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Abstract.  We apply the Finite Fracture Mechanics criterion to address the problem of a V-notched 
structure subjected to mode II loading, i.e., we provide a way to determine the direction and the load at 
which a crack propagates from the notch tip and express the critical conditions in terms of the generalized 
stress intensity factor. Weight functions for V-notch emanated cracks available in the literature allow us to 
implement the fracture criterion proposed in an almost completely analytical manner: the determination of 
the critical load and the direction of crack growth is reduced to a stationary point problem. A comparison 
with experimental data presented in the Literature concludes the paper. 
 

Keywords:   V-notches; Finite Fracture Mechanics; mode II 

 
 
1. Introduction 

 

The development of suitable fracture criteria for brittle (isotropic or orthotropic) materials 

containing V-notches or multi-material interfaces is a problem of primary concern in order to 

control fracture onset phenomena taking place in mechanical components, composite materials, 

and electronic devices. As well-known, the singularity of the stress field in the vicinity of the notch 

tip makes the problem non-trivial. 

Concerning re-entrant corners in homogeneous media subjected to mode I loading, since the 

pioneering paper by Carpinteri (1987), a good correlation has been found between the critical 

value of the generalized stress intensity factor (i.e., the generalized fracture toughness) and the 

failure loads. Theoretical models relating the generalized fracture toughness to material tensile 

strength, fracture toughness and re-entrant corner amplitude have been widely formulated  

(Seweryn 1994, Lazzarin and Zambardi 2001, Leguillon 2002, Carpinteri et al. 2008, 2009, 2011). 

Fewer contributions are available for what concerns the case of mixed mode loading conditions 

(Seweryn et al. 1998, Lazzarin and Zambardi 2001, Yosibash et al. 2006, Gomez et al. 2009), 

which has been recently faced by a Finite Fracture Mechanics (FFM) criterion (Cornetti et al. 

2013, Sapora et al. 2013). The proposed approach (as well as the ones previously cited) is based 

on the assumption that the region around the corner dominated by the singular stress field is large 

compared to intrinsic flaw sizes, as well as to inelastic zone or fracture process zone sizes. This 

hypothesis is the analogous of small-scale yielding in Linear Elastic Fracture Mechanics (LEFM). 
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The comparison between theoretical FFM predictions and experimental data has been found 

satisfactory, both for what concerns the failure load and the crack propagation angle.  

On the other hand, according to the terminology adopted in (Yosibash et al. 2006, Sapora et al. 

2013), the mode II loading situation has to be treated separately and was not considered in the 

investigations. Indeed, this drawback can be overcome thanks to the new formalism introduced in 

(Hills and Dini 2011, Cornetti et al. 2013).  

In the present paper, the FFM criterion is experimentally validated for what concerns pure 

mode II loading conditions, by considering some data available in the Literature. The analysis is 

limited to sharp notch opening angles lower than 102.6°, i.e., to the case where mode II is singular. 

As a matter of fact, for amplitudes greater than 102.6°, the corner is no longer a stress 

concentration point. Observe that only the framework of two-dimensional elasticity will be 

investigated: indeed, some interesting works have recently been  proposed also for what concerns 

out-of-plane effects (see, for instance, (Berto et al. 2011, Kotousov et al. 2013) and related 

references). 

The study can be useful also for other different structural problems, as, for instance, to analyse 

the competition between bulk and interface crack propagation at V-notches where an adhesive 

joint is present (Garcia and Leguillon 2012). Eventually, it is worth noting that, in case of interface 

crack propagation, the present approach complies with the one proposed by Cornetti et al. (2012). 

 

 

2. FFM criterion 
 

By considering a polar coordinate system (r,) at the V-notch tip (Fig. 1), following the FFM 

approach proposed by Cornetti et al. (2013), a crack propagates by a finite crack extension  if the 

following two inequalities are satisfied 
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The former inequality requires that the average stress  over a segment of length  must be  

 

 

 

Fig. 1 V-notch and polar reference system 
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higher than the material tensile strength u. The latter inequality imposes that the average energy 

available for a crack increment Δ (obtained by integrating the crack driving force G) must exceed 

the energy necessary to create the new fracture surface, Gc. This quantity represents the fracture 

energy, related to the material fracture toughness by the well-known relation Gc = KIc
2
 / E, where 

E = E / (1
2
) in plain strain conditions, E being the Young’s modulus and  the Poisson’s ratio.  

It is worth observing that, the strain energy release rate function G(c,) is monotonically increasing 

with c for positive geometries (considered in the present analysis), while the stress (r,) is 

monotonically decreasing with the distance r (as far as both the modes provide a stress singularity, 

i.e. for a notch opening angle less than 102.6°). This means that the lowest failure load (i.e., the 

actual one) is attained when the two inequalities are substituted by the two corresponding 

equations. Therefore, the system (1) reverts to a system of two equations in two unknowns: the 

crack advancement  and the corresponding (minimum) failure load, implicitly embedded in the 

functions  and G.  

In case of mode II loading conditions, by assuming that the region around the corner dominated 

by the singular stress field is large compared to intrinsic flaw sizes,   can be approximated by 
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where KII
*
 is the generalized stress intensity factor (SIF), while II and 

II

θθf  represent the well-

known solutions (eigenvalues and eigenvectors, respectively) to Williams’ skew-symmetric 

problem.  On the other hand, by means of Irwin’s relationship, G  reads 
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where the SIFs for mode I and mode II,  KI and KII, respectively, can be expressed as (Sapora et al. 

2013) 
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The functions μij
 
can be evaluated from the best fit expressions provided in (Melin 1994) for =0° 

(i.e., the crack case) and in (Beghini et al. 2007) for  > 18°. It’s interesting to observe that, for 

the pure mode II case, a contribution related to mode I (4a) must be taken into account (see also 

(Goldstein and Salganik 1974, Amestoy and Leblond 1985)).  

Upon substitution of Eq. (4) into Eq. (3), and of the corresponding relationship and Eq. (2) into 

the system (1), simple analytical manipulations  yield 
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(5) 

where the following quantities are introduced 
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Table 1 FFM parameters (crack propagation angles |c| and functions g) dependent on the notch amplitude  

 (deg) II |c| (deg) gK gΔ 

0 0.5000 75.6 0.8110 0.5518 

20 0.5620 71.2 0.8361 0.5294 

30 0.5982 68.2 0.8572 0.5343 

40 0.6382 65.7 0.8753 0.5369 

50 0.6823 63.3 0.8902 0.5387 

60 0.7309 60.9 0.9013 0.5399 

70 0.7844 58.5 0.9078 0.5402 

80 0.8434 56.3 0.9093 0.5395 

90 0.9085 54.0 0.9054 0.5386 

100 0.9805 51.8 0.8954 0.5373 
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Since both functions 22μ and 
II

θθf  in Eqs. (6) depend on , the critical generalized SIF 
*

IIcK , 

corresponding to the minimum failure load, is obtained by setting the -derivative of the 

denominator in Eq. (5) equal to 0 (Cornetti et al. 2013) 
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Condition (7) provides the critical crack propagation angle c for each opening angle . Different 

values of c, for 0≤ω≤100°, are presented in Table 1.   

Substituting c into Eq. (5) gives the critical generalized SIF. Indeed, in critical conditions, a more 

convenient expression can be put forward: 
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 has been evaluated in Table 1. It is worth 

observing that, for the crack case, Eq. (8) reverts to the same expression provided by Griffith 

approach, i.e., Linear Elastic Fracture Mechanics (LEFM). In other words, fracture takes place 

according to the maximum strain energy direction, while the stress requirement in (1) limits to 

provide the value for the crack extension Δ. 
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Eventually, the other unknown of system (1) is obtained by means of 
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which holds again for a fixed critical propagation angle c, i.e., a fixed notch amplitude . Indeed, 

as can be evinced from Table 1, gΔ slightly varies as  varies. 

In conclusion: the FFM criterion (1) can be regarded as a coupled Griffith-Rankine non-local 

failure criterion: fracture is energy driven, but a sufficiently high stress field must act at the crack 

tip to trigger crack propagation. By means of Eq. (7) it is possible to derive a fixed crack 

propagation angle for each notch amplitude. Through Eqs. (8) and (9) it is then possible to derive 

the critical generalized SIF (i.e., the critical failure load) and crack advance, respectively:  Table 1 

summarizes the parameters necessary for failure analysis. 

      

 

3. Different approaches 
 

Different approaches based on a critical distance and proposed in the Literature can be applied 

to mode II loading conditions. Among the others, let us cite the point stress (PS) criterion and the 

average stress (AS) criterion. The former is a generalization of the maximum circumferential stress 

approach put forward in (Erdogan and Sih 1963) for the crack case. It is based on the condition 

θθ uσ (Δ ,θ) σPS 
                                                        

(10a) 

with  

1
Δ

2π
PS chl

                                                           
(10b) 

The latter (Seweryn et al. 1997), requiring that the average stress ahead of the notch tip must reach 

a critical value, is expressed by the first equation of (1)  

Δ
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where 
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Δ
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Notice that according to both criteria: 

1. the crack advance results a material property (Eqs. (10b)-(11b)) and not a structural one as 

for the FFM case (where it depends on , Eq. (9)); 

2. the critical crack propagation angle c is the same (values are reported in Table 2), obtained 

by imposing the condition 

     II

θθ

d
0

dθ
f 

                                                              
(12) 

3. through some analytical manipulations, the expressions for the critical generalized SIF and  
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Table 2 Point stress (PS) and average stress (AS) criterion parameters (crack propagation angles |c| and 

functions g) dependent on the notch amplitude  

 (deg) |c| (deg) gK (PS) gΔ (PS) gK (AS) gΔ (AS) 

0 70.5 0.8660 0.1591 0.8660 0.6366 

20 66.9 0.8749 0.1591 0.9024 0.6366 

30 65.1 0.8787 0.1591 0.9175 0.6366 

40 63.2 0.8820 0.1591 0.9295 0.6366 

50 61.4 0.8848 0.1591 0.9377 0.6366 

60 59.5 0.8872 0.1591 0.9416 0.6366 

70 57.6 0.8891 0.1591 0.9403 0.6366 

80 55.6 0.8904 0.1591 0.9331 0.6366 

90 53.7 0.8914 0.1591 0.9193 0.6366 

100 51.8 0.8918 0.1591 0.8984 0.6366 

 

 

crack advance (constant in these cases) can be recast in the same forms of  Eqs. (8) and (9). 

Functions g have been reported in Table 2.  

With respect to FFM, PS and AS criteria both provide lower critical angles and higher failure 

loads. Predictions differ more for what concerns lower notch opening angles, while they approach 

each other for  tending to 100°.  

In the next section, only the results related to the AS criterion will be considered (and 

compared with FFM ones), since it has been generally found to be more precise that those 

provided by the PS approach.  

Eventually, let us remind that a coupled criterion similar to FFM, but based on a point stress 

condition, was also proposed  (Leguillon 2002) and applied to mixed mode (Yosibash et al. 2006). 

 

 

4. Experimental validation 
 

In order to prove the soundness of the present approach, a comparison with experimental 

results is performed.  As already stated, since for  = 0° the criterion coincides with Linear Elastic 

Fracture Mechanics (LEFM), whose reliability has been widely proved in the past, the attention is 

focused on the case  > 0°. Many data related to pure mode II loading are available in the 

Literature (Seweryn et al. 1997, Seweryn and Lukaszewicz 2002, Ayatollahi and Torabi 2011, 

Ayatollahi et al. 2011a, b): in all the present cases the effect of the notch root radius will be 

neglected,  consistently with the sharpness measured during experiments.  Indeed, for a detailed 

discussion on the root radius effects on notched elements subjected to mode II (and more in 

general to mixed mode) loading conditions, the reader can refer to Lazzarin and Filippi (2006), 

Priel et al. (2008). 

Let us start by considering the Arcan tests carried out on double V-notched PMMA samples 

(Seweryn et al. 1997): four notch amplitudes were tested corresponding to =20°, 40°, 60° and 

80°. The material properties provided in (Seweryn et al. 1997) were: mK Ic MPa37.0 , 

σu=115Mpa. On the other hand, in a subsequent work (Seweryn and Lukaszewicz 2002), they were 

interestingly revalued by one of the Authors, who proposed: mKIc MPa120 , σu=102.8Mpa. 
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These values are here implemented (lch~0.1363 mm), supposing (and hoping) that the more recent 

data should be more accurate: it is important to underline, however, that the material fracture 

toughness  KIc 
was derived from a best fit procedure on the AS criterion. 

As regards the critical generalized SIF (i.e., the failure load), results are presented in Fig. 2: a 

satisfactory agreement is generally found, also for =20°, which revealed to be the most 

problematic situation in the mixed mode analysis (Sapora et al. 2013). In this case, the percent 

deviation according to FFM is approximately ‒16%. On the other hand, the error grows up to 

+20% as concerns the AS criterion for =60°. Fig. 3 shows the comparison on crack propagation 

angles: also in this case, FFM predictions result accurate. The most significant deviation (+5° 

compared to the mean value) is found again for =20°, where an important experimental 

scattering is indeed observed. Estimations by the AS approach reveal to be more precise, also 

because based on an optimal KIc 
- value.  

The second data set taken into account is that related to V-notched Brasilian Disk (VBD) tests 

carried out on graphite samples (Ayatollahi and Torabi 2011, Ayatollahi et al. 2011a). Specimens 

were machined with =30°, 60° and 90°. The graphite properties measured are: 

mKIc MPa00.1 , σu=27.5Mpa, corresponding to  lch~1.322 mm. The material thus reveals to be 

less brittle than the previous one (PMMA). Results are presented in Figs. 2 and 3, for what 

concerns the critical loads and propagation angles, respectively. Experimental values were 

deduced from the graphics presented in (Ayatollahi and Torabi 2011).  

As regards 
*

IIcK  (Fig. 2), theoretical FFM predictions are very accurate, the mean square error 

being always below 5%. The same occurs for estimations on c: from Fig. 3 the good matching 

between experimental and FFM values can be evinced, generally better than that found by 

implementing the AS criterion.  

Let us now consider the VBD samples tested in (Ayatollahi et al. 2011b) for =30°, 60° and 

 

 

 
Fig. 2 FFM (continuous line) and AS criterion (dashed line) predictions on the dimensionless critical 

generalized SIF *

IIcK for all the experiments considered in the present analysis 
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Fig. 3 FFM (continuous line) and AS criterion (dashed line) predictions on the crack propagation 

angle c for all the experiments considered in the present analysis 

 

 

90°. The considered material was PMMA, with the following properties: mKIc MPa96.1 , 

σu=70.5Mpa, corresponding to lch~0.7729 mm. Both FFM predictions on 
*

IIcK  (Fig. 2) and c (Fig.  

3) are found to be very accurate: for what concerns the first case the maximum deviation is 

observed for =30° (+5.5%), while as regards the second case the greatest error corresponds to 

=90° (‒3.5°). Although good, AS estimations on c are generally less precise. 

Before concluding, it is worth observing that other experimental results can be found in the 

Literature. Dunn et al. (1997), for instance, tested PMMA samples under specific mode II loading 

conditions. On the other hand, they considered just one angle (=90°) and they did not provide the 

value for the fracture toughness KIc in the paper. Thus, we have not considered this data, although 

the measured crack propagation angle (c=58°) approaches the theoretical one (Tables 1 and 2).  

Eventually, some tests on single V-notched PPMA samples were carried out in (Kim and Cho 

2008) for different notch amplitudes. Anyway, the Authors faced some drawbacks during 

experiments (several specimens broke at the ends instead that from the notch tip, especially under 

mode II loading), and we have not included them in the analysis.    

    

 

5. Conclusions 
 

We applied the FFM criterion to determine the critical load in V-notched structures under 

Mode II loading. The problem is more complex than for simple Mode I loading, since, beyond the 

failure load, also the crack propagation angle at the re-entrant corner tip is unknown. Indeed, this 

parameter is found to depend only on the notch amplitude and not on the material. A comparison 

with different experimental data (for both the failure load and the crack orientation) has been 

performed, proving once more the soundness of the present approach. A good matching with the 

average stress criterion estimations has also been proved: the best criterion varies from case to 

case. 
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