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Abstract.  Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is 
investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen 
based on assumptions that the in-plane and transverse displacements consist of bending and shear 
components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of 
transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. 
Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear 
deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four 
unknowns. The material is graded in the thickness direction and a simple power law based on the rule of 
mixture is used to estimate the effective material properties. The neutral surface position for such FGM 
plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is 
employed here. There is no stretching–bending coupling effect in the neutral surface-based formulation, and 
consequently, the governing equations and boundary conditions of functionally graded plates based on 
neutral surface have the simple forms as those of isotropic plates. The non-linear strain–displacement 
relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear 
temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical 
buckling temperature, which are useful for engineers in design. Numerical results are presented for the 
present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in 
comparison to other theories. 
 

Keywords:   functional composites; thermal properties; buckling; plate theory; neutral surface position 

 
 
1. Introduction 

 

The increased applications of advanced composite materials in structural members have 

stimulated interest in the accurate prediction of the response characteristics of functionally graded 

(FG) plates used in situations where large temperature gradients are encountered. Functionally 

graded materials (FGMs) are designed so that material properties vary smoothly and continuously  
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through the thickness from the surface of a ceramic exposed to high temperature to that of a metal 

on the other surface. The mechanical properties are graded in the thickness direction according to 

volume fraction power law distribution. Since the main applications of FGMs have been in high 

temperature environments, most of the research on FGMs has been restricted to thermal stress 

analysis, thermal buckling, fracture mechanics and optimization. 

A number of investigations dealing with thermal buckling of functionally graded plate (FGP) 

had been proposed in the published literature. The nonhomogeneous mechanical properties of the 

FGP, graded through the thickness, are described by a power function of the thickness variable. 

Equilibrium equations of a rectangular FGP under thermal loads based on higher order theory were 

derived by Javaheri and Eslami (2002a). The system of fundamental partial differential equations 

was established by using the variational method. The derived equilibrium and stability equations 

for FGPs are identical to the equations for laminated composite plates. A buckling analysis of an 

FGP under four types of thermal loads was presented. Na and Kim (2004) investigated the three 

dimensional thermomechanical buckling of an FGP composed of ceramic, FGM, and metal layers. 

The thermal buckling behaviors of FGM composite structures due to FGM thick- ness ratios, 

volume fraction distributions, and system geometric parameters were analyzed. The thermal 

buckling of circular functionally graded plate was studied by Najafizadeh and Heydaru (2004). By 

assuming that the material properties vary as a power form of the thickness coordinate variable z 

and using the variational method, the buckling of a functionally graded circular plate under various 

thermal loads was analyzed. Equilibrium equations of a thick rectangular FGP under thermal loads 

were derived by Lanhe (2004). Thermal loading of uniform temperature rise and gradient through 

the thickness was considered. The influences of the volume fraction index and the transverse shear 

on the thermal buckling temperature were discussed. Bouazza et al. (2010) investigated the 

thermoelastic buckling of FGP using first shear plate theory. Effects of changing plate 

characteristics, material composition and volume fraction of constituent materials on the critical 

temperature difference of FGP with simply supported edges are also investigated. Shariat and 

Eslami (2005) presented the thermal buckling analysis of rectangular FGPs with geometrical 

imperfections based on the classical plate theory. Three types of thermal loading as uniform 

temperature rise, nonlinear temperature rise through the thickness and axial temperature rise were 

considered. The thermal buckling of a simply supported skew FGP was investigated by Ganapathi 

(2006) based on the first-order theory. Linear and nonlinear temperature rise across the thickness 

were taken into account. The effects of aspect and thickness ratios, gradient index and skew angle 

on the critical buckling temperature difference are studied. Morimoto et al. (2006) presented the 

thermal buckling analysis of rectangular FGPs subjected to partial heating in a plane and uniform 

temperature rise through its thickness. The FGM properties of linear thermal expansion and 

Young’s modulus are changed individually in the thickness direction of the plate with the power 

law. The effects of material inhomogeneity, aspect ratio, and heated region on the critical buckling 

temperatures are examined. Thermal buckling of an FGP under the combined effect of elevated 

temperature and aerodynamic loading was studied by Ibrahim et al. (2007). It is found that the 

temperature increase has an adverse effect on the FGP flutter characteristics through decreasing 

the critical dynamic pressure. Decreasing the volume fraction enhances the flutter characteristic. 

Sohn and Kim (2008) dealt with the stabilities of FG panels subjected to combined thermal and 

aerodynamic loads. The first-order theory was used to simulate supersonic aerodynamic loads 

acting on the panels. Matsunaga (2009) presented a higher order deformation theory for thermal 

buckling of FGPs. By using the method of power series expansion of displacement components, a 

set of fundamental equations of rectangular FGPs was derived. Kazerouni et al. (2010) presented 
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thermal buckling analysis of thin functionally graded plates under two cases of thermal loadings as 

the uniform and non-linear temperature rise cases. Recently, Kettaf et al. (2013) investigated the 

thermal buckling behavior of functionally graded sandwich plates using a new hyperbolic 

displacement model. 

Neutral surface of functionally graded plate may not coincide with its geometric mid-surface, 

because of the material property variation through the thickness, leading to bending-extension 

coupling. Therefore, stretching and bending deformations of FG plate are coupled. Some 

researchers (Morimoto et al. 2006, Abrate 2008, Zhang and Zhou 2008, Saidi and Jomehzadeh 

2009) have shown that there is no stretching-bending coupling in constitutive equations if the 

reference surface is properly selected. Recently, Bodaghi and Saidi (2011) investigated the 

buckling of thin FG plates under non-uniform in-plane loading in the framework of the classical 

thin plate theory. They used the neutral surface concept and showed that the stability equations 

based on the classical plate theory reduced to the single buckling equation which can be solved by 

using the power series method straightforwardly.  

This paper aims to develop an efficient sinusoidal shear deformation theory based on exact 

position of neutral surface for thermal buckling analysis of FG plates. This theory is based on 

assumption that the in-plane and transverse displacements consist of bending and shear 

components in which the bending components do not contribute toward shear forces and, likewise, 

the shear components do not contribute toward bending moments. Unlike the conventional 

sinusoidal shear deformation theory (Zenkour and Mashat 2010), the proposed sinusoidal shear 

deformation theory contains four unknowns. The material properties are graded in the thickness 

direction according to the power-law distribution in terms of volume fractions of the constituents 

of the material. The effective material properties are estimated using a simple power law based on 

rule of mixture. Since, the material properties of FG plate vary through the thickness direction, the 

neutral plane of such plate may not coincide with its geometric middle plane (Yahoobi and 

Feraidoon 2010). In addition, Zhang and Zhou (2008), Ould Larbi et al. (2013), Bouremana et al. 

(2013), Khalfi et al. (2013), Bousahla et al. (2013) show that the stretching – bending coupling in 

the constitutive equations of an FG plate does not exist when the coordinate system is located at 

the physical neutral surface of the plate. Therefore, the governing equations for the FG plate can 

be simplified. Based on the present theory and the exact position of neutral surface together with 

the principle of virtual work, the governing equations of the functionally graded plates are 

obtained. The thermal loads are assumed to be uniform, linear and non-linear distribution through 

the thickness. The results are compared and validated with the results of previous works which are 

available in the literature.  

 

 

2. Problem formulation 
 

Consider a rectangular plate made of FGMs of thickness h, length a, and width b made by 

mixing two distinct materials (metal and ceramic) is studied here. The coordinates x, y are along 

the in-plane directions and z is along the thickness direction. The top surface material is ceramic 

rich and the bottom surface material is metal rich. For such plates, the neutral surface may not 

coincide with its geometric mid-surface. The applied compressive force may be assumed to act at 

the mid-surface of the plate for all the practical purposes, but the in-plane stress resultants act 

along the neutral surface. The noncoincidence of line of action of stress resultant and applied 

compressive force results in a couple as schematically shown in Fig. 1. The present study attempts  
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Fig. 1 The position of middle surface and neutral surface for a functionally graded plate 

 

 

to investigate the position of neutral surface and the deflection characteristics under in-plane loads.  

Here, two different datum planes are considered for the measurement of z, namely, zms and zns 

measured from the middle surface, and the neutral surface of the plate, respectively (Fig. 1).The 

volume-fraction of ceramic VC is expressed based on zms and zns coordinates (Fig. 1) as 
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where k is the power law index which takes the value greater or equal to zero and C is the distance 

of neutral surface from the mid-surface. Material non-homogeneous properties of a functionally 

graded material plate may be obtained by means of the Voigt rule of mixture (Suresh and 

Mortensen 1998). Thus, using Eq. (1), the material non-homogeneous properties of FG plate P, as 

a function of thickness coordinate, become  

k

ns

CMM
h

Cz
PPzP 













2

1
)( ,  MCCM PPP                                      (2) 

where PM and PC are the corresponding properties of the metal and ceramic, respectively. In the 

present work, we assume that the elasticity modules E, and the thermal expansion coefficient α, 

are described by Eq. (2), while Poisson’s ratio ν, is considered to be constant across the thickness. 

The position of the neutral surface of the FG plate is determined to satisfy the first moment with 

respect to Young’s modulus being zero as follows (Zhang and Zhou 2008) 
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2.1 The present sinusoidal shear deformation theory for functionally graded plates 
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Unlike the conventional sinusoidal shear deformation theory (Zenkour and Mashat 2010), the 

number of unknown functions involved in the present sinusoidal shear deformation theory based 

on exact neutral surface position is only four. The theory presented is variationally consistent, does 

not require shear correction factor, and gives rise to the sinusoidal distribution of transverse shear 

stress across the thickness satisfying shear stress free surface conditions. 

 

2.1.1 Basic assumptions 
Assumptions of the present theory are as follows: 

(i) The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 

(ii) The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinates x, y only. 

),(),(),,( yxwyxwzyxw sbns                                                   (5) 

(iii) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 

(iv) The displacements u in x-direction and ν in y-direction consist of extension, bending, and 

shear components. 

sb uuuU  0 ,   sb vvvV  0                                                (6) 

The bending components ub and νb are assumed to be similar to the displacements given by the 

classical plate theory. Therefore, the expression for ub and νb can be given as 
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The shear components us and νs give rise, in conjunction with ws, to the parabolic variations of 

shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such a 

way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 

expression for us and νs can be given as 
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2.1.2 Kinematics 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (5)-(9) as  
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The non-linear von Karman strain–displacement equations are as follows 
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2.1.3 Constitutive relations 
The plate is subjected to a thermal load T(x, t, zns). The linear constitutive relations are 
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where ( x , y , xy , yz , yx ) and ( x , y , xy , yz , yx ) are the stress and strain components, 

respectively. Using the material properties defined in Eq. (2), stiffness coefficients, ijQ , can be 

expressed as 
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2.1.4 Stability equations 
The total potential energy of the FG plate may be written as 
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The principle of virtual work for the present problem may be expressed as follows 



 0          

       000




dxdySSkMkM

kMkMkMkMNNN

s

xz

s

xz

s

yz

s

yz

s

xy

s

xy

s

y

s

y

s

x

s

x

b

xy

b

xy

b

y

b

y

b

x

b

xxyxyyyxx




                (16) 

where 

  ,

)(

,,

,,

,,

,, /

/




 































Ch

Ch

ns

ns

nsxyyx

s
xy

s
y

s
x

b
xy

b
y

b
x

xyyx

dz

zf

z

MMM

MMM

NNN 2

2

1

                              (17a) 

   






Ch

Ch

nsnsyzxz
s
yz

s
xz dzzgSS

2

2

/

/

.)(,,                                              (17b) 

Using Eq. (13) in Eq. (17), the stress resultants of the FG plate can be related to the total strains 

by 
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where ijA , ijD , etc., are the plate stiffness, defined by 
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The stress and moment resultants, T
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The stability equations of the plate may be derived by the adjacent equilibrium criterion. 

Assume that the equilibrium state of the FG plate under thermal loads is defined in terms of the 

displacement components ( 0

0u , 0

0v , 0

bw , 0

sw ). The displacement components of a neighboring 

stable state differ by ( 1

0u , 1

0v , 1

bw , 1

sw ) with respect to the equilibrium position. Thus, the total 

displacements of a neighboring state are  
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where the superscript 1 refers to the state of stability and the superscript 0 refers to the state of 

equilibrium conditions. 

Substituting Eqs. (11) and (22) into Eq. (16) and integrating by parts and then equating the 

coefficients of 1

0 u , 1

0 v , 1 bw  and 1 sw  to zero, separately, the governing stability equations are 

obtained for the shear deformation plate theories as 
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with  
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where the terms 0

xN  and 0

yN  are the pre-buckling force resultants obtained as 
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The stability equations in terms of the displacement components may be obtained by 

substituting     Eq. (18) into Eq. (23). Resulting equations are four stability equations based on the 

present refined shear deformation theory for FG plates in contact with two parameters elastic 

foundation 
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4. Trigonometric solution to thermal buckling 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eq. (26) for a simply supported FG plate. The following 

boundary conditions are imposed for the present efficient sinusoidal shear deformation theory at 

the side edges 
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The following approximate solution is seen to satisfy both the differential equation and the 
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boundary conditions 
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where 1

mnU , 1

mnV , 1

bmnW , and 1

smnW  are arbitrary parameters to be determined and am /   and 

bn /  . Substituting Eq. (28) into Eq. (26), one obtains 
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By applying the static condensation approach to eliminate the coefficients associated with the 

in-plane displacements, Eq. (29) can be rewritten as 
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Eq. (33) represents a pair of two matrix equations 
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Solving Eq. (35a) for 1  and then substituting the result into Eq. (35b), the following equation 

is obtained 
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For nontrivial solution, the determinant of the coefficient matrix in Eq. (36) must be zero. This 

gives the following expression for the thermal buckling load  
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4.1 Buckling of FG plates under uniform temperature rise 
 

The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final 

value Tf in which the plate buckles. The temperature change is ΔT=Tf−Ti. Using this distribution 

of temperature, the critical buckling temperature change ΔTcr becomes b5 using Eqs. (24) and (38) 
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4.2 Buckling of FG plates under linear temperature rise 
 

For FG plates, the temperature change is not uniform. The temperature is assumed to be varied 

linearly through the thickness as follows 
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where the buckling temperature difference ∆T=TC−TM and TC and TM are the temperature of the 

top surface which is ceramic-rich and the bottom surface which is metal-rich, respectively. 

Similar to the previous loading case, the critical buckling temperature difference ∆Tcr can be 

determined as  
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4.3 Buckling of FG plates subjected to graded temperature change across the 
thickness 

 

We assume that the temperature of the top surface is TM and the temperature varies from TM, 

according to the power law variation through-the-thickness, to the bottom surface temperature TM 

in which the plate buckles. In this case, the temperature through-the-thickness is given by 
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where the buckling temperature difference ∆T=TC−TM and γ is the temperature exponent (0< 

γ<∞)). Note that the value of γ equal to unity represents a linear temperature change across the 

thickness. While the value of γ excluding unity represents a non-linear temperature change 

through-the-thickness. 

Similar to the previous loading case, the critical buckling temperature change ∆Tcr becomes by 

using Eqs. (25) and (38) 

  

)2)((

2

344433

22

3

344433

22

1

2

344433

aaa

aaaTaba
T M

cr









                               (34a) 

where 

558



 

 

 

 

 

 

Nonlinear thermal buckling behavior of functionally graded plates 





















Ch

Ch

ns

nsnsns dz
h

CzzEz
2/

2/

3
2

1

1

)()(





                                   (34b) 

 

 

5. Results and discussion 
 

In order to obtain the numerical results, an Al/Al2O3 functionally graded plate composed of 

Aluminum and Alumina is considered. The Young modulus and coefficient of thermal expansion 

for Aluminum are EM=70GPa, αM=23.10
−6

/°C and for Alumina are EC=380GPa, αC=7.4
−6

/°C, 

respectively. The Poisson’s ratio of the plate is assumed to be constant through the thickness and 

equal to 0.3.  

For the linear and non-linear temperature rises through the thickness, the temperature rises 5 °C 

in the metal-rich surface of the plate (i.e., Tm=5°C).  

 

5.1 Comparative studies 
 

In order to demonstrate the accuracy of the present closed-form exact solution, some 

comparisons of the present results with those available in the literature has been carried out. In 

Tables 1 and 2, the plate under uniform temperature rise is considered and the critical buckling 

temperature change obtained from present efficient sinusoidal shear deformation theory have been 

compared with those reported by Javaheri and Eslami (2002b) based on both higher plate theory 

(HPT) and the classical plate theory (CPT), and Zenkour and Mashat (2010) based on sinusoidal 

plate theory (SPT). From the results presented in Tables 1 and 2, it is observed that results have a 

good agreement.  
 

 

Table 1 Critical buckling temperature of FG plate under uniform temperature rise for different values of 

power law index k and aspect ratio a/b with a/h=100 

k  Theory a/b =1 a/b =2 a/b =3 a/b =4 a/b =5 

0 

Present 17.08 42.68 85.25 144.64 220.67 

Javaheri and Eslami (2002b): HPT 17.08 42.68 85.25 144.64 220.66 

Zenkour and Mashat (2010): SPT 17.08 42.68 85.25 144.65 220.67 

Javaheri and Eslami (2002b): CPT 17.09 42.74 85.49 145.34 222.28 

1 

Present 7.93 19.83 39.62 67.25 102.63 

Javaheri and Eslami (2002b): HPT 7.94 19.83 39.62 67.25 102.63 

Zenkour and Mashat (2010): SPT 7.94 19.83 39.62 67.25 102.63 

Javaheri and Eslami (2002b): CPT 7.94 19.85 39.71 67.52 103.26 

5 

Present 7.26 18.13 36.20 61.39 93.60 

Javaheri and Eslami (2002b): HPT 7.26 18.13 36.20 61.39 93.60 

Zenkour and Mashat (2010): SPT 7.26 18.13 36.20 61.39 93.60 

Javaheri and Eslami (2002b): CPT 7.26 18.16 36.32 61.75 94.45 

10 

Present 7.46 18.63 37.20 63.06 96.11 

Javaheri and Eslami (2002b): HPT 7.46 18.63 37.20 63.06 96.12 

Zenkour and Mashat (2010): SPT 7.46 18.63 37.20 63.06 96.11 

Javaheri and Eslami (2002b): CPT 7.46 18.67 37.34 63.48 97.10 
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Table 2 Critical buckling temperature of square FG plate under uniform temperature rise for different values 

of power law index k and side-to-thickness ratio a/h 

k  Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100 

0 

Present 1618.82 421.54 106.49 47.42 26.69 17.08 

Javaheri and Eslami (2002b): HPT 1617.48 421.52 106.49 47.42 26.69 17.08 

Javaheri and Eslami (2002b): CPT 1709.91 427.47 106.87 47.49 26.71 17.09 

1 

Present 758.47 196.26 49.50 22.03 12.40 7.94 

Javaheri and Eslami (2002b): HPT 757.89 196.26 49.50 22.03 12.40 7.94 

Javaheri and Eslami (2002b): CPT 794.37 198.59 49.64 22.06 12.41 7.94 

5 

Present 678.94 178.50 45.21 20.14 11.34 7.26 

Javaheri and Eslami (2002b): HPT 678.92 178.53 45.21 20.14 11.34 7.26 

Javaheri and Eslami (2002b): CPT 726.57 181.64 45.41 20.18 11.35 7.26 

10 

Present 692.54 183.13 46.45 20.70 11.65 7.46 

Javaheri and Eslami (2002b): HPT 692.52 183.14 46.45 20.70 11.65 7.46 

Javaheri and Eslami (2002b): CPT 746.92 186.73 46.68 20.74 11.67 7.46 

 
Table 3 Critical buckling temperature of FG plate under linear temperature rise for different values of power 

law index k and aspect ratio a/b with a/h=100 

k  Theory a/b=1 a/b=2 a/b=3 a/b=4 a/b=5 

0 

Present 24.17 75.37 160.51 279.30 431.34 

Javaheri and Eslami (2002b): HPT 24.17 75.37 160.50 279.29 431.33 

Zenkour and Mashat (2010): SPT 24.17 75.37 160.51 279.30 431.34 

Javaheri and Eslami (2002b): CPT 24.19 75.49 160.99 280.68 434.57 

1 

Present 5.51 27.82 64.93 116.74 183.11 

Javaheri and Eslami (2002b): HPT 5.51 27.82 64.93 116.74 183.11 

Zenkour and Mashat (2010): SPT 5.51 27.82 64.93 116.74 183.11 

Javaheri and Eslami (2002b): CPT 5.52 27.86 65.11 117.25 184.30 

5 

Present 3.89 22.60 53.70 97.07 152.51 

Javaheri and Eslami (2002b): HPT 3.89 22.60 53.71 97.07 152.51 

Zenkour and Mashat (2010): SPT 3.89 22.60 53.70 97.06 152.50 

Javaheri and Eslami (2002b): CPT 3.89 22.65 53.92 97.69 153.97 

10 

Present 4.36 24.16 57.06 102.89 161.46 

Javaheri and Eslami (2002b): HPT 4.36 24.16 57.06 102.90 161.47 

Zenkour and Mashat (2010): SPT 4.36 24.16 57.06 102.89 161.46 

Javaheri and Eslami (2002b): CPT 4.37 24.23 57.32 103.64 163.20 

 

 

Another comparative study for evaluation of critical buckling temperatures between the 

presented theory based on exact neutral surface position and analytical solution developed by 

Javaheri and Eslami (2002b) based on HPT, and by Zenkour and Mashat (2010) based on SPT, is 

performed in Tables 3 and 4. The plate here is subjected to a linear temperature rise across the 

thickness. From the results presented in Tables 3 and 4, it is observed that results have a good 

agreement.  

Furthermore, in Tables 5 and 6, an interesting comparison study of the present theory with the 

analytical solution developed by Javaheri and Eslami (2002b) based on HPT, and by Zenkour and  
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Table 4 Critical buckling temperature of square FG plate under linear temperature rise for different values of 

power law index k and side-to-thickness ratio a/h 

k  Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100 

0 

Present 3227.36 833.07 202.98 84.84 43.38 24.17 

Javaheri and Eslami (2002b): HPT 3224.96 833.03 202.98 84.84 43.38 24.17 

Javaheri and Eslami (2002b): CPT 3409.82 844.95 203.73 84.99 43.43 24.19 

1 

Present 1412.96 358.71 83.46 31.95 13.88 5.51 

Javaheri and Eslami (2002b): HPT 1412.02 358.69 83.46 31.95 13.88 5.51 

Javaheri and Eslami (2002b): CPT 1480.45 363.07 83.73 32.00 13.90 5.52 

5 

Present 1160.68 298.70 69.21 26.06 10.91 3.89 

Javaheri and Eslami (2002b): HPT 1160.02 298.69 69.21 26.06 10.91 3.89 

Javaheri and Eslami (2002b): CPT 1242.03 304.05 69.55 26.13 10.93 3.89 

10 

Present 1218.63 315.68 73.46 27.82 11.79 4.36 

Javaheri and Eslami (2002b): HPT 1218.32 315.67 73.46 27.82 11.79 4.36 

Javaheri and Eslami (2002b): CPT 1314.74 322.04 73.86 27.90 11.82 4.37 

 
Table 5 Critical buckling temperature of FG plate under non-linear temperature rise for different values of 

power law index k and aspect ratio a/b, and temperature exponent γ with a/h=10 

k  Theory 
a/b=1 a/b=2 a/b=3 

γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 

0 

Present 4.84 9.68 17.75 11.22 22.45 41.17 20.01 40.03 73.39 

Theory 1 4.84 9.68 17.75 11.22 22.45 41.16 20.00 40.01 73.35 

Theory 2 4.84 9.68 17.75 11.22 22.45 41.17 20.01 40.03 73.39 

Theory 3 5.11 10.22 18.75 12.80 25.61 46.96 25.63 51.26 93.99 

1 

Present 2.10 4.31 8.19 4.95 10.14 19.25 8.97 18.38 34.87 

Theory 1 2.1066 4.31 8.19 4.95 10.14 19.24 8.96 18.38 34.86 

Theory 2 2.1068 4.31 8.19 9.95 10.14 19.25 8.97 18.38 34.87 

Theory 3 2.20 4.52 8.58 5.53 11.35 21.53 11.09 22.73 43.12 

5 

Present 1.59 2.84 4.99 3.64 6.51 11.43 6.36 11.36 19.93 

Theory 1 1.59 2.85 5.00 3.65 6.52 11.44 6.37 11.38 19.97 

Theory 2 1.59 2.84 4.99 3.64 6.51 11.43 6.36 11.36 19.93 

Theory 3 1.70 3.04 5.35 4.28 7.65 13.43 8.58 15.33 26.90 

10 

Present 1.67 2.88 4.77 3.79 6.53 10.80 6.53 11.24 18.60 

Theory 1 1.67 2.88 4.77 3.79 6.53 10.80 6.54 11.25 18.61 

Theory 2 1.67 2.88 4.77 3.79 6.53 10.80 6.53 11.24 18.60 

Theory 3 1.80 3.11 5.14 4.54 7.81 12.92 9.09 15.64 25.88 

Theory 1: Zenkour and Mashat (2010) based on HPT 

Theory 2: Zenkour and Mashat (2010) based on SPT 

Theory 3: Zenkour and Mashat (2010) based on CPT 

 

 

Mashat (2010) based on SPT. Tables 5 and 6 exhibit the critical temperature difference tcr=10
−3

Tcr  

for different values of the aspect ratio a/b, the temperature exponent γ and the power law index k 

under non-linear temperature loads at a/h=10 and 5, respectively. These tables indicate that our 

presented results are accurate.  
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Table 6 Critical buckling temperature of FG plate under non-linear temperature rise for different values of 

power law index k and aspect ratio a/b, and temperature exponent γ with a/h=5 

k Theory 
a/b=1 a/b=2 a/b=3 

γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 

0 

Present 16.74 33.48 61.38 32.89 65.79 120.62 48.65 97.30 178.39 

Theory 1 16.73 33.47 61.36 32.86 65.72 120.49 48.53 97.07 177.97 

Theory 2 16.74 33.48 61.38 32.89 65.79 120.62 48.65 97.30 178.39 

Theory 3 20.50 41.00 75.18 51.28 102.56 188.03 102.57 205.15 376.12 

1 

Present 7.45 17.28 28.99 15.09 30.93 58.68 22.97 47.08 89.30 

Theory 1 7.45 15.28 28.98 15.08 30.90 58.62 22.92 46.98 89.11 

Theory 2 7.45 15.28 28.99 15.09 30.93 58.68 22.97 47.08 89.30 

Theory 3 8.87 18.18 34.48 22.19 45.49 86.30 44.41 91.02 172.65 

5 

Present 5.36 9.57 16.81 10.14 18.10 31.77 14.49 25.87 45.40 

Theory 1 5.37 9.59 16.83 10.16 18.15 31.85 14.52 25.93 45.51 

Theory 2 5.36 9.57 16.81 10.14 18.10 31.77 14.49 25.87 45.40 

Theory 3 6.86 12.26 21.52 17.18 30.68 53.85 34.39 61.39 107.75 

10 

Present 5.53 9.52 15.75 10.23 17.61 29.13 14.35 24.69 40.85 

Theory 1 5.54 9.53 15.76 10.24 17.62 29.15 14.34 24.68 40.82 

Theory 2 5.53 9.52 15.75 10.23 17.61 29.13 14.35 24.69 40.85 

Theory 3 7.27 12.51 20.70 18.20 31.31 51.80 36.41 62.65 103.64 

Theory 1: Zenkour and Mashat (2010) based on HPT 

Theory 2: Zenkour and Mashat (2010) based on SPT 

Theory 3: Zenkour and Mashat (2010) based on CPT 

 
 
Finally, the present comparative studies show that the results obtained from the proposed method 
agree well with existing analytical results in the literature which validate the reliability and 
accuracy of the present analytical approach. It should be noted that the proposed sinusoidal shear 

deformation theory based on exact neutral surface position involves four unknowns as against five 
in case of conventional SPT (Zenkour and Mashat 2010) and HPT (Javaheri and Eslami 2002b). 
 

5.2 Parametric investigations 
 

In this section, to examine the effects of different parameters of plate and the type of thermal 

loads on the critical buckling load parameter a FG plate, the comprehensive results are illustrated 

in Figs. 2 to 5.  

The variation of critical buckling temperatures of Al/Al2O3 FG plates with simply supported edges 

and subjected to uniform, linear and nonlinear temperature rises are shown in Figs. 2 and 3 with 

respect to the power law index for several values of the side-to-thickness ratio a/h and aspect ratio 

a/b, respectively. For the present material properties, the critical buckling temperatures decrease 

rapidly within the range of k=0 (ceramic rich) to k=5. As the power law index k becomes larger, 

all the critical buckling temperatures approach slowly to the values for k =∞ (metallic rich).  

It can be also seen from these figures that, regardless of the loading type and the power-law 

index k, the critical buckling temperature difference tcr decreases as the side-to-thickness ratio a/h 

increases and it is reduced with the decrease of the aspect ratio a/b. The critical buckling  
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Fig. 2 Critical buckling temperature difference tcr due to uniform, linear and non-linear temperature rise 

across the thickness of FG plate (a/b=2) versus the power law index k for different values of the side-to-

thickness ratio a/h 

 

 

temperature for the ceramic plate is higher than that for the FG plate. This is because the ceramic 

plate is stronger than the other. The differences between the loading types decrease with the 

increase of a/h because the plate becomes thin. 

The critical buckling temperature change tcr versus the side-to-thickness ratio a/h and the aspect 

ratio a/b of FG plates under various thermal loading types is exhibited in Figs. 4 and 5. It can be 

seen from these figures that, regardless of the loading type, the critical buckling temperature 

difference tcr decreases as the side-to-thickness ratio a/h increases and it is reduced with the 

decrease of the aspect ratio a/b. It is also observed that the tcr increases with the increase of the 

non-linearity parameter γ. 
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Fig. 3 Critical buckling temperature difference tcr due to uniform, linear and non-linear temperature 

rise across the thickness of FG plate (a/h=5) versus the power law index k for different values of the 

aspect ratio a/b 

 

4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

 =10

 =5

 =2

 

 

t cr

a/h

 Uniform

 Linear

 Non-Linear

 
Fig. 4 Critical buckling temperature difference tcr due to uniform, linear and non-linear 

temperature rise across the thickness versus the side-to-thickness ratio a/h and for different 

values of the non-linearity parameter γ (k=5 and a/b=2) 
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Fig. 5 Critical buckling temperature difference tcr due to uniform, linear and non-linear 

temperature rise across the thickness versus the aspect ratio a/b and for different values of the 

non-linearity parameter γ. (k=5  and a/b=10) 
 

 

6. Conclusions 
 

In the present study, thermal buckling behavior of functionally graded plates subjected to 

uniform, linear and non-linear temperature rises across the thickness direction has been 

investigated on the basis of an efficient sinusoidal shear deformation theory. By dividing the 

transverse displacement into bending and shear components, the number of unknowns and 

governing equations of the present theory is reduced to four and is therefore less than alternate 

theories. The mechanical properties of the plate have been assumed to vary through the thickness 

of the plate as a power function. The neutral surface position for such plates has been determined. 

A good correlation has been observed between the present results and the available data in 

literature. Several parametric studies have been performed to show the effects of aspect ratio, plate 

thickness, thermal loading and also power law index on the critical buckling temperature of 

functionally graded rectangular plate. Finally, it can be said that the proposed higher order shear 

deformation theory is not only accurate but also provides an elegant and easily implementable 

approach for simulating thermal buckling behavior of FG plates. The formulation lends itself 

particularly well to finite element simulations (Curiel Sosa et al. 2013) and also other numerical 

methods employing symbolic computation for plate bending problems (Rashidi et al. 2012), which 

will be considered in the near future. 
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