
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 48, No. 6 (2013) 757-774 

DOI: http://dx.doi.org/10.12989/sem.2013.48.6.757                                           757 

Copyright ©  2013 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

A numerical tool for thermo-mechanical analysis of multilayer 
stepped structures 

 

Paolo Emilio Bagnoli1, Maria Girardi
2, Cristina Padovani2 and 

Giuseppe Pasquinelli2 
 

1
Department of Information Engineering, University of Pisa, Via G. Caruso 16 56122, Pisa, Italy 

2
Institute of Information Science and Technologies “A. Faedo”, National Research Council of Italy ISTI-CNR, 

Via G. Moruzzi 1, 56124, Pisa, Italy 

 
(Received June 6, 2012, Revised November 5, 2013, Accepted November 9, 2013) 

 
Abstract.  An integrated simulation tool for multilayer stepped pyramidal structures is presented. The tool, 
based on a semi-analytical mathematical strategy, is able to calculate the temperature distributions and 
thermal stresses at the interfaces between the layers of such structures. The core of the thermal solver is the 
analytical simulator for power electronic devices, DJOSER, which has been supplemented with a 
mechanical solver based on the finite-element method. To this end, a new ele-ment is proposed whose 
geometry is defined by its mean surface and thickness, just as in a plate. The resulting mechanical 
model is fully three-dimensional, in the sense that the deformability in the direction orthogonal to the 
mean surface is taken into account. The dedicated finite element code developed for solving the 
equilibrium problem of structures made up of two or more superimposed plates subjected to thermal 
loads is applied to some two-layer samples made of silicon and copper. Comparisons performed with 
the results of standard finite element analyses using a large number of brick elements reveal the 
soundness of the strategy employed and the accuracy of the tool developed. 
 

Keywords:   multilayer structures, thermal stresses, finite element method, power electronic devices 

 
 
1. Introduction 

 

Power electronic devices are composed of structures made up of layers with different 

geometrical and thermo-mechanical properties. These structures are subjected to high thermal 

loads, which give rise to stress distributions that can damage the adhesive films between the layers 

and lead to debonding. The problem of the thermal analysis of such structures has been addressed 

in (Bagnoli et al. 2007a, Bagnoli et al. 2007b, Montesi et al. 2004), where DJOSER, a tool for 

computing the steady-state temperature mapping of multilayer assembly structures for power 

electronics, is described. The simplicity and high degree of standardization of power assemblies, 

which in most cases can be modeled as multilayer, stepped pyramidal structures with 

homogeneous layers and rectangular geometries, enable fruitful application of DJOSER, which is 

a time saving, user-friendly code based on an analytical approach. 
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From a thermo-mechanical point of view, software tools that enable calculating both the 

tangential and normal stresses, and thereby assessing the quality of adhesion and locating eventual 

critical zones, are of fundamental importance. The crucial role of numerical modeling is testified 

to by a large number of recent publications focusing on obtaining approximations and estimates of 

the interlaminar thermal stresses in multilayer structures, (Hsueh et al. 2006, Crosby and Ghoniem 

2011, Wu 2004, Saidi et al. 2013, Simhonian and Sanoyan 2009, Xie and Sitaraman 2000), as well 

as on numerical procedures for thermo-mechanical analysis of composite and sandwich plates, 

(Zhen and Chen 2007, Carrera 2004, De Borst and Sadowski 2008, Gherlone and Di Sciuva 2007, 

Grigolyuk and Tolkachev 1980, Grigolyuk et al. 1994, Grigolyuk et al. 1995, Lo et al. 2011, 

Roaldo 2006). A method for reducing the bending stresses in the low strength materials of the 

multilayer composite structures used in electronic packaging subjected to temperature changes is 

proposed in Suhir and Weld (1998). The method is based on the application of a „surrogate‟ layer 

of a high expansion (contraction) and/or high modulus material aimed at flattening the structure. A 

stress analysis model for the evaluation of stresses, strains and displacements induced by thermal 

variations in the „piecewise continuous‟ adhesive layer between two identical non-deformable 

adherends is presented in Suhir (2000). Similarly, Suhir (2011) develops simple, easy-to-use, 

physically meaningful predictive analytical models for evaluating the interfacial shearing and 

normal stresses in the bonding material of a die-carrier assembly.  

An analytical approach has been also followed in Bagnoli et al. (2008), Bagnoli et al. (2009), 

Bagnoli et al. (2011), where the authors consider a one-dimensional problem for both geometry 

and thermal loads, with only one interface, in which the presence of contact thermal resistance 

causes an abrupt change in the temperature field. The expressions for the stresses deduced 

analytically within the framework of the Love-Kirchhoff theory, published in Timoshenko and 

Woinowsky-Krieger (1959) have been introduced into three-dimensional constitutive equations, 

expressed as functions of the derivatives of displacements. This enables the strain-displacement 

equations to be integrated, thus yielding the expressions for the displacements along the thickness. 

A finite difference algorithm is implemented to solve the system of integro-differential equations 

governing the equilibrium of the layers with the proper boundary conditions and the contact 

conditions guaranteeing adherence between the different layers. 

When generalized to three-dimensional structures, this approach would lead to a very complex 

system of equations, and using finite difference methods to solve this system might not be 

advantageous in terms of implementation and computational costs.  

The goal of the current paper is to present and test a numerical code, which like the tool 

proposed in (Bagnoli et al. 2011), for one-dimensional problems, is called THESIS. It is based on 

the finite element method Zienkiewicz and Taylor (1989) for multilayer pyramidal structures and 

enables predicting thermally induced stresses at their interfaces. The code is aimed at managing 

structures largely employed in power electronics, with simple geometries and subjected to thermal 

loads; no mechanical loads are taken into account.  

Although herein we limit ourselves to applying the numerical method to the analysis of two-

layer three-dimensional structures (Fig. 1(a) and (b)), it can be easily extended to multilayer 

structures. We present a new element whose geometry is defined by its mean surface and 

thickness, as in plates, and whose mechanical behavior is modeled as fully three-dimensional, in 

the sense that the deformability in the direction orthogonal to the mean surface is taken into 

account.  

The element has been implemented in the finite element code THESIS, which when coupled 

with DJOSER, can be applied to solving the equilibrium problem of structures made up of two or 
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more superimposed linear elastic layers subjected to thermal loads.  

As in previous works by Bagnoli et al. (2008), Bagnoli et al. (2009), Bagnoli et al. (2011), the 

temperatures calculated by DJOSER are used as input data for the mechanical solver. The output 

variables are the normal stresses Qi
-
, Qi

+
 and the shear stresses Pi

-
, Pi

+
 respectively on the lower 

and upper surfaces of the i-th layer (Fig. 1(c)). 

The code is applied to some two-layer samples made of silicon and copper, with thicknesses h2 

and h1, respectively, as the number of elements is varied. With the aim of assessing the accuracy of 

the numerical, a comparison with standard finite element analyses using a large number of brick 

elements is then performed. 

 

 

2. The numerical procedure 
 

2.1 The thermal solver 
 
As pointed out in Section 1, the temperature fields for the steady-state case are calculated by 

applying the DJOSER analytical thermal solver, whose mathematical background is thoroughly 

described in Bagnoli et al. (2007a), Bagnoli et al. (2007b), Montesi et al. (2004). 

From the practical point of view, the calculation procedure consists of two steps. First, regular 

grids composed of rectangular cells are defined on the top and bottom surfaces of each layer, and 

the system of integral equations delivering the temperature T and heat flux q is transformed into an 

algebraic system. Numerical solution of the system yields the values (Tj
(i)

, qj
(i)

), where j indicates 

the cell number and i the layer number. 

In the second step, more accurate temperature maps can be calculated with any spatial 

resolution using the same numerical equation valid for the top surface of each layer and the set of 

previously calculated temperature and flux values. 

The performance of the mechanical solver described in Subsection 2.2 improves if the 

temperatures are assigned not only on the top and bottom surface of each layer, but also on three 

planes within the bulk of the layer, as shown in Fig. 1(d). Therefore, a more complete equation for 

temperature calculation is needed here to include the dependence on the depth within the layer.  

For x, y and z the Cartesian coordinates, Lx, Ly and Lz the dimensions of a layer constituting the 

step pyramidal structure and k the thermal conductivity, the analytical expression for temperature 

T is, as shown in Bagnoli et al. (2007a) 

( x) ( y)
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(2.1) 

where 2
n,m= βn

2 
+ μn

2
 and the eigenfunctions X and Y, which depend on the eigenvalues βn and μn 
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and on the Biot numbers Bi(j) if lateral convection is present, have the following expressions 

     
( x) cos( x)  (1)sin( x)x iX L Bn n n n    

 (2.2) 

     
( y) cos( y)  (3)sin( y)y iY L Bm m m m    

 (2.3) 

N(βn) and N(μn) are the norms of the eigenfunctions X and Y, while S(n,m) is independent of the 

coordinates. The functions f and g are the top incoming heat flux and the bottom temperature 

distributions. The coordinates x, y, z within the single layer indicate the point at which the 

temperature is calculated, while the integration variables x', y' over the top surface, after 

discretization of the equation, represent the centers of the cells of the top and bottom rectangular 

grids, respectively. Eq. (2.1) allows for calculating the temperature T within the plate thickness for 

different values of z. By way of example, Fig. 2 shows the behavior of temperatures in the silicon 

and copper layers calculated at the five values of z shown in Fig. 1(d) for sample “S” described in 

the next Section. The plots correspond to the cross-section where the maximum values of 

temperatures are reached. 

 

2.2 The mechanical solver 
 

Herein we describe the numerical method introduced in Bagnoli et al. (2010) for solving the 

equilibrium problem of structures, often employed in power electronics, made up of superimposed 

rectangular linear elastic layers with different geometric and thermo-mechanical properties 

subjected to high thermal loads (Fig. 1). The thermo-mechanical solver presented here is based on 

the finite element method described in Zienkiewicz and Taylor (1989) and is aimed at calculating 

 

 

 
Fig. 1 The multilayer pyramidal structure 
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Fig. 2 Cross-section plots of the temperature maps produced by DJOSER and used as thermal 

input data for the mechanical analysis of sample “S” 

 
 
the normal and shear stresses at the interface between the different layers of multilayer structures. 

We assume that the only loads acting on the structure are due to the thermal dilatations induced by 

the temperature field T, which is not continuous at the interfaces due to the presence of contact 

thermal resistance. The interface between two adjacent layers, whose mechanical properties are 

not taken into account, is modeled by imposing conditions that guarantee the adherence between 

the layers. 

In the following we describe a new finite element that can be used to model a step pyramidal 

structure. We assume that the linear elastic material constituting the element is isotropic, with 

Young modulus E, Poisson ratio ν and linear coefficient of thermal expansion α. The geometry of 

the element is defined by its mean surface and thickness, as in the case of plates, and its thermo-

mechanical behavior is modeled as fully three-dimensional, in the sense that the deformability 

along the thickness is taken into account. The element is a four-node rectangle with sides parallel 

to the x and y coordinate axes, and the normal unit vector parallel to the z axis. The displacement 

field is interpolated by mean of shape functions which are linear in x and y and quadratic in z. 

Each node has nine degrees of freedom, i.e., three displacements each of the bottom, middle 

surface and top of the element. In particular, each element is characterized by the coordinates of 

the centroid (xG, yG, zG) and the dimensions 2a, 2b and h, along the x, y and z directions, 

respectively. The local coordinates (ξ, η, ζ) corresponding to the global coordinates (x, y, z) of any 

given point within the element are defined as 

     G(x x )/a   
(2.4) 

     G(y y )/b   
(2.5) 

      G2(z z )/h    
(2.6) 

The displacement vector u at (ξ, η, ζ) is interpolated in the following way 

     

3 4

1 1

( , , ) ( , ) ( ) u uj ij i

i j 

 
 
 
 

         
 

(2.7) 
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where uij is the displacement vector of the j-th node of the bottom (i = 1), the top (i = 2) and the 

middle surface (i = 3) of the element.  

The bilinear in-plane shape functions υi are 

     1( , ) (1 )(1 ) / 4       
(2.8) 

     2( , ) (1 )(1 ) / 4        
(2.9) 

     3( , ) (1 )(1 ) /4        
(2.10) 

     4( , ) (1 )(1 ) /4       
(2.11) 

and the quadratic out of plane shape functions ψj are 

     1( ) (1 ) / 2       (2.12) 

     2( ) (1 ) /2       (2.13) 

     3( ) (1 )(1 )       (2.14) 

For u , the gradient of the displacement, and 
T

u , its transpose, the vector ε of the engineering 

components of the infinitesimal strain tensor ( u +
T

u )/2 at any point in the element can be 

easily calculated by taking into account expression (2.7). For u
x
, u

y
 and u

z
, the Cartesian 

components of vector u, we have 
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Eqs. (2.15)-(2.20) can be rewritten as follows 

     ε Bδ  (2.21) 

where B is the strain matrix containing the derivatives of the shape functions, and δ is the vector of 

the nodal displacements uij of the element. Denoting by ζ the vector of the engineering component 

of the stress tensor, σ =(σxx, σyy, σzz, τxy, τxz, τyz)
T
, within the element we have 

      0 ζ D ε ε
 (2.22) 

where D is the matrix depending on the elastic constants E and ν, and ε0 is the vector of the 

engineering components of the thermal dilatation α(T−T0)I, with I the identity tensor and T0 the 

reference temperature. As for calculation of the stiffness matrix, a four point Gauss-Legendre 

scheme is used for numerical integration in the (ξ, η) plane, while integration along the thickness is 

carried out analytically.  

To define the geometry of the structure it is sufficient to input, for each layer, the coordinates 

of two non-adjacent vertices and the thickness h. Each layer of the pyramidal structure is modeled 

by one or more strata of elements (the number of strata must be specified by the user). The mesh 

of finite elements used for the thermo-mechanical analysis matches the grid of cells used by 

DJOSER. Regarding the boundary conditions applied to the whole structure, we assume that the 

base of the structure is clamped, thus precluding any displacements of the bottom surface of the 

lowest elements. Two superimposed elements are connected by assuming the top displacements of 

the lower element equal the bottom displacements of the upper element. This approach does not 

take into account the deformability of the adhesive layer, and any eventual debonding phenomena 

can be detected by means of an analysis of the shear and normal stresses. 

 

 

3. Applications and results 
 

The numerical tool described in Section 2 has been applied to the set of samples shown in Fig. 

3, each composed of two square slabs with different dimensions: a semiconductor device substrate 

(12 mm wide and 0.6 mm thick) made of silicon (layer 2, Fig. 2(b)) and a lower heat dissipating 

frame (24 mm wide and 1 mm thick) made of copper (layer 1, Fig. 2(b)). 

With the aim of illustrating the accuracy of the proposed numerical procedure, a comparison is 

presented with the results of standard finite element analyses using brick elements. The 

dependence of the numerical results on the number of elements in the grids is then investigated.  

The two-dimensional heat sources, dissipating a total of 200 W, are localized on the top silicon 

surface. They are arranged in four square islands in the symmetric (“S”) and asymmetric (“A”) 

samples and in one central island in the “K” series (see Fig. 3). The samples belonging to the “K” 

group differ from each other in the 2-D cell densities used by both the thermal and mechanical 

solvers. The main properties of all samples are reported in Table I. The number of cells per side in 

the copper layer is twice that of the silicon one. 

The two layers of all the samples are separated by a thermally resistive interface, representing a 

gluing or fixing film, whose specific contact thermal resistance Rc is 10 mm
2
 °C/W. As for the 

thermo-mechanical properties, we have E = 1.5 10
5
 N/mm

2
, ν = 0.17, and α = 8.0 10

-6
 °C

-1
 for the 

silicon, and E = 1.130
5
 N/mm

2
, ν = 0.34, and α = 1.7 10

-5
 °C

-1
 for the copper. 

Table I also includes a further sample, with the same characteristics as sample “S”, on which an 

analysis has been conducted by removing the heat sources and considering the structure subjected 
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Fig. 3 Example applications 

 
Table I 

Sample Thickness h2 (Si) Cells per side (Si) Structure 

S-UN 600 mm 32 symmetric 

S 600 mm 32 symmetric 

A 600 mm 32 asymmetric 

K8 600 mm 8 symmetric 

K16 600 mm 16 symmetric 

K24 600 mm 24 symmetric 

K32 600 mm 32 symmetric 

 

 

to a uniform thermal variation T - T0=100 °C (sample “S-UN”). 

The results of the thermo-mechanical analyses of the samples are shown and discussed below. 

The stress state at the interface between the substrate and copper layer and between the copper and 

silicon layer is described by the following quantities (Fig. 2) 

1
(x, y) (x, y, 0)

x xzP
  ,        1

(x, y) (x, y, 0)
y yzP

 
,         1 (x, y) (x, y, 0)zzQ

  , 

1 1
(x, y) (x, y, )

x xzP h
 

,       1 1
(x, y) (x, y, )

y yzP h
 

,         11 (x, y) (x, y, )zzQ h
  , 

2 2 2 2
1 1 1 1 1 1   ,      .( ) ( ) ( ) ( )   x y x yP P P P P P
     
   

 

The numbers refer to the layer, and the sign indicates the top (+) and bottom (-) surfaces. We 

point out that, by virtue of the continuity of displacements at the interface between layers 1 and 2,  
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Fig. 4 Cross-section plot of shear stress 

xP1
 (N/mm

2
) vs. x (mm) for sample “S” 

 

 
Fig. 5 Cross-section plot of normal stress 

1Q  (N/mm
2
) vs. x (mm) for sample “S” 

 

 

stresses 
xP2 , 

yP2 , 
2Q  coincide respectively with 

xP1 , 
yP1  and 

1Q  moreover, 
xP2 , 

yP2 , 

2Q  are zero because no loads are applied to the top of layer 2. 

Fig. 4, Fig. 5, Fig. 6 and Fig. 7 shows the plots of the stresses 
xP1 , 

1Q , 
xP1  and 

1Q  for 

sample “S” calculated in correspondence to the vertical cross-section intersecting the structure 

where the maximum temperature values occur. 

The plots show that the most critical points for both normal and shear stresses are the edges of 

the upper layer, where the maximum values occur. In particular, the normal stress here has a strong 

compressive (negative) value, while the maximum tensile stress (positive), potentially dangerous 

for the integrity of the interface attachment, lies just beneath the center of the heat dissipating 

islands. 

The global pattern of 
1Q  and 

1P  at the interface between the substrate and copper and of 

1Q  and 

1P  at the interface between copper and silicon is shown in Fig. 8 and Fig. 9. 
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Fig. 6 Cross-section plot of shear stress 

xP1
 (N/mm

2
) vs. x (mm) for sample “S” 

 

 
Fig. 7 Cross-section plot of normal stress 

1Q  (N/mm
2
) vs. x (mm) for sample “S” 

 

  

Fig. 8 Pattern of 
1Q  (left) and 

1P (right) 
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Fig. 9 Pattern of 
1Q  (left) and 

1P (right) 

 

 

Fig. 10 Cross-section plot of shear stress 
xP1

 (N/mm
2
) vs. x (mm) for sample “A” 

 

 

Fig. 11 Cross-section plot of normal stress 
1Q  (N/mm

2
) vs. x (mm) for sample “A” 

 

767



 

 

 

 

 

 

Paolo Emilio Bagnoli, Maria Girardi, Cristina Padovani and Giuseppe Pasquinelli 

 

Fig. 12 Cross-section plot of shear stress 
xP1
 (N/mm

2
) vs. x (mm) for sample “A” 

 

 
Fig. 13 Cross-section plot of normal stress 

1Q  (N/mm
2
) vs. x (mm) for sample “A” 

 

 

Fig. 10, Fig. 11, Fig. 12 and Fig. 13 show the plots of the stresses 
xP1 , 

1Q , 
xP1  and 

1Q for 

sample “A” calculated in correspondence to the vertical cross-section intersecting the structure 

where the maximum temperature values occur.  

Finally, by comparing the results for samples “S” and “A”, the effect of the structural 

asymmetry is quite evident. In fact, in sample “A”, the values of the normal and shear stresses  

reached at the copper-heat sink interface are greater than those in sample “S” (see 
xP1 and 

1Q  in  

Fig. 4 and Fig. 5). On the other hand, the values of the normal and shear stresses at the copper-

silicon interface are similar in both “A” and “S”, even if the maximum values are reached at 

different points.  

The validation procedure is performed via thermo-mechanical analysis of the “K” series, and 

comparing the results with those obtained through standard finite element analysis by discretizing 

the structure with a very large number (30720) of 20-node brick elements. Fig. 14 shows the finite 

element mesh of the structure, the discretizion of the layers is 64×64×6 elements for the copper  
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Fig. 14 Finite element mesh of the structure for the Marc analysis 

 

 

Fig. 15 Cross-section plot of shear stress 
xP1

 (N/mm
2
) vs. x (mm) for samples K8-K32 

(colored lines) as compared with the results from the Marc analysis (black lines) 

 

 

Fig. 16 Cross-section plot of normal stress 
1Q  (N/mm

2
) vs. x (mm) for samples K8-K32 

(colored lines) as compared with the results from the Marc analysis (black lines) 

 

 

and 32×32×6 for the silicon. The mesh is regular, except for the copper layer, in which the 

dimensions of the elements vary within the thickness.  

The standard analysis has been conducted using the commercial code Marc 

(http://www.mscsoftware.com/). 
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Fig. 17 Cross-section plot of shear stress 
xP1

 (N/mm
2
) vs. x (mm) for samples K8-K32 

(colored lines) as compared with the results from the Marc analysis (black lines) 

 

 

Fig. 18 Cross-section plot of normal stress 
1Q  (N/mm

2
) vs. x (mm) for samples K8-K32 

(colored lines) as compared with the results from the Marc analysis (black lines) 

 
Table II 

SAMPLE Cells per side (silicon) Time (sec) 

K8 8 23.3 

K16 16 487.2 

K24 24 2541.1 

K32 32 8249.6 

Marc  74185.9 

 

 

The aim of the numerical tests is to investigate the dependence of the results on the cell density, 

and evaluate computation times. The results of these tests are presented in Fig. 15, Fig. 16, Fig. 17  

and Fig. 18, which show the plots of stresses 
xP1 , 

1Q , 
xP1  and 

1Q  corresponding to 8, 16, 24 

and 32 cells per side (red, green, light blue and purple lines, respectively) and to the Marc finite 

element analysis (black line).  

The figures show that the most critical points are the edges of the silicon layer, where the 

accuracy of the results depends heavily on the mesh refinement. On the other hand, the 

computation time required for the analysis increases with cell density, as reported in Table II, 

though it still remains well below the time needed for a Marc run with 30720 brick elements. 

Finally, the results of the analysis performed on the “S-UN” sample is reported below. In this  
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Fig. 19 Cross-section plot of shear stress 
xP1

 (N/mm
2
) vs. x (mm) for sample “S-UN” 

calculated via THESIS (black line) and Marc (red line) 

 

 

Fig. 20 Cross-section plot of normal stress 
1Q  (N/mm

2
) vs. x (mm) for sample “S-UN” 

calculated via THESIS (black line) and Marc (red line) 

 

 

Fig. 21 Cross-section plot of shear stress 
xP1

 (N/mm
2
) vs. x (mm) for sample “S-UN” 

calculated via THESIS (black line) and Marc (red line) 

 

 

last sample the structure has been subjected to a uniform thermal variation of 100°C. Fig. 19, Fig.  

20, Fig. 21 and Fig. 22 show the plots of the stresses 
xP1 , 

1Q , 
xP1  and 

1Q  for sample “S- 
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Fig. 22 Cross-section plot of normal stress 
1Q  (N/mm

2
) vs. x (mm) for sample “S-UN” 

calculated via THESIS (black line) and Marc (red line) 

 

 

UN”, calculated in the middle cross-section, vs. x. As can be seen, once again in this case, the 

stresses reach high values, especially at the boundaries of both the layers and the results of the 

Marc analysis substantially match those obtained with THESIS. 

 

 

4. Conclusions 
 

In this paper a numerical mathematical tool for the thermo-mechanical analysis of power 

electronic devices and their assemblies has been presented. The aim of the tool is simply to equip 

the recently proposed, user-friendly, analytical thermal simulator DJOSER with a suitable 

mechanical solver, called THESIS, so that the resulting temperature maps may also be used to 

calculate the thermally induced mechanical stresses and strains. The advantages of this simulation 

strategy concern both calculation times and the possibility of using uniform rectangular meshes 

within the body layers based on the 2-D meshes used by DJOSER for the temperature mapping. 

Due to the extreme complexity of a fully analytical solution to the mechanical problem, the 

mechanical solver was developed following a finite element strategy, though making use of a new, 

expressly developed THESIS element, as described in detail in Subsection 2.2. 

The validation tests performed on the samples illustrated in Fig. 3 were carried out by 

comparing the THESIS results with those obtained via standard finite element analysis performed 

with the commercial code Marc and twenty-nodes brick elements. As expected, this comparison 

clearly shows that the accuracy of results depends on the cell density, with the error being highest 

near the borders, where the Marc code also presents singularity points and consequently undergoes 

a fall in accuracy. Thus, in order to obtain accurate results on the whole structure, it is 

recommended that the number of cells utilized not be less than a certain limit, also in light of the 

fact that THESIS computational times nevertheless remain considerably lower than Marc ones.  

Therefore, thanks to its user-friendliness and the ease of model building, which provides a high 

degree of automatization, the coupled DJOSER-THESIS simulation system for thermo-mechanical 

analyses of packaged power electronic devices may be a suitable substitute for the more expensive 

numerical tools currently in use in small- and medium-sized enterprises involved in electronic 

device manufacturing. 
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