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Abstract.  This work is concerned with transverse vibrations of axially traveling nanobeams including 
strain gradient and thermal effects. The strain gradient elasticity theory and the temperature field are taken 
into consideration. A new higher-order differential equation of motion is derived from the variational 
principle and the corresponding higher-order non-classical boundary conditions including simple, clamped, 
cantilevered supports and their higher-order “offspring” are established. Effects of strain gradient nanoscale 
parameter, temperature change, shape parameter and axial traction on the natural frequencies are presented 
and discussed through some numerical examples. It is concluded that the factors mentioned above 
significantly influence the dynamic behaviors of an axially traveling nanobeam. In particular, the strain 
gradient effect tends to induce higher vibration frequencies as compared to an axially traveling macro beams 
based on the classical vibration theory without strain gradient effect. 
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1. Introduction 

 

Nanotechnology has been a subject of intensive technological interest today due to its great 

potential applications beyond the ability of micro-technology, i.e., excessive strain, excessive 

stiffness, gigahertz oscillator and so on. Due to the requirement of enormous computing effort in 

molecular dynamic simulation even for an average molecular structure with limited molecule 

counts, it would appear that a continuum molecular model, such as that of nonlocal elasticity 

theory, is essential and will potentially play a critical part in the analyses related to 

nanotechnology applications, e.g., as subminiature belts, nano-machinery, nano-electromechanical 

system (NEMS). These are all typical and key components in engineering devices at nanometer 

scale. Taking the subminiature belt as an example, it involves transverse vibrations of axially 

traveling nanobeams. 

There exists aplenty literature on the study of axially traveling structures at macro scales (Ö z 

and Pakdemirli 1999, Hatami et al. 2007, Tang et al. 2009). Although analysis on axially traveling 

classical beams is well established, there is virtually no research work at present on similar 

problems at nanoscale, i.e. axially traveling nanobeams either using a continuum model or a 

numerical approach, such as the nonlocal elasticity or molecular dynamics simulation, 
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respectively. Because the length scales associated with nanotechnology are at molecular level, the 

applicability of classical continuum models should be revisited. For example, phonon scattering 

experiment indicates elastic wave with high frequency is dispersive and its wave speed is 

associated with frequency. On the contrary, the speed of elastic wave is a constant in classical 

continuum theory. In fracture mechanics, the classical model suggests that even a very small load 

causes infinite stress at a crack tip and the crack growth occurs absolutely. However, every 

material has its own fatigue limit and there is already theory established which confirms that no 

stress singularity at a flaw tip exists when the small size effects are considered (Eringen et al. 

1977). 

While classical continuum mechanics assumes that the stress at a given point is dependent 

uniquely on the strain state at that same point, namely, it does not admit intrinsic size dependence 

in the elastic solutions of inclusions and inhomogeneities, nonlocal theory regards the stress at a 

given point as a function of the strain stares of all points in the body and so size effects often 

become prominent. The theory of nonlocal continuum mechanics was pioneered by Eringen (1972, 

1983). This new continuum theory differs greatly from the classical continuum theory, because the 

latter ignores the long range intermolecular force or it is inherently size-independent, while the 

former exhibits essential size-dependent characteristics. Nonlocal theory contains information 

about the forces between atoms, and the internal length scale is introduced into the constitutive 

equations as a material parameter. The original form of Eringen’s nonlocal theory contains an 

integral type constitutive relation. However, by introducing higher-order derivatives into such 

constitutive equations, the integral type of nonlocal theory becomes differential type or strain 

gradient type, and the latter assumes the stress is a function of the strain and the gradients of strain 

at the same point (Mindlin 1965). In this paper, the strain gradient type of nonlocal theory is 

employed to investigate the axially traveling nanobeams. 

The strain gradient type nonlocal theory has been widely used in nanomechanics including 

dislocation, fracture mechanics, fluid surface tension and wave propagation in composites, etc. 

Currently, research investigations are focused on mechanical characteristics of carbon nanotubes 

or nanobeam-like structures based on the strain gradient theory (Peddieson et al. 2003, Zhang et 

al. 2004, Lu et al. 2006, Wang et al. 2006, Lee and Chang 2009, Lim et al. 2009, Lim 2010, Lim 

et al. 2010, Li et al. 2011a,b,c, Lim and Yang 2011, Pradhan and Kumar 2011, Wang 2011, 

Aksencer and Aydogdu 2012, Lim et al. 2012, Yu and Lim 2013). The strain gradient elasticity 

model has been one of the most popular approaches in nanostructures. However, there are two 

kinds of strain gradient elasticity model and both are reported extensively. The first strain gradient 

model (see e.g., Peddieson et al. 2003) combined the classical equilibrium with strain gradient 

constitution, and obtained a finite-order governing equation for nanostructures. It was reported that 

an increase in strain gradient nanoscale parameter results in decreasing nanostructural stiffness. 

Therefore, strain gradient effects are associated with decreased natural frequency, decreased wave 

velocity, decreased critical buckling load and increased bending deflection. Hence, the 

nanostructures are softened accounting for strain gradient elasticity effects in the first model. The 

second strain gradient model, or called a new effective strain gradient model was firstly presented 

by Lim et al. (2009), Lim (2010). Unlike the first strain gradient model, this effective strain 

gradient model was derived according to the energy variation principle and a higher-order 

governing equation was obtained. Some effective strain gradient types of nonlocal quantity (i.e., 

effective nonlocal stress, or effective nonlocal bending moment, etc.) are defined and they are 

expressed in infinite series of the corresponding common strain gradient nonlocal quantities. 

During the past years, such effective strain gradient model was employed for tensile, buckling, 
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bending and vibration analyses of nanobeams or CNTs extensively (see e.g., Lim et al. 2012, Yu 

and Lim 2013). These analyses reported new solutions that nanostructural stiffness may be 

enhanced with stronger size effects, i.e., lower deflection, higher buckling load or natural 

frequency under the effective strain gradient effects. People are puzzled about these two strain 

gradient models because they declared some opposite conclusions. In order to verify the two strain 

gradient models, Li et al. (2011d) developed a semi-continuum model with discrete atomic layers 

in the thickness direction to investigate the bending behaviors of an ultra-thin beam with nanoscale 

thickness. The relaxation effect was considered in one atomic layer on each of the upper and lower 

surfaces and a comparison research with the two strain gradient models indicates inconclusive due 

to different material parameters. The two strain gradient models were proved to be both 

acceptable. The long range attractive or repulsive interaction, or the looser or tighter atomic lattice 

near surface than the bulk results in the two different strain gradient models. Therefore, the 

different physical phenomena (i.e., the stiffness of nanostructures is lower or higher than that 

predicted by classical mechanics theory) observed in two strain gradient models do exist 

simultaneously and they are related to the types of surface effects in nanostructures. 

There is virtually no paper which considers strain gradient thermal effects for an axially 

traveling nanobeam available currently, especially that using the new effective strain gradient 

model. Therefore, this paper tried to develop a new strain gradient type nonlocal approach for 

axially traveling nanobeams based on the effective strain gradient model. Because thermal effect is 

essential to the mechanical behavior of nanostructures, recently, Lim and Yang (2011) presented a 

static strain gradient thermal-elasticity model for nanobeams and they obtained some exact strain 

gradient solutions for nanobeam deformation due to thermal loads. The work (Lim and Yang 2011) 

verifies again that stiffness enhancement effects in the effective strain gradient theory. Wang 

(2011) investigated the vibration and stability of nanotubes conveying fluid using the effective 

strain gradient stress model, and the effects of strain gradient nanoscale parameter on natural 

frequency and critical flow velocity is presented in detail. In the present work, thermal effect is 

taken into account and effective strain gradient effects on the higher-order governing equation and 

non-classical boundary conditions of an axially traveling nanobeam are proposed. Subsequently 

the transverse vibration of such a nanobeam under the influences of various geometric and 

material parameters is discussed. The conclusion is obvious that due to size-dependent nanoscale 

effects, the vibration of a traveling nanobeam is significantly different from its behavior according 

to the classical vibration theory. In particular, strain gradient effect, axial velocity, temperature 

change and density are concluded to play significant roles in the dynamic behavior of an axially 

traveling nanobeam. 

 

 

2. Strain gradient equation of motion and boundary conditions 
 

A uniform elastic nanobeam of mass density ρ, length L and axial velocity u is considered. The 

x-axis is along the axial direction and y-axis lies on the transverse direction. The beam is subjected 

to uniformly distributed load p0 along its axial direction. Transverse vibration in the presence of an 

axial velocity is studied, considering different end boundary conditions which are to be specified 

in various cases of study. The variational principle is applied to derive the higher-order equation of 

motion and the corresponding higher-order boundary conditions that governs the transverse 

vibration. 

For free vibrations of an axially traveling nanobeam, the strain energy density e at an arbitrary 
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point of a deformed nanobeam is given by (Lim 2010, Lim and Yang 2011) 
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where x x L  is the dimensionless axial coordinate, 0e a L   the dimensionless strain 

gradient nanoscale parameter, E Young’s modulus, εxx the normal axial strain, e0 a constant 

dependent on material, and a an internal characteristic length (e.g., lattice parameter, C-C bond 

length, granular distance, etc. (Eringen 1983)). 
The total strain energy in the deformed body is 

 e
V

E edV   (2) 

Following the variational principle, the first variation of strain energy can be expressed as (Lim 

2010, Lim and Yang 2011) 
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  (3) 

where w w L  and w are the dimensionless and dimensional transverse displacements, 

respectively, I=∫∫Ay
2
dA is the second moment of cross-sectional area A and n  represents the 

nth-order derivative with respect to x . 

Assuming the nanobeam is homogenous and subject to a uniform thermal load over its entire 

length, as a result of thermal expansion, an additional axial force is given by (Avsec and Oblak 

2007) 

 N EA  (4) 

where θ is the temperature difference between the actual and initial or reference temperature and α 

is the linear thermal expansion coefficient. For room or low temperature 6 11.6 10 K      

while for high temperature 6 11.1 10 K     (Yao and Han 2007). The work done by the axial 

force is 
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The first variation of the work (virtual work) above is given by 
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The work done by the uniformly distributed load is 
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and the corresponding virtual work of Eq. (7) is obtained by its first variation as 
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The kinetic energy due to axial velocity and transverse motion is 
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where t t T  is the dimensionless time in which t is the temporal coordinate, T is a 

characteristic time, and 2u u AL EI  is the dimensionless axial velocity. Hence variation of 

the kinetic energy gives 
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For static equilibrium, the variational principle requires that 
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which yields 
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is assumed because the motion is periodic and at 0t   and 1t  , the quantity within the 

integration have the same values. Because w  in Eq. (12) cannot vanish, hence the higher-order 

governing equation of motion is 
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where 2AL I   is a dimensionless shape parameter, 4 2AL EIT   and 
3

0 0p p L EI are 

the dimensionless density and load, respectively. The basic and higher-order strain gradient 

boundary conditions are also obtained from Eq. (12) and they are listed in Appendix. 

To investigate the effective strain gradient and thermal effects, the first few strain gradient 

terms in the series of Eq. (14) are retained. These are the most significant strain gradient 

components which exhibit the obvious effective strain gradient effects. As a result, a truncated 

governing equation of motion with strain gradient influence is obtained as 
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For linear free vibration of a nanobeam, the vibration modes are harmonic in time. Hence the 

time-dependent transverse deformation of the nanobeam can be represented by 

    , ni t
w x t x e

  (16) 
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where  x is the dimensionless vibration amplitude shape function, n = 1, 2, 3, K denotes the 

vibration mode number, and ωn is the dimensionless natural frequency. The substitution of Eq. 

(16) into Eq. (15) yields a characteristic equation as 

  
6 4 2

2 2 2

06 4 2
2 0n n

d d d d
u iu p

dx dx dx dx
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The solution to the governing equation Eq. (17) can be expressed as 
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where kj (j=1,2,…6) are the six roots of the characteristic equation (17) and Cj (j=1,2,…6) are the 

corresponding coefficients which can be determined from the six higher-order strain gradient 

boundary conditions in Eq. (A3) in Appendix. 

 

 

3. Numerical examples and discussion 
 

In order to illustrate the effects of strain gradient nanoscale parameter τ, dimensionless velocity 

u , temperature θ and density   on the transverse vibration of an axially traveling nanobeam, 

two examples with typical boundary conditions are presented and discussed in detail. 
 

3.1 Simply supported nanobeams 
 

The boundary conditions for a simply supported nanobeam are shown in Eq. (A4) or (A5) in 

Appendix. The substitution of Eq. (18) into Eq. (A5) yields a system of homogeneous equations in 

a matrix form as 
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For nontrivial solutions, the determinant of the matrix in Eq. (19) must be zero, or 
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Combining Eq. (20) and the characteristic equation (17), the relation between natural frequency 

and strain gradient nanoscale parameter is obtained. The numerical solution for varying velocity  
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Fig. 1 The effect of strain gradient nanoscale parameter on the first two mode frequencies for 

simply supported nanobeams with 1  , 
0 1p  , 

6 11.6 10 K     , 50K   and κ=10
4
 

 

 
Fig. 2 The effect of axial velocity on the first two mode frequencies for simply supported 

nanobeams with 1  , 
0 1p  , 

6 11.6 10 K     , τ=0.1 and κ=10
4
 

 

 

shown is illustrated in Fig. 1 for 1  , 0 1p  , 6 11.6 10 K      (Yao and Han 2007), 

50K   and 410  . 

In Fig. 1, it is noticed that the natural frequency increases with increasing τ, i.e. stiffness is 

strengthened with the presence of stronger strain gradient effect. The second mode frequency 

increases faster than the first mode. For example, when τ increases from 0.01 to 0.15, ωn increases  
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Fig. 3 The effect of axial velocity on the first two mode frequencies for simply supported 

nanobeams with 1  , 
0 1p  , α= −1.6×10

−6
K

−1
, τ = 0.1, κ=10

4
 and θ = 100K 

 

 
Fig. 4 The effect of low temperature on the first two mode frequencies for simply supported 

nanobeams with 1  , 
0 1p  , α= −1.6×10

−6
K

−1
, 1u   and κ=10

4
 

 

 

approximately 37.63% and 43.96% for n=1 and n=2, respectively with 2.5u  . In addition, a 

higher dimensionless axial velocity causes lower frequency. 

The relation between ωn and u  is shown in Fig. 2. It is observed that a higher temperature 

induces a lower frequency but the thermal effect is not as significant as τ. Although ωn decreases 

with increasing u , it is noted that first mode frequency ω1 approaches zero when 3.2u  . This 

value ( cri 3 2u . ) is called the first critical velocity for ω1. Afterwards, ω1 starts to increases 

beyond this critical speed. 

The velocity which makes ωn to be a minimum locally within its immediate vicinity, including  
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Fig. 5 The effect of high temperature on the first two mode frequencies for simply supported 

nanobeams with 1  , 
0 1p  , α= 1.1×10

−6
K

−1
, 1u   and κ=10

4
 

 

 
Fig. 6 The effect of shape parameter on the first two mode frequencies for simply supported 

nanobeams with 1  , 
0 1p  , α= −1.6×10

−6
K

−1
, 1u  , τ = 1 and θ = 100K 

 

 

the possibility of zero frequency, is called the critical velocity criu . There are infinitely many 

critical velocities when u  increases. Therefore, it is expected that ωn continues to rise and fall as 

that for ω1 as shown in Fig. 3. For instance, the first critical velocity is approximately cri 3 2u .  

for ω1 and cri 7 7u .  for ω2. The second critical velocity for ω1 is also observed as approximately 

6.5. The strain gradient solutions of the existence of repeated critical velocities is a new physical 

phenomenon observed only for traveling strain gradient nanobeams because the classical vibration 

theory for traveling beams (Hatami 2007, Pakdemirli and Ö z 2008) only one critical velocity for 

each mode of frequency without the occurrence of rise and fall for ωn as that observed in Fig. 3. 
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As stated above, the thermal effect is less significant as compared with the strain gradient effect 

and it is relation with ωn is shown in Figs. 4 and 5, where 1  , 
0 1p  , 6 11.6 10 K      

(for low temperature) or 6 11.1 10 K     (for high temperature) (Yao and Han 2007), 1u  , 

and 410  . The natural frequency decreases with increasing the temperature change at low 

temperature while it increases with increasing temperature change at high temperature. For 

instance, when θ increases from 50K to 350K, ωn decreases approximately 36% and 6.5% for n=1 

and n=2, respectively, and with τ=0.02. Similarly, when θ increases from 400K to 1500K, ωn 

increases approximately 38% and 13% with τ=0.02 for n=1 and n=2, respectively. 

Fig. 6 shows the correlation between ωn and the shape parameter κ defined in Eq. (14). It is 

seen that shape parameter causes ωn to decrease. 

 

3.2 Clamped nanobeams 
 

Next we consider a fully clamped nanobeam, and the boundary conditions for such axially 

traveling nanostructures are expressed in Eq. (A6) in Appendix. Using Eq. (18) and Eq. (A6), a 

system of homogeneous equations expressed in a matrix form is obtained as 
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  

 (21) 

where )6...,2,1(3 523
1     i   kkK iii   . For nontrivial solutions, the determinant of matrix in Eq. 

(21) must vanish which results in 
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  (22) 

Following the similar analytical and numerical procedure as described in Sec. 3.1, the 

behaviors of ωn with respect to changes in various parameters are presented in Figs. 7-10. The 

responses observed earlier for simply supported nanobeams in Sec. 3.1 are valid here except that 

ωn for a clamped nanobeam is higher than the corresponding frequency for simply supported ones. 

Again, the strain gradient effect is more significant than thermal effect. For example, ω1 and ω2 

increase approximately 14% and 36% when τ increases from 0.01 to 0.15, respectively. On the 

other hand, they decrease approximately 3.6% and 10% when θ increases from 500K to 10000K 

for κ=1000 while for κ=10 the corresponding values are 0.094% and 0.035%, respectively. It is 

observed that the higher shape parameter κ causes ωn to decrease in high temperature field. 

Particularly, e0a is the principal small scale parameter in strain gradient theory, and Fig. 10 shows  

425



 

 

 

 

 

 

Cheng Li 

 
Fig. 7 The effect of strain gradient nanoscale parameter on the first two mode frequencies for 

clamped nanobeams with 1  , 
0 1p  , α= −1.6×10

−6
K

−1
, θ = 50K and κ=10 

 

 
Fig. 8 The effect of low temperature on the first two mode frequencies for clamped nanobeams 

with 1  , 
0 1p  , α= −1.6×10

−6
K

−1
, 1u  and κ=10 

 

 

the correlation between the internal variable e0a and natural frequencies where the length of the 

axially traveling nanobeam is assumed to be 5nm. 

 

3.3 Cantilever nanobeams 
 

The last case is for a cantilever nanobeam and the boundary conditions are shown in Appendix. 

Combining Eqs. (18) and (A7) in Appendix yields a system of homogeneous equations which can 

be expressed in a matrix form as 
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Fig. 9 The effect of high temperature on the first two mode frequencies for clamped nanobeams 

with 1  , 
0 1p  , α= 1.1×10

−6
K

−1
, 1u  and τ=0.1 

 

 
Fig. 10 The effect of internal variable e0a on the first two mode frequencies for clamped 

nanobeams with 1  , 
0 1p  , α= −1.6×10

−6
K

−1
, θ = 50K, κ=10 and L = 5nm 
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 (23) 
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Fig. 11 The effect of strain gradient nanoscale parameter on the first two mode frequencies 

for cantilever nanobeams with 1  , 
0 1p  , α= −1.6×10

−6
K

−1
, θ = 50K, κ=10  

 

 
Fig. 12 Size-dependence of the axially traveling cantilever nanobeams 1  , 

0 1p  , 

α= −1.6×10
−6

K
−1

, θ = 50K, κ=10 and e0a=0.2nm 
 

 

where 5432
2 3 iii kkK   , )6...,2,1()( 2523

3     i  kuukkK iiii   . For nontrivial 

solution, the determinant of the matrix must vanish, or 

 
3 5 61 2 4

3 5 61 2 4

3 5 61 2 4

1 2 3 4 5 6

21 22 23 24 25 26

31 32 33 34 35 36

4 4 4 4 4 4

1 2 3 4 5 6

2 2 2 2 2 2

1 2 3 4 5 6

1 1 1 1 1 1

0
k k kk k k

k k kk k k

k k kk k k

k k k k k k

K K K K K K

K e K e K e K e K e K e

k e k e k e k e k e k e

k e k e k e k e k e k e

  (24) 

428



 

 

 

 

 

 

Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory  

 
Fig. 13 The effect of high temperature on the first two mode frequencies for cantilever 

nanobeams with 1  , 
0 1p  , α= 1.1×10

−6
K

−1
, 1u  and κ=10 

 

 

Following the same procedure described in the previous sections, Figs. 11-13 are presented to 

show the effects of strain gradient nanoscale parameter, the length of nanobeam and temperature 

change on the dimensionless vibration frequency. The observation and discussion on the responses 

of ωn for variations in various parameters are again valid in this example. Moreover, size 

dependence is obviously seen in Fig. 12, where the first two mode frequencies decrease with 

increasing length of the axially traveling nanobeam, especially when the length is very small. 

 

 

5. Conclusions 
 

Strain gradient and thermal effects on the transverse vibration frequency and critical axial 

velocities are considered in this article for an axially traveling nanobeam. Using a variational 

principle, an effective strain gradient higher-order equation of motion and the corresponding non-

classical, higher-order boundary conditions are first derived. Some practical numerical examples 

are solved and discussed in detail. It is concluded that many geometric, material and environment 

parameters affects the frequency response and critical velocity, including temperature change and 

in particular the strain gradient nanoscale parameter which has significant effect on the nanoscaled 

vibration behaviors. The strain gradient nanoscale parameter significantly strengthens the stiffness 

and thus increases the natural frequency of vibration for an axially traveling nanobeam. The 

thermal effect is weaker and it is concluded that in low temperature field, it causes the frequency 

to increase while in high temperature field, it makes the frequency decrease. In addition, higher 

nanobeam shape parameter induces lower frequency. Meanwhile, the natural frequencies drop 

drastically with increasing, but small, axial velocity. If the axial velocity is rather high, the 

frequencies rise and fall with increasing axial velocity and there exists the critical velocities at 

local minima to the immediate vicinity. This observation differs significantly from the conclusion 

according to the classical vibration theory. It is obvious that effective strain gradient plays an 

essential role in size dependence of a traveling nanobeam vibration and the thermal effect should 

not be ignored neither. 
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Appendix 
 

The non-classical boundary conditions derived from Eq. (12) are obtained as 
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 (A1) 

which can be grouped into the natural boundary conditions on the left and the geometric boundary 

conditions on the right. In each line, either the natural condition or the geometric condition 

vanishes but not both at the same time (Lim 2010). Subsequently, considering the most important 

strain gradient terms which reveal the significant strain gradient effects, we simplify the boundary 

conditions in Eq. (A1) as follows 
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 (A2) 

Eq. (A2) is the corresponding boundary conditions with respect to the equation of motion (14). 

Substituting Eq. (16) into (A2) yields the following boundary conditions in amplitude shape field 

as 
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 (A3) 

For a simply supported nanobeam, the boundary conditions consist of the classical and non-

classical conditions. As the classical boundary conditions, the transverse deflection (or vibration 

amplitude shape) on the right of the first line in Eq. (A3), and its second-order derivative on the 

right of the third line at both ends should be zero. As the non-classical boundary conditions, the 

combined expression of the second-order derivative and the fourth-order derivative with a strain 

gradient nanoscale parameter on the left of the second line should vanish. The reason for the 

selection logic of the non-classical boundary conditions is the effective strain gradient nonlocal 

bending moment does not exist at both ends in the strain gradient theory. Please note that the 

dimensionless effective strain gradient nonlocal bending moment was defined as (Lim 2010) 
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where the boundary condition on the left of the second line in Eqs. (A2) or (A3) is just the 

simplified form of the effective strain gradient nonlocal bending moment. Therefore, the simply 

supported boundary conditions chosen from Eq. (A3) are given by 

 

 
     

 
     

2 2 4

2

2 2 4

2 2 4

2

2 2 4

0 0 0
0 0 ; 0 ; 0

1 1 1
1 0 ; 0 ; 0

d d d

dx dx dx

d d d

dx dx dx

  
 

  
 

    

    

 (A5) 

Eq. (A5) can also be expressed, after simplification as 

 

 
   

 
   

2 4

2 4

2 4

2 4

0 0
0 0 ; 0 ; 0

1 1
1 0 ; 0 ; 0

d d

dx dx

d d

dx dx

 


 


  

  

 (A6) 

Similarly, the boundary conditions of an axially traveling nanobeam with fully clamped ends 

from Eq. (A3) are 

 

 
     

 
     

3 5

2

3 5

3 5

2

3 5

0 0 0
0 0 ; 0 ; 3 0

1 1 1
1 0 ; 0 ; 3 0

d d d

dx dx dx

d d d

dx dx dx

  
 

  
 

   

   

 (A7) 

which consist of the classical boundary conditions that the deflection and its first-order derivative 
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(rotating angle) at both ends are all zero, and the non-classical boundary conditions that the 

combination of the third-order derivative and the fifth-order derivative with a strain gradient 

nanoscale parameter on the left of the third line should vanish. In fact, it can be proved that such 

non-classical boundary conditions are part of the simplified form of the effective strain gradient 

rotating angle. Similarly, for axially traveling cantilever nanobeams, the boundary conditions are 

given by 

 

 
       

       
 

 

3 5 2 4

2 4 2

3 5 2 4

2 3 5

2 2

2 3 5

0 0 1 1
0 0 ; 3 0 ; 0;

0 1 1 1 1
0 ; 0 ; 0

d d d d

dx dx dx dx

d d d d d
u u

dx dx dx dx dx

   
   

    
  

     

       

 (A8) 

where the nanobeam fixed at 0x   and its free end at 1x  . 
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