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Abstract. Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is
investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen
based on assumptions that the in-plane and transverse displacements consist of bending and shear
components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of
transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces.
Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear
deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four
unknowns. The material is graded in the thickness direction and a simple power law based on the rule of
mixture is used to estimate the effective material properties. The neutral surface position for such FGM
plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is
employed here. There is no stretching—bending coupling effect in the neutral surface-based formulation, and
consequently, the governing equations and boundary conditions of functionally graded plates based on
neutral surface have the simple forms as those of isotropic plates. The non-linear strain—displacement
relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear
temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical
buckling temperature, which are useful for engineers in design. Numerical results are presented for the
present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in
comparison to other theories.
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1. Introduction

The increased applications of advanced composite materials in structural members have
stimulated interest in the accurate prediction of the response characteristics of functionally graded
(FG) plates used in situations where large temperature gradients are encountered. Functionally
graded materials (FGMSs) are designed so that material properties vary smoothly and continuously
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through the thickness from the surface of a ceramic exposed to high temperature to that of a metal
on the other surface. The mechanical properties are graded in the thickness direction according to
volume fraction power law distribution. Since the main applications of FGMs have been in high
temperature environments, most of the research on FGMs has been restricted to thermal stress
analysis, thermal buckling, fracture mechanics and optimization.

A number of investigations dealing with thermal buckling of functionally graded plate (FGP)
had been proposed in the published literature. The nonhomogeneous mechanical properties of the
FGP, graded through the thickness, are described by a power function of the thickness variable.
Equilibrium equations of a rectangular FGP under thermal loads based on higher order theory were
derived by Javaheri and Eslami (2002a). The system of fundamental partial differential equations
was established by using the variational method. The derived equilibrium and stability equations
for FGPs are identical to the equations for laminated composite plates. A buckling analysis of an
FGP under four types of thermal loads was presented. Na and Kim (2004) investigated the three
dimensional thermomechanical buckling of an FGP composed of ceramic, FGM, and metal layers.
The thermal buckling behaviors of FGM composite structures due to FGM thick- ness ratios,
volume fraction distributions, and system geometric parameters were analyzed. The thermal
buckling of circular functionally graded plate was studied by Najafizadeh and Heydaru (2004). By
assuming that the material properties vary as a power form of the thickness coordinate variable z
and using the variational method, the buckling of a functionally graded circular plate under various
thermal loads was analyzed. Equilibrium equations of a thick rectangular FGP under thermal loads
were derived by Lanhe (2004). Thermal loading of uniform temperature rise and gradient through
the thickness was considered. The influences of the volume fraction index and the transverse shear
on the thermal buckling temperature were discussed. Bouazza et al. (2010) investigated the
thermoelastic buckling of FGP using first shear plate theory. Effects of changing plate
characteristics, material composition and volume fraction of constituent materials on the critical
temperature difference of FGP with simply supported edges are also investigated. Shariat and
Eslami (2005) presented the thermal buckling analysis of rectangular FGPs with geometrical
imperfections based on the classical plate theory. Three types of thermal loading as uniform
temperature rise, nonlinear temperature rise through the thickness and axial temperature rise were
considered. The thermal buckling of a simply supported skew FGP was investigated by Ganapathi
(2006) based on the first-order theory. Linear and nonlinear temperature rise across the thickness
were taken into account. The effects of aspect and thickness ratios, gradient index and skew angle
on the critical buckling temperature difference are studied. Morimoto et al. (2006) presented the
thermal buckling analysis of rectangular FGPs subjected to partial heating in a plane and uniform
temperature rise through its thickness. The FGM properties of linear thermal expansion and
Young’s modulus are changed individually in the thickness direction of the plate with the power
law. The effects of material inhomogeneity, aspect ratio, and heated region on the critical buckling
temperatures are examined. Thermal buckling of an FGP under the combined effect of elevated
temperature and aerodynamic loading was studied by lIbrahim et al. (2007). It is found that the
temperature increase has an adverse effect on the FGP flutter characteristics through decreasing
the critical dynamic pressure. Decreasing the volume fraction enhances the flutter characteristic.
Sohn and Kim (2008) dealt with the stabilities of FG panels subjected to combined thermal and
aerodynamic loads. The first-order theory was used to simulate supersonic aerodynamic loads
acting on the panels. Matsunaga (2009) presented a higher order deformation theory for thermal
buckling of FGPs. By using the method of power series expansion of displacement components, a
set of fundamental equations of rectangular FGPs was derived. Kazerouni et al. (2010) presented
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thermal buckling analysis of thin functionally graded plates under two cases of thermal loadings as
the uniform and non-linear temperature rise cases. Recently, Kettaf et al. (2013) investigated the
thermal buckling behavior of functionally graded sandwich plates using a new hyperbolic
displacement model.

Neutral surface of functionally graded plate may not coincide with its geometric mid-surface,
because of the material property variation through the thickness, leading to bending-extension
coupling. Therefore, stretching and bending deformations of FG plate are coupled. Some
researchers (Morimoto et al. 2006, Abrate 2008, Zhang and Zhou 2008, Saidi and Jomehzadeh
2009) have shown that there is no stretching-bending coupling in constitutive equations if the
reference surface is properly selected. Recently, Bodaghi and Saidi (2011) investigated the
buckling of thin FG plates under non-uniform in-plane loading in the framework of the classical
thin plate theory. They used the neutral surface concept and showed that the stability equations
based on the classical plate theory reduced to the single buckling equation which can be solved by
using the power series method straightforwardly.

This paper aims to develop an efficient sinusoidal shear deformation theory based on exact
position of neutral surface for thermal buckling analysis of FG plates. This theory is based on
assumption that the in-plane and transverse displacements consist of bending and shear
components in which the bending components do not contribute toward shear forces and, likewise,
the shear components do not contribute toward bending moments. Unlike the conventional
sinusoidal shear deformation theory (Zenkour and Mashat 2010), the proposed sinusoidal shear
deformation theory contains four unknowns. The material properties are graded in the thickness
direction according to the power-law distribution in terms of volume fractions of the constituents
of the material. The effective material properties are estimated using a simple power law based on
rule of mixture. Since, the material properties of FG plate vary through the thickness direction, the
neutral plane of such plate may not coincide with its geometric middle plane (Yahoobi and
Feraidoon 2010). In addition, Zhang and Zhou (2008), Ould Larbi et al. (2013), Bouremana et al.
(2013), Khalfi et al. (2013), Bousahla et al. (2013) show that the stretching — bending coupling in
the constitutive equations of an FG plate does not exist when the coordinate system is located at
the physical neutral surface of the plate. Therefore, the governing equations for the FG plate can
be simplified. Based on the present theory and the exact position of neutral surface together with
the principle of virtual work, the governing equations of the functionally graded plates are
obtained. The thermal loads are assumed to be uniform, linear and non-linear distribution through
the thickness. The results are compared and validated with the results of previous works which are
available in the literature.

2. Problem formulation

Consider a rectangular plate made of FGMs of thickness h, length a, and width b made by
mixing two distinct materials (metal and ceramic) is studied here. The coordinates x, y are along
the in-plane directions and z is along the thickness direction. The top surface material is ceramic
rich and the bottom surface material is metal rich. For such plates, the neutral surface may not
coincide with its geometric mid-surface. The applied compressive force may be assumed to act at
the mid-surface of the plate for all the practical purposes, but the in-plane stress resultants act
along the neutral surface. The noncoincidence of line of action of stress resultant and applied
compressive force results in a couple as schematically shown in Fig. 1. The present study attempts
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Ceramic rich surface

Metal rich surface

Fig. 1 The position of middle surface and neutral surface for a functionally graded plate

to investigate the position of neutral surface and the deflection characteristics under in-plane loads.
Here, two different datum planes are considered for the measurement of z, namely, z.,s and zys

measured from the middle surface, and the neutral surface of the plate, respectively (Fig. 1).The

volume-fraction of ceramic V¢ is expressed based on z,,s and z,s coordinates (Fig. 1) as

k k
z 1 z.+C 1
Ve=|—/=+2| == += 1
¢ [ h zj ( h 2J @)
where K is the power law index which takes the value greater or equal to zero and C is the distance
of neutral surface from the mid-surface. Material non-homogeneous properties of a functionally
graded material plate may be obtained by means of the Voigt rule of mixture (Suresh and

Mortensen 1998). Thus, using Eqg. (1), the material non-homogeneous properties of FG plate P, as
a function of thickness coordinate, become

k

P(z) =Py +Pey [%"‘%j v Pow =Pc =Py 2)
where Py, and Pc are the corresponding properties of the metal and ceramic, respectively. In the
present work, we assume that the elasticity modules E, and the thermal expansion coefficient a,
are described by Eq. (2), while Poisson’s ratio v, is considered to be constant across the thickness.
The position of the neutral surface of the FG plate is determined to satisfy the first moment with
respect to Young’s modulus being zero as follows (Zhang and Zhou 2008)

h/2

I E(st )(st _Chzms =0 (3)
-h/2
Consequently, the position of neutral surface can be obtained as
h/2
J- E(st )ZdeZmS
C==07 (4)
[ Bz

-h/2

2.1 The present sinusoidal shear deformation theory for functionally graded plates
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Unlike the conventional sinusoidal shear deformation theory (Zenkour and Mashat 2010), the
number of unknown functions involved in the present sinusoidal shear deformation theory based
on exact neutral surface position is only four. The theory presented is variationally consistent, does
not require shear correction factor, and gives rise to the sinusoidal distribution of transverse shear
stress across the thickness satisfying shear stress free surface conditions.

2.1.1 Basic assumptions

Assumptions of the present theory are as follows:

(i) The displacements are small in comparison with the plate thickness and, therefore, strains
involved are infinitesimal.

(ii) The transverse displacement w includes two components of bending wy,, and shear w;. These
components are functions of coordinates x, y only.

W(X, Y, Zp) =W, (X, Y)W (X, Y) ®)
(iif) The transverse normal stress o, is negligible in comparison with in-plane stresses oy and o,.

(iv) The displacements u in x-direction and v in y-direction consist of extension, bending, and
shear components.

U=uy+U,+Ug, V =Vy+Vp+V (6)

The bending components u, and v, are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for u, and v, can be given as

ow,, ow,,
—_—, V,=-Z — 7
ns 8X b ( )

u, =-2

The shear components us and v give rise, in conjunction with ws, to the parabolic variations of

shear strains p,,, p,, and hence to shear stresses zy,, z,, through the thickness of the plate in such a

way that shear stresses 7,, 7y, are zero at the top and bottom faces of the plate. Consequently, the
expression for us and vs can be given as

ow ow
=-f(ze)— - =—f(z,)—>
ug (z) Foati 2 (z.) 5 @
where
f(ZT‘S):(ZWS +C_£SinMj (9)
T h

2.1.2 Kinematics
Based on the assumptions made in the preceding section, the displacement field can be
obtained using Egs. (5)-(9) as

8Wb aWs
UK, Y12 ) = Ug (X, Y) =25 == F(20) (10a)
ow ow
v Yo bns ) = Vol “fns b_f ns :
VO 20) =¥ (6 Y) -2 2 £ ) (10b)

W(X7 ylzns):Wb(Xl y)+Ws(X1 y) (100)
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The non-linear von Karman strain—displacement equations are as follows

g | |& ks ks :
s Yy Yy
g, r=16) t+2,3 kS b+ F(Z 1K ¢, {yy}zg(zm){},Z} (11)
0 b s ped Xz
7/xy yxy kxy kXY
where
Yy (aw oW, j 0w, _2%w,
0 oV, ow,, 8w b 0w, s 0wy
Ey (= g*‘ ay 5’y c o ky =y - oy [ Ky (=9~ oz [
7 K 2 ks 2
y ou, ov, (ow, 6W oW, oW, y oWy y 0w,
—+—+ —+— -2 -2
oy Ox ax oy oy OXoy OXoy
ow
Tl | oy 12a
{7} W 1z
OX
and
f
9(z,¢) =1—% = cos(@} (12b)

2.1.3 Constitutive relations
The plate is subjected to a thermal load T(X, t, z,s). The linear constitutive relations are

Oy Qu Qp 0 |l&g—aT
Ty, | |Q 0 7y
o,:=|Q, Qp 0 [&,—aT; and {ry }={ 54 Q H?’y } (13)
Txy 0 0 Q66 }/Xy x 55 x

where (o, 0y, Ty, Ty,r Tyx) @Nd (&, &y, ¥4y, ¥y2» ¥yx ) ar€ the stress and strain components,
respectively. Using the material properties defined in Eqg. (2), stiffness coefficients, Q;;, can be
expressed as

Qi =Qz :ﬁnsz)! (143)

Q, - L) (14)
l-v

Qu =Qss =Qg = E(Z ) (14C)
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2.1.4 Stability equations
The total potential energy of the FG plate may be written as

:%Hﬂax (sx —0!T)+o'y (sy —():T)+2'Xy}/xy +T,7 +rxzyxz}iznsdydx,
The principle of virtual work for the present problem may be expressed as follows
”[Nxégf +N,SES N, Sy +MOSKE + MO KD + M2 S KD +M S kK:
FMESKS +MESKS, +S58 7, +S58 %, Jdxdy=0

553

(15)

(16)

(17a)

(17b)

(18)

where
Nx' Nyi ny h/2-C 1
b b b _
My, My, My = I <0'x,0'y,z'xy Zns (07,
M, MS, Mj, | -hizc f(zpns)
h/2-C
(S;zvsyslz)z I(sz’ryz)g(zns)dznv
-h/2-C
Using Eq. (13) in Eq. (17), the stress resultants of the FG plate can be related to the total strains
by
N A 0 B'lfe NT
MPi=l 0 D D°RKPi-IMPTL, S=ASy,
MS BS DS HS ks MST
where

N={N,, Ny, Ny Jt, MP= VRIS VESE VERVER VEN

NT={NI.NTof, mPT ={MET,M§T,O}t, M =M MET of

e=1e2,60,7% 1, Kb {kb K2, K, f {ks k5 kS, |
An Ay Dy,
A=A, Ay Dzz )
0 0
Bfl BlSZ 0 D11 D12 0 H11 HlSZ 0
B® = Blsz Bgz 01, D® = D12 Dzz ) H® = Hlsz stz 0 1,
0 0 Bge 0 0 Dee 0 0 HGSG

R |
0 5

(19a)
(19b)

(19c)

(19d)

(19¢)

(19f)
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where A;;, Dy, etc., are the plate stiffness, defined by
s s s h
Ay Dy Bi D Hy 2 c 1
A12 Dlz BlSZ D152 Hlsz = J.Qll(ll Zz! f(Zns)' Zns f(zns )’ fz(zns) lV dzns 1 (Zoa)
s s s -V
Aee Dee Bee Des Hse *2*0 T
and
(A, D, B3, D5, H3 )=(A,, D, B, DS H), (20b)
g_c
E(z,) 2
A=A = ns z dz 20c
44 55 - 2(1+V)[9( ns)] ns ( )
-——¢

The stress and moment resultants, NJ =N

v Mt =M}T, and M;T =M’ due to thermal
loading are defined by

T h ¢

X 2
ML= J. EGs) a(z, T4 7z dz,, (21)
M >S<T e - f (Zns )

The stability equations of the plate may be derived by the adjacent equilibrium criterion.
Assume that the equilibrium state of the FG plate under thermal loads is defined in terms of the

displacement components (ug, vJ, wy, w?). The displacement components of a neighboring
stable state differ by (ug, vy, wg, wi) with respect to the equilibrium position. Thus, the total
displacements of a neighboring state are

Uy =UJ +Up, Vo =Vg+Ve, W, =W +Wp, W, =w)+w! (22)

where the superscript 1 refers to the state of stability and the superscript O refers to the state of
equilibrium conditions.
Substituting Egs. (11) and (22) into Eqg. (16) and integrating by parts and then equating the

coefficients of su;, §vg, Sw, and Sw; to zero, separately, the governing stability equations are
obtained for the shear deformation plate theories as

aNiJraNiy

=0
OX oy
ON:  ON?
_><y+_y:0
OX oy

o’M ZaZM;’; MY — (23)
+ +

ox? oxoy oy? *N=0
o?M  _8*My, 0*M oS oS
x Caey T Tk Ty

+N =0
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with

N{Nsaz(ﬁfwi)w‘;az(vfyiwi) (24)

where the terms N ¢ and N are the pre-buckling force resultants obtained as

—N°

I a(Zns)E(Z )T d,. . (25)

ch

The stability equations in terms of the displacement components may be obtained by
substituting  Eqg. (18) into Eq. (23). Resulting equations are four stability equations based on the
present refined shear deformation theory for FG plates in contact with two parameters elastic

foundation
Ay 6x20 +A668y_ (A1 Aee) 0 1 — (Blz 2866)8x8y2 =0 (26a)
0Ny oN: o*w! 3wl
(A12+A66} + Agg 20 A 6y20 -B3, P (812 ZBgﬁ)axz(;y =0 (26b)
4.1 4.1 4 4 1 4.1 _
- D11 aaX_W;_Z(DlZ +2D66)aizvavybz - Dzz a@y Dlsl aaxw Z(sz ZDGSG): 6y 252 5ayV\:s + Nl =0
(26¢)
, 0°ug . <\ 0°ug . s\ 0%, , 0vg . o'wy . .\ 0wy
Bn 6X (Blz 2866)8X6y (Blz +2866)a (,;)y Bzz 6y30 - D11 8X4b _2(D12 +2D66 )W
. 0w, . 0wl ] o) 0fw! o otwh o otwl o otwl —
R _2(|412+2H66)W—H22 A AR —0
(26d)

4. Trigonometric solution to thermal buckling

Rectangular plates are generally classified in accordance with the type of support used. We are
here concerned with the exact solution of Eq. (26) for a simply supported FG plate. The following
boundary conditions are imposed for the present efficient sinusoidal shear deformation theory at
the side edges

8\N1

Ve=wi=wl=—S=N.=M*=M=0at x=0, a, (27a)
oy
avvl

uézwﬁzwiz—axs:NizM;’l:M;l:O at y=0, b. (27b)

The following approximate solution is seen to satisfy both the differential equation and the
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boundary conditions

ug Ut cos(d x)sin(u y)
vy > |V sin(Ad x) cos(u )
T W s e (28)
Wb m=1 n=1 Wbmn Sm(ﬂ' X)Sln(/l y)
w! W sin(4 x)sin(u y)
where U}, V.., W,.., and W, are arbitrary parameters to be determined and A =mz/a and

u=nx/b. Substituting Eq. (28) into Eq. (26), one obtains

[KJiaj=0, (29)

where {A} denotes the column

= {ul, Vi wh, Wl f (30)

mn ?

and [K] is the symmetric matrix given by
[K]: alZ a22 a23 a'24 , (31)

in which

a; = _(An/?'z + Aﬁeﬂz)
a;, = _ﬂ’.u(Alz + Aee)

a3=0

ay, = A[B3A° + (B, +2Bg,) 1’1

Ay :_(Aseﬂz +A22/‘2)

83 =0

ay, = u[(By, +2B%) A + B3, u’]

Ay = _(Dll/l4 +2(Dy, +2Dgg)A°p* + Dy +NJA? + N 3”2)

8z, :_(Dlslfl4 +2(Dy, +2Dg)A* u? + D3 p* +NJA* +N S'uz)

By =—(HIA +2(H) +2HEA W + Hpp' + AL + AL +NOZ +NJ?)  (32)

By applying the static condensation approach to eliminate the coefficients associated with the
in-plane displacements, Eq. (29) can be rewritten as

e el 9

k=T

where
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[Kn]:{au alz] [K12]=|:0 aM} [KZZ]ZF33 aM} (343)

8, 8y 0 ay 83 8y
1 1
Al — {\L; rlnn} , A2 — {xblmn} (34b)
Eq. (33) represents a pair of two matrix equations
[k]at+[k2]a% =0 (35a)
[k2] At +[k2]a? =0 (35b)

Solving Eq. (35a) for A' and then substituting the result into Eq. (35b), the following equation
is obtained

[RZZ}AZ —0 (36)

where

] beebheeT el el 2 2] e

and

a3z =dj;, Az =dy,

— b
1 2
A =ay, b44 =Qy —y T — Ay
bo bo
2
bo =ay,8,, —ajy, bl =83485, — 8189, bz =ap8y —apay (37b)

For nontrivial solution, the determinant of the coefficient matrix in Eq. (36) must be zero. This
gives the following expression for the thermal buckling load
0 1 a33b44 _a§4

N2=N?= 38
/12"‘,”2 Qg+, —23y ( )

4.1 Buckling of FG plates under uniform temperature rise

The plate initial temperature is assumed to be T;. The temperature is uniformly raised to a final
value T; in which the plate buckles. The temperature change is AT=T¢T;. Using this distribution
of temperature, the critical buckling temperature change AT, becomes b5 using Egs. (24) and (38)

AT =— 1 a33b44 _a§4 (39&)
ﬂl(ﬂz +,ll2) Qg +tay —28y

where



558 Rabbab Bachir Bouiadjra, E.A. Adda Bedia and Abdelouahed Tounsi

h/2-C
Bi=— J' wdzm. (39h)

1-v
~h/2-C

4.2 Buckling of FG plates under linear temperature rise

For FG plates, the temperature change is not uniform. The temperature is assumed to be varied
linearly through the thickness as follows

T(zns)=AT(Z“Sh+C +%)+TM, (40)

where the buckling temperature difference AT=Tc—Ty and T¢ and Ty are the temperature of the
top surface which is ceramic-rich and the bottom surface which is metal-rich, respectively.

Similar to the previous loading case, the critical buckling temperature difference AT, can be
determined as

ATcr _ a33b44 _E§4 +;I—M le (ﬂz +ﬂ2 Xasa +a44 - 23-34) (41&)
B.(A7+pu)ag +a,, —2a,,)
where
h/2-C
Bz __ .[ a(ZnS)E(Zns)(Zns +C+£szm (41b)
nrc 1-v h 2

4.3 Buckling of FG plates subjected to graded temperature change across the
thickness

We assume that the temperature of the top surface is Ty and the temperature varies from Ty,
according to the power law variation through-the-thickness, to the bottom surface temperature Ty,
in which the plate buckles. In this case, the temperature through-the-thickness is given by

/4
T(z,) =AT(Z“Sh+C +%) T, (42)

where the buckling temperature difference AT=Tc—Ty and y is the temperature exponent (0<
y<0)). Note that the value of y equal to unity represents a linear temperature change across the
thickness. While the value of y excluding unity represents a non-linear temperature change
through-the-thickness.

Similar to the previous loading case, the critical buckling temperature change AT, becomes by
using Egs. (25) and (38)

AT, = L _33%4 +;I—M le (12 +p’ Xaaa +a,, —23y) (34a)
Bs(A"+p7 )ag +ay, —2ay)

where
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h/2-C

el
|

4
a(z,)E(z,) (zns +C +£j dz. (34b)
1-v h 2

-h/2-C

5. Results and discussion

In order to obtain the numerical results, an Al/Al,O; functionally graded plate composed of
Aluminum and Alumina is considered. The Young modulus and coefficient of thermal expansion
for Aluminum are Ey=70GPa, ay=23.10°%°C and for Alumina are Ec=380GPa, ac=7.4 °/°C,
respectively. The Poisson’s ratio of the plate is assumed to be constant through the thickness and
equal to 0.3.

For the linear and non-linear temperature rises through the thickness, the temperature rises 5 °C
in the metal-rich surface of the plate (i.e., T,,=5°C).

5.1 Comparative studies

In order to demonstrate the accuracy of the present closed-form exact solution, some
comparisons of the present results with those available in the literature has been carried out. In
Tables 1 and 2, the plate under uniform temperature rise is considered and the critical buckling
temperature change obtained from present efficient sinusoidal shear deformation theory have been
compared with those reported by Javaheri and Eslami (2002b) based on both higher plate theory
(HPT) and the classical plate theory (CPT), and Zenkour and Mashat (2010) based on sinusoidal
plate theory (SPT). From the results presented in Tables 1 and 2, it is observed that results have a
good agreement.

Table 1 Critical buckling temperature of FG plate under uniform temperature rise for different values of
power law index k and aspect ratio a/b with a/h=100

k Theory a/b=1 a/b =2 a/b =3 alb =4 a/b =5
Present 17.08 42.68 85.25 144.64 220.67

0 Javaheri and Eslami (2002b): HPT 17.08 42.68 85.25 144.64 220.66
Zenkour and Mashat (2010): SPT 17.08 42.68 85.25 144.65 220.67
Javaheri and Eslami (2002b): CPT 17.09 42.74 85.49 145.34 222.28
Present 7.93 19.83 39.62 67.25 102.63

1 Javaheri and Eslami (2002b): HPT 7.94 19.83 39.62 67.25 102.63
Zenkour and Mashat (2010): SPT 7.94 19.83 39.62 67.25 102.63
Javaheri and Eslami (2002b): CPT 7.94 19.85 39.71 67.52 103.26
Present 7.26 18.13 36.20 61.39 93.60

5 Javaheri and Eslami (2002b): HPT 7.26 18.13 36.20 61.39 93.60
Zenkour and Mashat (2010): SPT 7.26 18.13 36.20 61.39 93.60
Javaheri and Eslami (2002b): CPT 7.26 18.16 36.32 61.75 94.45
Present 7.46 18.63 37.20 63.06 96.11

10 Javaheri and Eslami (2002b): HPT 7.46 18.63 37.20 63.06 96.12
Zenkour and Mashat (2010): SPT 7.46 18.63 37.20 63.06 96.11

Javaheri and Eslami (2002b): CPT 7.46 18.67 37.34 63.48 97.10
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Table 2 Critical buckling temperature of square FG plate under uniform temperature rise for different values
of power law index k and side-to-thickness ratio a/h

k Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100
Present 1618.82  421.54 106.49 47.42 26.69 17.08

0 Javaheri and Eslami (2002b): HPT 1617.48  421.52 106.49 47.42 26.69 17.08
Javaheri and Eslami (2002b): CPT 1709.91  427.47 106.87 47.49 26.71 17.09

Present 758.47 196.26 49.50 22.03 12.40 7.94

1 Javaheri and Eslami (2002b): HPT 757.89 196.26 49.50 22.03 12.40 7.94
Javaheri and Eslami (2002b): CPT 794.37 198.59 49.64 22.06 12.41 7.94
Present 678.94 178.50 45.21 20.14 11.34 7.26

5 Javaheri and Eslami (2002b): HPT 678.92 178.53 45.21 20.14 11.34 7.26
Javaheri and Eslami (2002b): CPT 726.57 181.64 45.41 20.18 11.35 7.26
Present 692.54 183.13 46.45 20.70 11.65 7.46

10 Javaheri and Eslami (2002b): HPT 692.52 183.14 46.45 20.70 11.65 7.46
Javaheri and Eslami (2002b): CPT  746.92 186.73 46.68 20.74 11.67 7.46

Table 3 Critical buckling temperature of FG plate under linear temperature rise for different values of power
law index k and aspect ratio a/b with a/h=100

k Theory a/b=1 a/b=2 a/b=3 a/b=4 a/b=5
Present 24.17 75.37 160.51 279.30 431.34

Javaheri and Eslami (2002b): HPT 24.17 75.37 160.50 279.29 431.33
Zenkour and Mashat (2010): SPT 24.17 75.37 160.51 279.30 431.34
Javaheri and Eslami (2002b): CPT 24.19 75.49 160.99 280.68 43457
Present 5.51 27.82 64.93 116.74 183.11

1 Javaheri and Eslami (2002b): HPT 5,51 27.82 64.93 116.74 183.11
Zenkour and Mashat (2010): SPT 5.51 27.82 64.93 116.74 183.11
Javaheri and Eslami (2002b): CPT 5.52 27.86 65.11 117.25 184.30
Present 3.89 22.60 53.70 97.07 152.51

5 Javaheri and Eslami (2002b): HPT 3.89 22.60 53.71 97.07 152.51
Zenkour and Mashat (2010): SPT 3.89 22.60 53.70 97.06 152.50
Javaheri and Eslami (2002b): CPT 3.89 22.65 53.92 97.69 153.97
Present 4.36 24.16 57.06 102.89 161.46

10 Javaheri and Eslami (2002b): HPT 4.36 24.16 57.06 102.90 161.47
Zenkour and Mashat (2010): SPT 4.36 24.16 57.06 102.89 161.46
Javaheri and Eslami (2002b): CPT 4.37 24.23 57.32 103.64 163.20

Another comparative study for evaluation of critical buckling temperatures between the
presented theory based on exact neutral surface position and analytical solution developed by
Javaheri and Eslami (2002b) based on HPT, and by Zenkour and Mashat (2010) based on SPT, is
performed in Tables 3 and 4. The plate here is subjected to a linear temperature rise across the
thickness. From the results presented in Tables 3 and 4, it is observed that results have a good
agreement.

Furthermore, in Tables 5 and 6, an interesting comparison study of the present theory with the
analytical solution developed by Javaheri and Eslami (2002b) based on HPT, and by Zenkour and
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Table 4 Critical buckling temperature of square FG plate under linear temperature rise for different values of
power law index k and side-to-thickness ratio a/h

k Theory a’lh=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100
Present 322736 833.07 202.98 84.84 43.38 24.17
0 Javaheri and Eslami (2002b): HPT 3224.96  833.03 202.98 84.84 43.38 24.17
Javaheri and Eslami (2002b): CPT 3409.82  844.95 203.73 84.99 43.43 24.19
Present 141296  358.71 83.46 31.95 13.88 5.51
1 Javaheri and Eslami (2002b): HPT 1412.02  358.69 83.46 31.95 13.88 5.51
Javaheri and Eslami (2002b): CPT 1480.45  363.07 83.73 32.00 13.90 5.52
Present 1160.68  298.70 69.21 26.06 10.91 3.89
5 Javaheri and Eslami (2002b): HPT 1160.02  298.69 69.21 26.06 10.91 3.89
Javaheri and Eslami (2002b): CPT 1242.03  304.05 69.55 26.13 10.93 3.89
Present 1218.63  315.68 73.46 27.82 11.79 4.36
10 Javaheri and Eslami (2002b): HPT 1218.32  315.67 73.46 27.82 11.79 4.36
Javaheri and Eslami (2002b): CPT 1314.74  322.04 73.86 27.90 11.82 4.37

Table 5 Critical buckling temperature of FG plate under non-linear temperature rise for different values of
power law index k and aspect ratio a/b, and temperature exponent y with a/h=10
a/b=1 a/b=2 a/b=3
y=2 =5 y=10 y=2 y=5 y=10 y=2 =5 y=10
Present 4.84 9.68 1775 1122 2245 4117 20.01 40.03 73.39
Theory 1 4.84 9.68 1775 1122 2245 4116 20.00 40.01 73.35

k Theory

0 Theory 2 4.84 9.68 1775 1122 2245 4117 20.01 40.03 73.39
Theory 3 511 1022 1875 1280 2561 46.96 25.63 51.26 93.99

Present 2.10 4.31 8.19 495 1014 1925 897 18.38 34.87

1 Theoryl 21066 4.31 8.19 495 1014 1924 896  18.38 34.86
Theory2 2.1068 4.31 8.19 995 10.14 1925 897 18.38 34.87

Theory 3 2.20 4.52 8.58 553 1135 2153 1109 2273 43.12

Present 1.59 2.84 4.99 3.64 6.51 1143 636 1136 19.93

5 Theory 1 1.59 2.85 5.00 3.65 6.52 1144 637 1138 19.97
Theory 2 1.59 2.84 4.99 3.64 651 1143 636 11.36 19.93

Theory 3 1.70 3.04 5.35 4.28 765 1343 858 1533 26.90

Present 1.67 2.88 4.77 3.79 6.53 1080 6.53 11.24 18.60

10 Theory 1 1.67 2.88 4.77 3.79 6.53 1080 654 1125 1861

Theory 2 1.67 2.88 4.77 3.79 6.53 1080 6.53 11.24 18.60
Theory 3 1.80 3.11 5.14 4.54 781 1292 9.09 15.64 25.88
Theory 1: Zenkour and Mashat (2010) based on HPT

Theory 2: Zenkour and Mashat (2010) based on SPT
Theory 3: Zenkour and Mashat (2010) based on CPT

Mashat (2010) based on SPT. Tables 5 and 6 exhibit the critical temperature difference t,=10°T,,
for different values of the aspect ratio a/b, the temperature exponent y and the power law index k
under non-linear temperature loads at a/h=10 and 5, respectively. These tables indicate that our
presented results are accurate.
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Table 6 Critical buckling temperature of FG plate under non-linear temperature rise for different values of
power law index k and aspect ratio a/b, and temperature exponent y with a/h=5
a/b=1 a/b=2 a/b=3
y=2 =5 y=10 y=2 =5 y=10 y=2 =5 y=10
Present 16.74 3348 6138 3289 65.79 120.62 48.65 97.30 178.39
Theoryl  16.73 3347 6136 3286 65.72 120.49 4853 97.07 177.97

k Theory

0 Theory 2 16.74 3348 61.38 3289 65.79 120.62 48.65 97.30 178.39
Theory3 2050 4100 7518 51.28 10256 188.03 102.57 205.15 376.12

Present 7.45 17.28 2899 15.09 3093 58.68 2297 47.08 89.30

1 Theory 1 7.45 1528 2898 15.08 3090 58.62 2292 46.98 89.11
Theory 2 7.45 1528 28.99 15.09 3093 58.68 2297 47.08 89.30

Theory 3 8.87 18.18 3448 22119 4549 86.30 4441 91.02 172.65

Present 5.36 9.57 16.81 10.14 1810 3177 1449 2587 45.40

5 Theory 1 5.37 959 16.83 10.16 1815 31.85 1452 2593 4551
Theory 2 5.36 9.57 16.81 10.14 18.10 3177 1449 25.87 45.40

Theory 3 6.86 1226 2152 1718 30.68 53.85 3439 61.39 107.75

Present 5.53 9.52 1575 1023 17.61 29.13 1435 2469 40.85

10 Theory 1 5.54 953 1576 1024 17.62 29.15 1434 2468 40.82

Theory 2 5.53 952 1575 1023 17.61 29.13 1435 2469 40.85
Theory 3 727 1251 2070 1820 31.31 5180 36.41 62.65 103.64
Theory 1: Zenkour and Mashat (2010) based on HPT

Theory 2: Zenkour and Mashat (2010) based on SPT
Theory 3: Zenkour and Mashat (2010) based on CPT

Finally, the present comparative studies show that the results obtained from the proposed method
agree well with existing analytical results in the literature which validate the reliability and
accuracy of the present analytical approach. It should be noted that the proposed sinusoidal shear
deformation theory based on exact neutral surface position involves four unknowns as against five
in case of conventional SPT (Zenkour and Mashat 2010) and HPT (Javaheri and Eslami 2002b).

5.2 Parametric investigations

In this section, to examine the effects of different parameters of plate and the type of thermal

loads on the critical buckling load parameter a FG plate, the comprehensive results are illustrated
in Figs. 2to 5.
The variation of critical buckling temperatures of Al/Al,O; FG plates with simply supported edges
and subjected to uniform, linear and nonlinear temperature rises are shown in Figs. 2 and 3 with
respect to the power law index for several values of the side-to-thickness ratio a/h and aspect ratio
a/b, respectively. For the present material properties, the critical buckling temperatures decrease
rapidly within the range of k=0 (ceramic rich) to k=5. As the power law index k becomes larger,
all the critical buckling temperatures approach slowly to the values for k =oo (metallic rich).

It can be also seen from these figures that, regardless of the loading type and the power-law
index k, the critical buckling temperature difference t.. decreases as the side-to-thickness ratio a/h
increases and it is reduced with the decrease of the aspect ratio a/b. The critical buckling
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Fig. 2 Critical buckling temperature difference t., due to uniform, linear and non-linear temperature rise
across the thickness of FG plate (a/b=2) versus the power law index k for different values of the side-to-
thickness ratio a/h

temperature for the ceramic plate is higher than that for the FG plate. This is because the ceramic
plate is stronger than the other. The differences between the loading types decrease with the
increase of a/h because the plate becomes thin.

The critical buckling temperature change t., versus the side-to-thickness ratio a/h and the aspect
ratio a/b of FG plates under various thermal loading types is exhibited in Figs. 4 and 5. It can be
seen from these figures that, regardless of the loading type, the critical buckling temperature
difference t. decreases as the side-to-thickness ratio a/h increases and it is reduced with the
decrease of the aspect ratio a/b. It is also observed that the t. increases with the increase of the
non-linearity parameter y.
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Fig. 3 Critical buckling temperature difference t., due to uniform, linear and non-linear temperature
rise across the thickness of FG plate (a/h=5) versus the power law index k for different values of the
aspect ratio a/b

45
40
- - - - Uniform
35 .
~~~~~~~~ Linear
30 |- Non-Linear

Fig. 4 Critical buckling temperature difference t, due to uniform, linear and non-linear
temperature rise across the thickness versus the side-to-thickness ratio a/h and for different
values of the non-linearity parameter y (k=5 and a/b=2)
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Fig. 5 Critical buckling temperature difference t,, due to uniform, linear and non-linear
temperature rise across the thickness versus the aspect ratio a/b and for different values of the
non-linearity parameter y. (k=5 and a/b=10)

6. Conclusions

In the present study, thermal buckling behavior of functionally graded plates subjected to
uniform, linear and non-linear temperature rises across the thickness direction has been
investigated on the basis of an efficient sinusoidal shear deformation theory. By dividing the
transverse displacement into bending and shear components, the number of unknowns and
governing equations of the present theory is reduced to four and is therefore less than alternate
theories. The mechanical properties of the plate have been assumed to vary through the thickness
of the plate as a power function. The neutral surface position for such plates has been determined.
A good correlation has been observed between the present results and the available data in
literature. Several parametric studies have been performed to show the effects of aspect ratio, plate
thickness, thermal loading and also power law index on the critical buckling temperature of
functionally graded rectangular plate. Finally, it can be said that the proposed higher order shear
deformation theory is not only accurate but also provides an elegant and easily implementable
approach for simulating thermal buckling behavior of FG plates. The formulation lends itself
particularly well to finite element simulations (Curiel Sosa et al. 2013) and also other numerical
methods employing symbolic computation for plate bending problems (Rashidi et al. 2012), which
will be considered in the near future.
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