
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 49, No. 2 (2014) 273-283 

DOI: http://dx.doi.org/10.12989/sem.2014.49.2.273                                           273 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 

 
 
 

Elastic flexural and torsional buckling behavior of pre-twisted 
bar under axial load 

 

Chang Hong Chen

, Yao Yao1a and Ying Huang2b 

 
1
School of Mechanics and Civil Engineering, Northwestern Polytechnical University, Xi’an 710072, China 

2
School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 

 
(Received May 10, 2012, Revised December 18, 2013, Accepted December 27, 2013) 

 
Abstract.  According to deformation features of pre-twisted bar, its elastic bending and torsion buckling 
equation is developed in the paper. The equation indicates that the bending buckling deformations in two 
main bending directions are coupled with each other, bending and twist buckling deformations are coupled 
with each other as well. However, for pre-twisted bar with dual-axis symmetry cross-section, bending 
buckling deformations are independent to the twist buckling deformation. The research indicates that the 
elastic torsion buckling load is not related to the pre-twisted angle, and equals to the torsion buckling load of 
the straight bar. Finite element analysis to pre-twisted bar with different pre-twisted angle is performed , the 
prediction shows that the assumption of a plane elastic bending buckling deformation curve proposed in 
previous literature (Shadnam and Abbasnia 2002) may not be accurate, and the curve deviates more from a 
plane with increasing of the pre-twisting angle. Finally, the parameters analysis is carried out to obtain the 
relationships between elastic bending buckling critical capacity, the effect of different pre-twisted angles and 
bending rigidity ratios are studied. The numerical results show that the existence of the pre-twisted angle 
leads to “resistance” effect of the stronger axis on buckling deformation, and enhances the elastic bending 
buckling critical capacity. It is noted that the “resistance” is getting stronger and the elastic buckling capacity 
is higher as the cross section bending rigidity ratio increases. 
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1. Introduction 

 

The pre-twisted beam, also known as naturally twisted beam, presents initially twisted shape in 

the natural state. Some researchers called it Naturally Twisted Beam (Zelenina and Zubov 2006). 

Naturally twisted beams have been widely applied in aviation and mechanical engineering, such as 

rotating helicopter blades, gears, turbine blades, and so on. As the prevailing research needs, the 

studies focused on material strength and vibration performance (Leung 2010, Banerjee 2004, Yu 

and Liao 2005, Hsu 2009, Leung 2010, Yu et al. 2011). In recent years, a number of new building 

structures appear, such as network shell, cable structure and tension-membrane structure system. 

Accordingly, it is necessary to adopt irregular shape components, for example, the design used a
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large number of initial bending and torsion members in the “bird nest” of Beijing, China. In 1999, 

the meeting on bridge at the United States, JF Barnett presented an exciting idea - “A Bridge for the 

Bridge”
 
(Barnett 1999). Followed by Carlo H Sequin from University of California at Berkeley, a 

professor at the basis of its “Moebius Bridge” concept (Sequin 2000), the initially state is naturally 

twisted state. 

In the past decade, research scholars put forward using the naturally twisted beam in frames and 

support members of wall structures (Shadnam and Abbasnia 2002, Leung 2010). However, because 

of the existence of the naturally twisted angle ω, bending buckling displacements coupled with each 

other, the buckling displacements will have no different from flexible shaft under direct pressure. 

As a result, research on the pre-twisted axis bar buckling performance has important theoretical and 

practical meaning for the engineers. 

 
 
2. The elastic torsion buckling behavior 

 
2.1 The elastic torsion buckling bearing capacity 
 

In the global coordinate system O_XYZ, the stress behavior of the elastic pre-twisted cross-

shaped bar under pined-pined condition is studied. The bar length is l and the axial force is P. In 

any position Z = z, the local coordinate system G_ξηz, Gz axis and OZ axis are coincidence, Gξ and 

Gη are the main bending axis of the section.  

In current work, it is assumed that the rotation angle of G_ξηz relative to the O_XYZ is ψ+kz in 

position Z=z, which the kz is the pre-twisted angle. In the adjacent position Z=z+dz, the rotation 

angle is (ψ+kz)+(dψ+kdz). When any section fiber DE is to D’E’’, the rotation angle ϕ appears. 

The parameter ρ is the distance from the point E’’ to section shear center S. Because the fiber is tilt 

after being twisted, the force acting on point E’’ is σdA=P/A∙dA, which is σ’dA at the horizontal 

direction, the formed torque is σ’dAρ around the shear center S, as shown in Fig. 1. 

Because the angle ϕ is small, the following equation is given by 

    
' " (d d )

sin
d d

E E k z

z z

 
 


                                                 (1) 

 

 

  

Fig. 1 Twist deformation of pre-twisted bar 
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Thus, in the fiber point E’’, the horizontal component is 

'd d sin d ( ' )A A A k                                                     (2) 

The non-uniform torque in the total cross-section is 

2 2d ( ' ) d ( ' )z

A A

P
M A k A k

A
                                               (3) 

It can be seen that the Wagner effect factor is equal to that of the straight bar from the Eq. (3), But 

the Wagner torque adds one: 2

A

P
kdA

A
 . Introduction the section 

characteristic,
2 2

0

A

dA I I i A     , the parameter i0 is gyration radius, The Eq. (3) can be 

expressed 

2

0 ( ' )zM Pi k                                                              (4) 

According to the torque equal equation z k wM M M  ( kM and wM are the free torque and 

warping torque), The elastic buckling equation of the pre-twisted bar can be obtained as following 

2 2

0 0''' ( ) ' 0w kEI Pi GI Pi k                                                  (5) 

Assume: 

2
2 0

1

w

Pi

EI
  ,

2

2
k

w

GI

EI
  ,

2 2 2

1 2    , Eq. (5) can be expressed as 

2 2 2

1 2 1''' ( ) ' 0k                                                        (6) 

The general result of differential Eq. (6) can be obtained using MATLAB 

2 2

1 2 3 1sin( ) cos( ) /C z C z C kz                                               (7) 

By introducing the boundary conditions, we can get the following equations 

(0) ( ) 0,  ''(0) ''( ) 0l l                                                    (8) 

Thus 

2

1 sin 0C l    2 0C   3 0C                                                  (9) 

At the same time, as the factor 1 0C  , the equation min / l   is given. 

Thus, the elastic torsion buckling Load can be calculated 

2
'

2 2

0

1
( )w

w k

EI
P GI

i l


                                                      (10) 

We can get that the elastic torsion buckling load is not related to the pre-twisted angle, and is 

equal to the torsion buckling load of the straight bar. 
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(a) ω=π/2 (b) ω=3π/4 

Fig. 2 Finite element model in different pre-twisted angle 

 

 

Fig. 3 Relation of buckling critical load ratio and pre-twisted angle 

 

 

2.2 Verification using finite element analysis 
 

The buckling behavior of the elastic pre-twisted cross-shaped bar is investigated using finite 

element software ANSYS. The bar length l is 6000mm, width of the cross-shaped section and plate 

thickness are 240mm and 10mm, respectively; the pre-twisted angle is ω, the steel material modulus 

E is 2.1×10
5
 Mpa. Based on ANSYS “direction point” characteristics (ANSYS Inc. 2007),

 
a 3D 

finite element model with different pre-twisted angle is developed as shown in Fig. 2. 

According to Eq. (10), the elastic torsion buckling capacity is 2.824×10
6
 N, which is equal to the 

finite element prediction. Based on the numerical result, the elastic torsion buckling capacity is not 

related to the pre-twisted angle ω. The critical buckling load ratio α=P
’
w/Pw is 1 (P

’
w is the elastic 

torsion buckling load of the pre-twisted bar, Pw is for the straight bar), as shown in Fig. 3. 

 

 

3. The elastic flexural-torsion buckling behavior 
 
3.1 The coupled elastic bending displacement 
 

In the global coordinate system O_XYZ, the elastic flexural buckling behavior of the pre-twisted 
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bar under pined-pined condition is studied, the bar length is l and the axial force is P. At any 

position Z = z, we introduce local coordinate system G_ξηz, Gz axis and OZ axis are coincidence, 

Gξ and Gη are the main bending axis of the section, the twisted angle of G_ξηz relative to the 

O_XYZ is ω = kz. The linear displacements are u and v along the axis Gξ and Gη, the rotations 

displacements are θ and φ. So at position Z = z +dz, the linear displacements are u+u
’
dz and v+v

’
dz  

along the axis G  andG , as shown in Fig. 4. 

The incremental displacements of adjacent section in the local coordinate system are given by 

' '( d )cosd ( d )sin du u u z v v z u                                                (11) 

' '( d )cosd ( d )sin dv v v z u u z v                                                (12)  

To the first order, cosdω=1, sindω=dω and ω=kdz, these are 

( ' )du u kv z                                                                (13) 

( ' )dv v ku z                                                              (14) 

From the definition of shear strain (Fig. 5), the following equations can be obtained 

 ' ,  'u kv v ku
z z

   
 
                                                   (15) 

 
 

  

Fig. 4 Global and local coordinate of pre-twisted bar 

 

  

Fig. 5 Infinitesimal element shear strains of pre-twisted bar 

277



 

 

 

 

 

 

Chang Hong Chen, Yao Yao and Ying Huang 

 

Without considering shear deformation of the Euler beam 

' ku    , 'u kv                                                           (16) 

The axial displacement W of any point in Gξη plane along the GZ axis is given by 

W                                                                   (17) 

By introducing the global and local coordinate system conversion relation 

cos sin ,  sin cosX Y X Y                                               (18) 

Substituting Eqs. (16)-(18) into Eq. (17), we can get 

( sin cos )( ' ) ( cos sin )( ' )W X Y ku X Y u kv                                  (19) 

The normal strain is 

( sin cos )( '' ') ( cos sin )( '' ')

                  ( cos sin ) ( ' ) ( sin cos ) ( ' )

z

W
X Y ku X Y u kv

z

X Y k ku X Y k u kv

     

    


        



       

                  (20) 

Substituting Eq. (18) into Eq. (20) gives 

2 2
( '' 2 ' ) ( '' 2 ' )

z
u kv k u ku k v                                                (21) 

The moments in any position are then given by 

d d ,  d d
z z

A A

M E M E
 

                                                   (22)  

Substituting Eq. (21) into Eq. (22), considering the equation d d 0
A

I


    , Eqs. (23)-(24) can 

be derived 

2
( '' 2 ' )M EI ku k v

 
                                                       (23) 

2
( '' 2 ' )M EI u kv k u

 
                                                       (24) 

Where the beam’s moment of inertia about the Gξ and Gη axes are 

equations
2
d d

A

I


    and
2
d d

A

I


    . 

 
3.2 The coupled elastic flexural-torsion buckling equation 
 

The following section establishes the balance buckling equations of the single-axis symmetric I-

shaped pre-twisted bar, in the small bending and torsion deformation state, as shown in Fig. 6. The 

section shear center’s displacement is u, the twisted angle is ψ+kz. Based on Eqs. (23)-(24) and the 

moment balance conditions, we can get 

" ' 2
( 2 ) ( ) 0EI u kv k u P u e ekz


                                               (25) 
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Fig. 6 Pre-twisted bar deformation of bending and torsion 

 

 

" ' 2
( 2 ) 0EI v ku k v Pv


                                                       (26) 

It should be noted that the longitudinal axis will appear tilt when the pre-twisted bar happen to 

bending deformations around the axis of symmetry. Here assumes that the rotation angle around the 

longitudinal axis is θ1 when the bending deformations happened around symmetry axis OY, the 

rotation angle around the longitudinal axis is θ2 when the bending deformations happened around 

non-symmetry axis OX. By employing Eq. (16), the shear of cross-section shape center is given by 

1 1 2 2
sin t ( ' ),  sin t ( ' )P P g P u kv P P g P v ku                                (27) 

Thus, the torque from the shear around the shear center S is given 

( ' ) cos( )P u kv e kz                                                              (28) 

( ' ) sin( )P v ku e kz                                                              (29) 

The distance between the shear center S and any point is
2 2

( )x y e    , so the Wagner torque 

can be defined by 

2 2 2 2 2

0
d ( ' ) [ ( ) )]d ( ' ) ( )( ' ) ( ' )

z x y

A A

P P
M A k x y e A k I I Ae k Pi k

A A
                   

    (30) 

Where: 
2 2

0
( ) /i I I A e

 
   . The non-uniform torque can be further expressed as 

2

0
( ' ) ( ' ) cos( ) ( ' ) sin( )

z
M Pi k P u kv e kz P v ku e kz                               (31) 

Because the twist angle ψ is small, cosψ=1, sinψ=0, the Eq. (31) can be further simplified to 

2

0
( ' ) ( ' ) cos ( ' ) sin

z
M Pi k P u kv e kz P v ku e kz                                  (32) 
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Thus, the twist balance equation is given 

2 2

0 0
''' ( ) ' ( ' ) cos ( ' ) sin 0

w k
EI Pi GI Pi k P u kv e kz P v ku e kz                        (33) 

Eqs. (25)-(26) and Eq. (33) compose the coupling bending and torsion buckling differential 

equations of the pre-twisted bar. Here, the bending buckling displacement coupled with each other 

around bending principle axis, the buckling displacement coupled with each other between the 

bending and twist buckling displacements as well. If the pre-twisted bar have dual-axis symmetric 

section, namely, e is equal to zero, and the above bending and twist buckling coupled equation can 

be expressed as 

      

" ' 2

" ' 2

2 2

0 0

( 2 ) 0

( 2 ) 0

''' ( ) ' 0
w k

EI u kv k u Pu

EI v ku k v Pv

EI Pi GI Pi k





 

   

   

   

 

 

 

 

(34) 

From Eq. (34), it is noted that the bending buckling displacement coupled with each other; on 

the other hand, the bending buckling displacement does not couple with the twisted buckling 

displacement. 

 

3.3 Verification using finite element analysis 
 

For the pre-twisted bar of dual-axis symmetric section, previous work (Shadnam and Abbasnia 

2002) assumed that the two principle bending direction of buckling displacement u and v obey 

linear relations, namely, u=e
mz

, v=ζe
mz 

(ζ is constant coefficient), which changed the second order 

coupled differential equations into fourth-order algebraic equations, and got the upper limit value of 

elastic bending buckling capacity. However, the equation for solving is complex, the general or 

semi-general analysis methods of second-order coupling differential equations still needs further 

research. 

 
3.3.1 Whether the buckling displacement is a plane curve 
The buckling behavior of the elastic pre-twisted rectangular section bar is studied numerically. 

The representative bar length l is 6000mm, the cross-shaped section’s width and height are 200mm 

and 400mm, the pre-twisted angle is ω, the steel material modulus E is 2.1×10
5
 Mpa. Based on 

“direction point” characteristics (ANSYS Inc. 2007),
 
different finite element models with different 

pre-twisted angles are developed. 

From the prediction of finite element analysis, the elastic bending displacement curve in the 

OXY plane projection with different pre-twisted angle is obtained. If the curve is a plane curve, it 

should be a straight line projection. As shown in Fig. 7, the curve is spatial. When the pre-twisted 

angle is larger, the deviated degree of the curve on the plane is more pronounced. 

Fig. 8 denotes the elastic buckling curve normalized ratio of displacement in the X and Y 

direction with different pre-twisted angle. It is noted that if the pre-twisted angle ω is larger, the 

spatial curves deviation degree is greater, and the ratio of displacement was changed nonlinearly. 

 
3.3.2 The buckling capacity predicted from finite element analysis 
The critical buckling load ratio can be defined as 

'
/

cr cr
P P                                                                  (35) 
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Fig. 7 Buckling displacement in different pre-twisted angle 

 

 

Fig. 8 Normalized displacement ratio in different pre-twisted angle between X and Y direction 

 

 

Fig. 9 Relations between critical bending buckling load ratio α and pre-twisted angle ω 
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The parameter P
’
cr denotes the critical buckling load of the pre-twisted bar, and Pcr is the critical 

buckling load of the non-twisted bar. 

The definition of bending rigidity parameters is given by 

( / ) 1I I
 

                                                                 (36) 

According to the developed model and numerical results, the relation between the flexural 

buckling bearing load and bending rigidity ratio μ is studied, which is changed by the section height 

for 200mm, 300mm, 400mm, 500mm, 600mm, respectively. From Fig. 9, the following statements 

can be concluded: 

 (1) When bending rigidity ratio μ is equal to 1, the flexible buckling capacity of pre-twisted bar 

is the same as the non- twisted straight bar. 

(2) When bending rigidity ratio μ is greater than 1 and (0, / 2)  , the critical buckling load 

slowly increases with the increasing of pre-twisted angle. When ( / 2,5 / 6)   , the critical 

buckling load increases sharply. When (5 / 6, )   , the critical buckling load shows downward 

trend. 

(3)  When the bending rigidity ratio μ is larger, the critical buckling load ratio is greater. The 

existence of the pre-twisted angle leads to “resistance” effect of the stronger axis on buckling 

deformation in the direction of other axis, which enhances the elastic bending buckling critical 

capacity. The “resistance” is getting stronger and the elastic buckling capacity is higher with the 

increasing of the cross section bending rigidity ratio. 

 

 

4. Conclusions 
 

(1) The elastic torsion buckling capacity is not related to the pre-twisted angle ω. 

(2) For dual-axis symmetry pre-twisted bar, the bending buckling displacement does coupled 

with each other; however, the bending buckling displacement does not couple with the twisted 

buckling displacement. In current work, the elastic bending and torsion buckling problem can be 

simplified to a separate elastic bending buckling and torsion buckling problem. But for the pre-

twisted bar of single axis symmetry, the flexural and torsion buckling displacements are coupled 

with each other.  

(3) The flexural buckling curve is spatial because of the pre-twisted angle. When the pre-twisted 

angle is larger, the deviated degree of the curve on the plane is more pronounced. The assumption 

of plane deformation curve method will not be applicable to the pre-twisted bar with large pre-

twisted angle. 

(4) The paper adopts the straight beam element “infinite approximation” to pre-twisted element; 

this method doesn’t consider geometric discontinuities, more accurate pre-twisted element (Petrov 

and Geradin 1998, Yu et al. 2009, Zupan and Saje 2004) will be studied in future work. 
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