of curvature, shear 

deformation and rotary inertia on the fundamental frequency of curved beams. Based on the 

Timoshenko-type curved beam theory, Tseng et al. (2000) applied the stiffness analysis method 

involving shear deformation and rotation inertia to determine the natural frequencies of laminated 

beams with arbitrary curvatures. 

Eisenberger and Efraim (2001) studied the uniform circular beams using the Timoshenko beam 

theory, which includes the effects of rotary inertia, shear deformation, and the couplings of the 

radial and tangential displacements. It has been shown that the Timoshenko beam theory provides 

a better approximation to the actual behavior of beams, in which the effect of the cross-sectional 

dimension on frequencies cannot be neglected, and the study of high modes is required.  

Kang and Riedel (2003) established however that the application of classical arch theory (CAT) 

is highly confined to slender geometry due to the Kirchhoff hypothesis where the shear 

deformation and rotary inertia are neglected. As a result, the deflection is always under-estimated 

while the natural frequencies and buckling loads are over-predicted. Lu et al. (2008) presented an 

exact analysis for the in-plane free vibration of simply supported laminated circular arches based 

on the two-dimensional theory of elasticity using the state space method. The method of separation 

of variables is employed to expand all the variables into Fourier series about the longitudinal 

coordinate, so that the system of partial differential equations is reduced to the ordinary one about 

the radial coordinate. This solution does not adopt any assumptions about the distribution of 

displacements of strains along the thickness direction. Sudhakar et al. (2008) studied the free 

vibrations of sandwich and composite arches base on higher-order model with finite element 

modeling with transverse shear and normal strain components. In this formulation (1+z/R) term 

(trapezoidal shape factor) in the shear strain is neglected. Although the first-order arch theories 

(FOATs) by regarding the shear deformation as constant through the thickness direction, the 

accuracy of results are highly dependent on the choice of shear correction factor and the 

determination of the latter is a rather cumbersome task. In addition, the FOATs are only applicable 

to thin and moderately thick laminates but not to strongly thick arches. FG materials absolutely 

have potential applications in various industries such as aerospace engineering, automobile 
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industry and mechanical metallurgy, however, their manufacturability and applicability is still in 

among scientists (Koizumi 1993).The most important advantage of a monotonous variation of 

volume fraction of constituent phases is elimination of stress discontinuity that is often 

encountered in laminated composites and, accordingly, avoiding delamination-related problems.  

FGM may be also developed using fiber-reinforced layers with volume fraction of fibers that is 

coordinate-dependent, rather than constant, producing an optimal set of properties or responses 

(Birman 1995). Many attempts have been done in case of an FGM beam. Sankar (2001) 

investigated an FGM beam subjected to a sinusoidal transverse load applied at one of the surfaces. 

Exact elasticity solution for stresses and displacements was compared with the results obtained by 

technical Bernoulli–Euler beam theory. The impact of a sandwich beam with isotropic 

homogeneous facings and a functionally graded core was considered by Apetre et al. (2006). 

Modulus of elasticity of the core was represented by a polynomial function of thickness coordinate 

while its Poisson ratio was assumed constant. Aydogdu and Taskin (2007) presented free 

vibrations of FGM beams with simply supported edges. Li (2008) investigated static and dynamic 

behaviors of an FGM Bernoulli–Euler and Timoshenko beam. Malekzadeh et al. (2009) solved 

free vibration of a thick FGM circular beam subjected to thermal heat by means of 2D elasticity 

theory and used differential quadrature method (DQM). Malekzadeh et al. (2010) applied a 

formulation based on first order shear deformation including effect of rotary inertia for out of 

plane free vibration of functionally graded circular curved beam in the thermal environment. Kiani 

et al. (2012) analyzed functionally graded material doubly curved panel based on first order shear 

deformation theory for thermoelastic free vibration and dynamic analysis. 

The purpose of this work is to develop a refined higher order theory for deep and thick 

laminated composite and sandwich curved beam with FG core, which could account for effects of 

transverse shear strains/stresses and transverse normal strain/stress. The theory included a two-

dimensional (2D) displacement field with up to eight degrees of freedom. Since the cross-sectional 

warping was accurately modeled in this theory, it did not require any shear correction factor. The 

equations included accurate stress-resultant equations for composite thick circular curved beams 

where (1+z/R) terms were included in the stress-resultant equations and exactly integrated. 

Equations of motion and boundary conditions were derived using Hamilton's principle. In this 

paper, after deriving RHOBT for free vibrations of a sandwich curved beams with FG soft core, 

the problem was solved by Fourier series and Navier's method and the results were obtained by 

means of a generated code. In order to validate the proposed approach and explore the limits of 

applicability, natural frequencies were obtained for wide ranges of length-to-radius and thickness-

to-radius ratios and were compared with the values published in the open literature. Furthermore, 

the present method did not require any convergence study, which was in contrast to some other 

higher order theories for free vibration analyses reported in the literature.  

 

 

2. Modeling FG material properties 
 

Material properties of FGMs are continuously varying through thickness. So, Young’s modulus 

and Poisson’s ratio are functions of z as the coordinate system varies from –h/2 to h/2 (one side to 

another). Some mathematical models have been presented by investigators in order to show 

variations of material properties of FGM plates. P-FGM (Bao and Chung 1995) and S-FGM (Chi 

and Chung 2003) are such models. In the present work, Mori-Tanaka's (1973) scheme, which is a 

more realistic determination technique (Golmakani and Kadkhodayan 2011), was taken into 
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account. The Mori-Tanaka scheme for estimating the effective moduli is applicable to regions of 

the graded microstructures which have a well-defined continuous matrix and a discontinuous 

particulate phase. It takes in to account the interaction of the elastic fields among neighboring 

inclusions (Shen 2009). This homogenization method is presented as follows 

(1) 
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in which K is effective bulk modulus, G is effective shear modulus and V is volume fraction of the 

FGM beam. Index 1 shows properties of the top and index 2 is for the bottom of the beam. The 

volume fractions, according to the power law, are assumed as 

(2) 
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k is a material constant. Based on the presented method, effective values of Young’s modulus, 

E, and Poisson's ratio, ν, are computed using 

(3) 

     

9 / (3 )

(3 2 ) / 2(3 )

E KG K G

K G K G

 

  
 

So that top face of the FGM core is fully from material 1 and its bottom face is fully from 

material 2; k describes various volume fractions between these two faces. 

 

 

3. Geometrical description 
  

Fig. 1 shows a sandwich curved beam with an FGM core. (x, z, φ) denote polar co-ordinates, 

where φ curve lies in mid-surface of the beam, x curve lies across width of the beam and z is 

perpendicular to these two curves in the thickness direction. Consider a k-layered laminated 

circular curved beam with a total thickness of h, and each layer having the thickness of hk, as 

depicted in Fig. 1. R represents principal radius of the mid-surface curvature along φ direction. The 

beam is considered to be a 2D elastic medium. 

 
3.1 Displacement field 
 
The higher-order displacement model, based on Taylor’s series expansion is used to deduce a 

2D formulation of a 3D elasticity problem and the following set of equations are obtained by 

expanding the displacement components u(ϕ, z, t) and w(ϕ, z, t) of any point in the curved beam 

space in terms of the thickness coordinate z 
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Fig. 1 Sandwich curved beam with a FG core 
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in which u and w are displacements of a general point in the laminate and t is time. u0 
is axial 

displacement relating to the mid-line and w0 
is transverse displacement of a point on the mid-line. 

Other terms such as θφ, θz, u
*
0, w

*
0, θ

*
φ and θ

*
z 

are the functions which are defined in the mid-

surface and are represented as follows 
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As shown in the equation of displacement field (Eq. (4)), the amount of z compared to the radii 

of curvatures (z/R≠0) is not negligible. With the use of definition of strains from the linear theory 

of elasticity for circular curved beams that is deduced from a linear theory of elasticity for 

cylindrical shell, the general strain–displacement relations in the cylindrical coordinate system are 

given as follows 

(6) 
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Substituting displacement field equations in these equations yields linear strains in terms of mid-

line displacement 
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in which 

(8) 
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For stress-strain relations, by assuming principal material axes (1,2,3) and laminate general axes 

(x, y, z) in the curvilinear co-ordinate system, stress-strain relations for the K
th
 lamina in the 

principal material co-ordinates for the theory was developed by Garg et al. (2006) 

                                         
   

K KK

ij ij ijC  
                                                (9) 

where Cij
 
components are also available in (Garg et al. 2006). After transforming constitutive 

relations from the lamina principal axes (1, 2, 3) to the laminate general axes, the following can be 

obtained 

                                                               
Q 

                                                             (10) 

where coefficients of Q
 
matrix are reduced elastic constants of orthotropic material of the K

th
 

lamina, as defined by Garg et al. (2006). Integrating Eq. (6) over thickness of the shell gives 
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in which (Garg et al. 2006) 
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and D matrix is defined as follows by Garg et al. (2006) 
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ε  and σ  are the vectors of mid-surface strains and stress resultants, respectively, and the matrices 

Df and Ds for various displacement models are given in Appendix A. Accurate method of 

calculation of the integrals in stress-resultant equations including the (1+z/R) terms (in the 

denominator of the stress-resultant integrands) are explained in Appendix B. Also, Components of 

Eq. (13) are available in the paper by Khalili et al. (2011). Here, calculation process of D depends 

on Eq. (1) and is stiffness matrix of the curved sandwich beam with a FG core. Therefore, the 

stress resultant components for the laminate consist of N layers in the form of doubly-curved shell 

as defined below 
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3.2 Shell kinematics 

 
Hamilton's principal is used to define equations of motion with respect to the displacement field 

in Eq. (1). The analytical form is stated as follows by Sudhakar et al. (2008) 

(15) 
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where δK denotes the first variation of virtual kinetic energy and δU the first variation of virtual 

strain energy. Substituting the appropriate energy expressions, the final expressions can be written 

as 
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Where ρ is the mass density of the material of the laminate and the superposed dots denote 

differentiation with respect to time. Substituting the appropriate strain expressions given by Eqs. 

(6)-(9) and the displacement expressions given by Eq. (1) in Eq. (16), integrating the resulting 

expression by parts and collecting the coefficients of δu0, δw0, δθx, δθz, δu
*
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following eight equations of motion are obtained 
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in which 
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in which “k” shows layer number. 

The local boundary conditions at the edges of the laminate are obtained simultaneously with the 

governing equations, as follows 

 

 

 

 

 

 

 

 

 

 
 

 
 
(19) 

 

 

4. Solution of equations 
 

In order to solve the derived equations, Navier solution by means of Fourier series was 

considered. For the simply supported beam, boundary conditions are explained as follows 

 

(20)       
 * * * *

0 0 1 0z zw w N / RM N M M               
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in which λ=nπ/a0 
and polar angle which is φ varies from 0 to a0. ωn 

is natural frequency of the 

beam. Here, u0n, w0n, θϕn, θzn, u
*
0n, w

*
0n, θ

*
ϕn, θ

*
zn 

are the amplitudes of the vibration; i is an 

imaginary unit; ωn is a natural circular frequency of vibration measured in [rad/s]; n is an order of 

the natural vibration mode that defines its shape. Substituting Eq. (21) into equations of motion for 

different displacement models considered herein, and collecting coefficients, the eigenvalue 

equation is obtained as follows 

(22) 
      

    n[ ] λ [ ] K M d 0  

Where λn = (ωn)
2 and {d} is the displacement vector, for any value of n. The above eigenvalue 

equation can be solved for the various eigenvalues and associated eigenvectors. The lowest 

eigenvalue gives the square of the fundamental frequency of vibration. Some elements of the 

stiffness matrix [K] and the mass matrix [M] for the different displacement models are given in 

Appendix C. 

 

 

5. Numerical results and discussion 
 

This section consists of two parts. In the first part, verification is done and results of the present 

work are compared with those of other well-known investigators. The second part contains new 

results, derived by solving Eq. (22) of the present work, using a generated code. The number of 

Furrier series sentences was considered n=13 in all examples. For the first stage, a curved 

sandwich beam with length of 28 inches and curvature radius of 168.06 inches was selected with 

following material properties: 

Face sheets: 
7 2 4 2 41.0 10 / , 2.5098 10 / , 0.3 , ( , .) 0.018fE lb in lbs in h top bot in        

Core: 3 2 6 2 412.0 10 / , 3.0717 10 / , 0.3 , 0.5cG lb in lbs in h in        

Results of the first five natural frequencies are listed in Table 1. 

 
Table1 First five natural frequencies of a sandwich beam 

Mode Present work Sudhakar et al. (2006) Sakiyama (1997) Ahmed (1971) 

1 182.254 182.288 182.7 199.5 

2 348.615 348.224 351.4 394.0 

3 713.240 714.327 726.1 746.0 

4 1137.187 1135.075 1162.0 1175.0 

5 1588.470 1585.476 1633.0 1639.0 
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Table 2 Natural frequencies of a sandwich curved beam with FG core 

L/h=100 L/h=10 Mode k 

4.5893 4.0830 1 

1 
18.5926 13.7775 2 

41.7420 25.1901 3 

73.7650 36.9678 4 

3.5228 3.2441 1 

10 
14.2736 11.6668 2 

32.1056 22.4810 3 

56.8948 34.1538 4 

 

 

As can be seen, results of the present work were so close to those of Sudhakar et al. (2006), 

especially in the case of fundamental natural frequency, which the discrepancy was less than 

0.02%. Maximum discrepancy between results of the present work and Sakiyama (1997) was also 

less than 0.2%. The reason why the results of Sakiyama (1997) were higher than other results 

could be due to neglecting shearing deformation effect in the results. Ahmed (1971) used first 

order shear deformation theory and constant shear strains. Discrepancy for the fundamental natural 

frequency between Ahmed's (1971) study and the present work was about 0.2% and was 

maximum for the fifth mode which was less the 3%. 

For the next part, a sandwich curved beam with an FGM core was selected. The layer 

arrangement was [0/90/Core- FGM /90/0] and L/h=10, 100, hc/h=0.8, L/R=0.5. Material properties 

were as follows: 

Top face sheet: 3

1 2 12 13 23172.7 , 7.2 , 3.76 , 0.3, 1566 /E Gpa E Gpa G G G Gpa kg m         

Bottom face sheet: 
3

1 2 12 13 2324.51 , 7.77 , 3.34 , 0.3, 1800 /E Gpa E Gpa G G G Gpa kg m         

FGM core: 
3 3

1 2 1 2 1 2172.7 , 24.51 , 3.76 , 3.34 , 0.3, 1566 / , 1800 /E Gpa E Gpa G Gpa G Gpa kg m kg m        

 Non-dimensional factor of the natural frequency was also used as follows:  
0.52 / /c cL h E     

Results of the first four natural frequencies for various L/h and various k are listed in Table 2. 

In the next stage, based on the material and system properties used in Table 2, some parameters 

which influenced fundamental natural frequency of a curved sandwich beam with FGM core were 

investigated. 

 
5.1 Effect of thickness ratio of   core on fundamental natural frequency (hc/h)  
 

In lower amounts of k, by thickening core thickness compared to thickness of the beam, inertia 

moments of the section of the beam became greater; thus, flexural rigidity of the beam increased, 

which made raised fundamental natural frequency of the system. On the other hand, in higher 

amounts of k, increasing core thickness resulted in slightly lower fundamental natural frequencies. 

These variations are plotted for L/R=0.5 and L/h=10 in Fig. 2. 

 

5.2 Effect of the length of the beam on the fundamental natural frequency (L/h)  
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Variations of the length of the beam for hc/h=0.8
 
and L/R=0.5 are plotted on Fig. 3. As can be 

seen, for these range of material and system properties, increasing the length, makes the 

fundamental natural frequencies to be greater. By increasing the k, fundamental natural frequency 

of the system is decreased and also the ratio of increasing of the fundamental natural frequency 

due to increasing the length of the beam is decreased. 

 
5.3 Effect of radius of curvature of beam on fundamental natural frequency (L/R) 
 

Decreasing radius of curvature (R) increased the amount of fundamental natural frequency; i.e., 

the straight beam had the lowest natural frequencies and, increasing the curvature made the system 

stiffer. These variations for hc/h=0.8 and L/h=10 are plotted in Fig. 4. 

 

 

 
Fig. 2 Variations of fundamental natural frequencies of a sandwich curved beam with 

respect to core to beam thickness ratio 

  

 

Fig. 3 Variations of fundamental natural frequencies of a sandwich curved beam with 

respect to  length to thickness ratio 
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Fig. 4 Variations of fundamental natural frequencies of a sandwich curved beam with FG core 

with respect to length to radius ratio 

 

 

Fig. 5  Axial displacement of the core for two amounts of k and for two first modes 

 
 
5.4 Effect of variations of k on modal axial displacement of core, uc for the two first 

natural frequencies 
 

Fig. 5 shows modal axial displacement of the core by variations of k (FG-core parameter). u1c is 

axial displacement related to the first natural frequency and u2c for the second one. These 

displacements were measured from the middle of the curved beam and were plotted based on the 

ratios of zc/hc. uc is calculated based on the displacement field in Eq. (4). As can be seen, modal  
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Fig. 6  Radial displacement of the core for two amounts of k, and for two first modes 

 

 

axial displacement of the core on the top region was greater than the bottom region for all the 

mode shapes; so, the displacement on the region of the top face-sheet was not equal to the region 

of the bottom face-sheet, which was the result of non-homogeneous (FG) material distribution 

through thickness of the core.   

 

5.5 Effect of variations of k on modal radial displacement of core, wc, for the two first 
natural frequencies 

 

Radial displacement of the core based on the displacement field in Eq. (4) is plotted in Fig. 6 

for various k factors and two first modes. It shows that the modal radial displacement for the 

second mode had more variation by increasing k factor compared to the first mode. 

 

 

6. Conclusions 
 

Vibration of cross-ply laminated composite and sandwich curved beams with FG  cores on the 

basis of 2D refined higher order beam theory (RHOBT) was studied for simply supported 

boundary conditions. The characteristic eigenvalue governing equation was obtained based on 

Hamilton's principle using Fourier series solution method. Since the cross-sectional warping was 

accurately modeled by this theory, it did not require any shear correction factor. Also, the present 

analysis incorporated trapezoidal shape factor (the 1+z/R terms) of a curved beam element that 

arose due to the fact that stresses over the beam thickness were to be integrated on cross-section of 

a curved beam element to obtain accurate stress-resultants. The solutions were also applicable to 

straight beams by taking radius of curvature as infinity. Comparisons of the results for thin and 

thick curved beams with the published results in the literature were carried out and good 

agreement was observed. Variations of some parameters which could affect fundamental natural 

frequency of the system were also investigated: 
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- Thickness of core: Increasing thickness of the core compared to thickness of the beam could 

increase or decrease fundamental natural frequency, depending on the amount of k (FG-core 

parameter) factor.  

- Length of beam: Increasing this parameter affected fundamental natural frequency by 

increasing it, but in a decreasing ratio. 

- Radius of curvature: Higher radius of curvature led a lower amount of fundamental natural 

frequency. Also, axial and radial displacements of the core for two first modes were plotted to 

show effect of non-homogeneous material distribution through thickness of the FGM-core which 

caused displacements on the region of the top face-sheet not to be equal to the region of the bottom 

face-sheet.  The present method does not require any convergence study, in contrast to some other 

higher-order theories for free vibration analyses reported in the literature. So, the present method 

could be effectively used for design purposes, where short run-time is important like structural 

optimization procedures. 

 
 
8. References 
 
Ahmed, K.M. (1971), “Free vibration of curved sandwich beams by the method of finite elements”, J. 

Sound.  Vib., 18, 61-74. 

Apetre, N.A., Sankar, B.V. and Ambur, D.R. (2006), “Low-velocity impact of sandwich beams with 

functionally graded core”, Int. J. Solid. Struct., 43(9), 2479-2496. 

Aydogdu, M. and Taskin, V. (2007), “Free vibration analysis of functionally graded beams with simply 

supported edges”, Mater. Des., 28(5), 1651-1656. 

Auciello, N.M. and Rosa, M.A. (1994), “Free vibrations of circular arches: a review”, J. Sound. Vib., 176, 

433-458. 

Bao, G. and Wang, L. (1995), “Multiple cracking in functionally graded ceramic/metal coatings”, Int. J. 

Solid. Struct., 32, 2853-2871. 

Balasubramanian, T.S. and Prathap, G. (1989), “A field consistent higher-order curved beam element for 

static and dynamic analysis of stepped arches”, J. Comput. Struct., 33, 281-288. 

Birman, V. (1995), “Stability of functionally graded hybrid composite plates”, Compos. Eng., 5, 913-921. 

Chi, S.H. and Chung, Y.L. (2003), “Cracking in coating substrate composites of multi layered and sigmoid 

FGM coatings”, Eng. Fract. Mech., 70, 1227-1243. 

Eisenberger, M. and Efraim, E. (2001), “In-plane vibrations of shear deformable curved beams”, Int. J.  

Numer. Meth. Eng., 52, 1221-1234. 

Garg, A.K., Khare, R.K. and Kant, T. (2006), “Higher-order closed-form solutions for free vibration of 

laminated composite and sandwich shells”, J. Sandwich Struct. Mater., 8(3), 205-235. 

Golmakani, M.E. and  Kadkhodayan, M.E. (2011), “Nonlinear bending analysis of annular FGM plates 

using higher-order shear deformation plate theories”, Compos. Struct., 93, 973-982. 

Kang, B., Riedel, C.H. and Tan, C.A. (2003), “Free vibration analysis of planar curved beams by wave 

propagation”, J. Sound. Vib., 260, 19-44. 

Henrych, J. (1981), The Dynamics of Arches, Elsevier Frames, New York. 

Khdeir, A.A. and Reddy, J.N. (1997), “Free and forced vibration of cross-ply laminated composite shallow 

arches”, Int. J. Solid. Struct., 34, 1217-1234. 

Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012), “Static and dynamic analysis of an FGM 

doubly curved panel resting on the Pasternak type elastic foundation”, Compos. Struct., 94, 2474-2484. 

Koizumi, M. (1993), “The concept of FGM ceramic transactions: functionally gradient materials”, 34, 3-10. 

Khalili, S.M.R., Tafazoli, S. and Malekzadeh Fard, K. (2011), “Free vibrations of laminated composite 

shells with distributed uniformly attached mass using higher order shell theory including stiffness effect”, 

J. Sound. Vib., 330(26), 6355-6371. 

550

http://dx.doi.org/10.1016/j.jsv.2011.07.004


 

 

 

 

 

 

Higher order free vibration of sandwich curved beams with a functionally graded core 

 
 

Krishnan, A, Dharmaraj, S. and Suresh, Y.J. (1995), “Free vibration studies of arches”, J. Sound. Vib., 186, 

856-863. 

Krishnan, A. and Suresh, Y.J. (1998), “A simple cubic linear element for static and free vibration analyses of 

curved beams”, J. Comput. Struct., 68, 473-489. 

Li, X.F. (2008), “A unified approach for analyzing static and dynamic behaviors of functionally graded 

Timoshenko and Euler-Bernoulli beams” , J. Sound. Vib., 318, 1210-29. 

Lu, Q. and Lu, C.F. (2008), “Exact two-dimensional solutions for in-plane natural frequencies of laminated 

circular arches”, J. Sound. Vib., 318, 982-990. 

Malekzadeh, P. (2009), “Two-dimensional in-plane free vibrations of functionally graded circular arches 

with temperature-dependent properties”, Compos. Struct., 91, 38-47. 

Malekzadeh, P., Golbahar Haghighi, M.R. and Atashi, M.M. (2010), “Out of plane free vibration of 

functionally graded circular curved beam in thermal environment”, Compos. Struct., 92, 541-552. 

Marur, S.R. and Kant, T. (2008), “Free vibration of higher-order sandwich and composite arches, Part I: 

formulation” , J. Sound. Vib., 310(1-2), 91-109. 

Mori, T. and Tanaka, K. (1973), “Average stress in the matrix and average elastic energy of materials with 

misfitting inclusions”, Acta Metall., 21, 571-574. 

Qatu, M.S. (1993), “Theories and analysis of thin and moderately thick laminated composite curved beams”, 

Int. J. Solid. Struct., 30(3), 2743-2756. 

Sakiyama, T., Matsuda, H. and Morita, C. (1997), “Free vibration analysis of sandwich arches with elastic or 

visco elastic core and various kinds of axis shape and boundary conditions”, J. Sound. Vib., 203, 505-522. 

Sankar, B.V. (2001), “An elasticity solution for functionally graded beams”, Compos. Sci. Technol., 61(5), 

689-696. 

Shen, H.S. (2009), Functionally Graded Materials-Nonlinear Analysis of Plates and Shells, CRC Press. 

Tseng, Y.P., Huang, C.S. and Kao, M.S. (2000), “In-plane vibration of laminated curved beams with 

variable curvature by dynamic stiffness analysis”, J. Compos. Struct., 50, 103-114. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

551



 

 

 

 

 

 

K. Malekzadeh Fard 

Appendix A. Definition of D matrices 
 

The terms
jH , 

jH


 and 
jH  (j=1, 2, …, 7), used in the following matrices (Df and Ds), are 

defined in Appendix B. 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix B. Definition of H components 
 

In matrices Df, and Ds the terms
jH , jH


  and jH are defined as follows: 

 
B.1 Definition of Hj 
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where Hj
 
  are defined in Eq. (B.1). 

 

B.3 Definition of 
jH
 

 

(B.3) 

Here, exact integration method for calculating the integral in Eq. (B.3) is applied for calculating 

the stress-resultants used in the refined higher-order beam theory. In this method, the integral in Eq. 

(B.3) is calculated accurately. After taking exact integration, the following results are obtained: 
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Appendix C. Elements of stiffness and mass matrices 
 

C.1 Some elements of stiffness matrix K8x8 
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(C.2) 

 
C.2 Some elements of Mass matrix M8x8 

 

       

0 0 0 0 0
11 0 1 2 13 1 2 15 2 3 17 3 42

0
22 0 24 1 26 2 28 3 31 1 2 33 2 35 3

0
37 4 42 1 44 2 46 3 48 4 51 2 3 53 3

55 4 57 5 62

2
( ), ( ), ( ), ( );

, , , ; ( ), , ,

; , , , ; ( ), ,

, ;

M I I I M I I M I I M I I
R R R R R

M I M I M I M I M I I M I M I
R

M I M I M I M I M I M I I M I
R

M I M I M

    





        

       

       

   0
2 64 3 66 4 68 5 71 3 4

73 4 75 5 77 6 82 3 84 4 86 5 88 6

, , , ; ( )

, , ; ; ; ; ;

I M I M I M I M I I
R

M I M I M I M I M I M I M I


    

      

 

(C.3) 

 

2

45 52 32 53 56 46 1 532 2 2

57 52 32 37 47 56 36 542 2

2

57 48 2 57 54 56 36 342 2 2

1 1 1 2 1
( )( ), [( )( )

2 1 1 1 1 3
( 2 )], (

1 1 3 1 1
)( ), [( )( ) ( 3 )]

f f s s s

f f f f f f s

s s f f f f

K D D D D K C D
R R R R R

D D D D K D D D
R R R R R R

D K C D D D D D
R R R R R

 

 

       

        

        

20 0 0 0 0
11 11 15 51 55 11 12 152 3 3 4 2 2 3

0 0 0 0 0 0
51 52 55 21 22 253 3 4 2 2 3

0 0 0 0
14 1 13 15 15 53 55 55 252 2 2 3 3 2

1 1
( )( ) (

)

1 1 1
[( )( )]

f f f f s s s

s s s s s s

f f s f f s s

K D D D D D D D
R R R R R R R

D D D D D D
R R R R R R

K C D D D D D D D
R R R R R R R

K

    


     

   


        

     

      

20 0 0 0
15 12 52 13 16 53 56 232 3 2 3 2 2

0 0 0 0
26 16 1 12 17 13 52 57 532 2 3 2 3

1 1 2
( )( ) ( 2

1 2 1
2 ), [( 2

f f s s s s s

s f f s f f s

D D D D D D D
R R R R R R R

D K C D D D D D D
R R R R R R R

   


   

        
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554




