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Abstract.  An integrated superelement concept is proposed to improve the computational efficiency when 
analyzing structural responses during progressive collapses of large-scale structures, such as multi-storey 
reinforced concrete buildings. While the proposed methodology is straightforward and can be implemented 
into an existing finite element program with little effort, it is able to significantly reduce the computational 
cost without the loss of any critical information of the structural responses. Compared with the models 
without superelement, significant saving in computational cost and satisfactory prediction accuracy can be 
obtained with the proposed approach. 
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1. Introduction 

 

The concept of superelement has been widely applied in efficient numerical simulations using 

finite element analysis. A superelement consists of a finite number of finite elements and is termed 

as a substructure as well. The idea was invented by aerospace engineers in the early 1960s to carry 

out a first-level breakdown of complex systems such as an entire airplane (Przemieniecki 1968). In 

the 1970s, the superelement technique as a new structural analysis method was incorporated in 

NASTRAN, a widely used finite element analysis solver, and the superelement technique started 

to be employed in practice. In order to test the superelement capability in NASTRAN, Zemer 

(1979) conducted quite extensive comparisons by using an aircraft model and proved that the 

superelement technique can result in substantial cost benefits for large scale structure analysis. To 

achieve a more versatile superelement technique, Jacobsen (1983) merged superelement/database 

concepts and summarized the advantages through the use of fully integrated superelements in basic 

finite element programs in terms of replication, reusability, matrix bandwidths, data generation, 

load condition, reanalysis and computational cost.  

Due to the most attractive advantage to significantly improve computational efficiency, 

superelement method has been employed when solving various problems in recent years. The 

problem characteristics suitable for superelement applications can be summarized into three 
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distinguishing features, that is, iterative computational tasks, localized nonlinearity and a large 
number of finite elements in the numerical models for applications in dynamics. 

Firstly, as for the iterative analysis and design in the topology optimization, superelement 
method can be adopted when a structure is locally designed for the topology optimization. Hence 
in a structure, the part outside the zone which is supposed to be locally optimized can be defined 
as a superelement and the corresponding stiffness remains the same in the later analysis, while 
only the stiffness matrix of the part within the optimized zone needs to be reformulated iteratively 
(Qiu et al. 2009).  

Secondly, in the multibody problems, the large relative rotation between individual bodies 
introduces geometric nonlinearity in the computational model, while the deformation inside each 
body are small enough to be considered as elastic and, therefore, suitable for the superelement 
application (Cardona and Geradin 1991, Cardona 2000). Similarly, in the vehicle joints modelling 
(Maressa et al. 2011) the coupling interface between vehicle joints is the crucial region and can be 
defined as the connection between superelements. 

Thirdly, for dynamic analysis, a large number of elements are needed to obtain accurate 
simulation results for the eigenvalue and frequency response. Thus, the idea of superelement can 
be utilized to decrease the model evaluation time by using a reduced model (Belyi 1993, Agrawal 
et al. 1994, De Gersem et al. 2007). Besides, the concept of superelement can also be easily 
implemented to condense a group of members or components with a superelement for large-scale 
structure analysis (Ju and Choo 2005, Steenbergen 2007, Belesis and Labeas 2010, Huang and Li 
2010). 

In addition to decreasing computational cost, the application of superelement provides the 
opportunity to overcome some modelling difficulties when tedious geometric details are involved 
in the models. For instance, in 3D seismic analysis of a high-rise building, due to the fine mesh 
around the shear wall with various types of openings, the degrees of freedom from the nodes 
which are not connected to beams and columns of interest will lead to unnecessary computational 
cost and they can be eliminated via the implementation of superelement before structural analysis 
commences (Kim et al. 2005). 

Similar problems are also encountered in the present study on structural analysis for 
progressive collapse of buildings. It should be noted that the potential of progressive collapse of 
existing buildings has not been well researched previously and there was little research conducted 
except some technical reports until the collapse of the twin towers of World Trade Centre in 
September 2001 (National Institute of Standards and Technology 2005, Bazant and Verdure 2007, 
Yuan and Tan 2011). To check for progressive collapse, computational cost for nonlinear analysis 
of a large structure such as a multi-storey reinforced concrete (RC) building is always exorbitant 
since a large number of finite elements are needed to discretize the structure in order to obtain 
reasonably accurate predictions of the structural response (Hartmann et al. 2008). This is because 
although a relatively small portion of the building is initially subjected to extreme loads such as a 
blast event, it is required to simulate the response of the entire building with a time-consuming 
nonlinear model to ascertain whether the initial damage has spread to the other parts of the 
structure. Therefore, in practice, structural engineers often need to strike a balance between the 
computational cost employed and the accuracy in structural response predictions. It should be 
noted that modelling geometric and material nonlinearities using the finite element method 
requires almost always repeating updates of tangent stiffness matrix and solutions of the 
corresponding linear equation systems, which are the most time-consuming part in iterative 
numerical simulations. However, in many practical problems involving nonlinear analysis of large 
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structures such as the progressive collapses of multi-storey RC buildings, the material nonlinearity 
phenomena are usually localized in certain critical structural members (Unified Facilities Criteria 
(UFC)-DoD 2005) and might not dramatically spread throughout the whole structure even in the 
occurrence of progressive collapse. Thus, at each loading increment, the computational effort spent 
on the tangent stiffness matrix calculation and updating of structural members properties with only 
small deformation could be avoided using the concept of superelement. 

The superelement formulation proposed in the present paper is vastly different from the 
conventional superelement formulation using static condensation (Wilson 1974) which is also 
known as Guyan reduction (Chen and Pan 1988). Firstly, in the conventional superelement 
formulation based on static condensation, many nodes in the mesh have to be renumbered, or the 
rows and the columns in the stiffness matrix have to be swapped to make the degrees of freedom 
(DOF) associated with the superelement to lie in the upper left sub-matrix in the system stiffness 
matrix. However, there is no such requirement in the superelement formulation proposed herein. 
This advantage of the proposed superelement formulation will further decrease the analysis time 
and, thus, benefit the objective to achieve efficient finite element analysis. 

Secondly, material nonlinearity is the only concerned time-consuming part in finite element 
analysis of conventional superelement formulations based on static condensation. However, 
besides material nonlinearity, geometric nonlinearity can also be involved due to large rigid-body 
rotations when analyzing progressive collapse of structures. It should be noted that the structural 
regimes suitable for superelement applications are not always fixed on the foundation (or other 
essential boundary conditions) and do not always undergo small deformation. Actually, in general, 
there are two types of superelement configurations by differentiating whether the defined 
superelement is directly fixed onto the foundation. In many simulations regarding structural 
failures in the seismic events or terrorist bombing accidents, material nonlinearity is localized at 
the first storey of structures and the storeys above only undergo small deformation. Thus, the 
deformations of the storeys above the first are accompanied by large rigid-body rotations as shown 
in Fig. 1, which should be reasonably taken into account in the superelement formulation. 
However, in the conventional superelement formulations based on static condensation, the effect 
of superelement zone on the nonlinear zone is considered in the condensed stiffness matrix of the 
whole structure, and there is no independent explicit expression for the superelement stiffness 
matrix after the formation of superelement. Therefore, once the geometric nonlinearity needs to be 
taken into account for the superelement zone, the stiffness matrix of the whole structure has to be 
updated and this will considerably increase the computational cost. 

 
 

Fig. 1 A multi-storey building with a column removal at the first storey 
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Fig. 2 A 2D frame subjected to external forces Fig. 3 Linear zone of the 2D frame under real forces
 
 
The outline of the present study is summarized as follows. In Section 2, the basic concept of the 

proposed superelement formulation is presented using a simple 2D frame example. The 
displacement of the superelement is discussed in detail for different superelement configurations in 
Section 3. Lastly, the proposed superelement formulation is validated against several examples 
with comparisons of prediction accuracy and CPU time for numerical models with and without 
superelement applications. 
 
 
2. Basic concept of the proposed superelement 
 

To illustrate the basic approach proposed in this paper, a 2D frame example as shown in Fig. 2 
is considered. The frame is uniformly divided into eight three-node 3D beam elements, and three 
point loads are applied at nodes 3, 7 and 17, respectively. With the load P3 at nodel 17 as the major 
load, it is assumed that in this example, greater attention should be paid on those key elements 
between node 5 and node 17 as nonlinear behaviours are expected to occur there. The zone 
comprising the key elements is denoted as a nonlinear zone. In this case, all the elements between 
node 1 and node 9 can be merged into one superelement or linear zone where only linear analysis 
is required. 

Now consider the linear zone shown in Fig. 3, with the key elements and the force applied on 
them removed from the original model. To construct a superelement, its nodes must be determined 
from the beginning. The superelement deformation is the combination of deformations caused by 
(i) the external loads applied on the linear zone and (ii) the transferred internal forces from those 
common nodes along the boundary between the nonlinear zone and the linear zone. Thus, an 
additional node is necessary to represent the superelement deformation behaviour if there are 
external loads applied in the linear zone.  

For the numerical model in Fig. 2, node 5 is the only common node shared by the nonlinear and 
the linear zones. Thus, the superelement has only two nodes, viz. common node 5 which has six 
degrees of freedom and an additional node, which is in the linear zone. Without loss of generality, 
node 6 is selected to be the additional node, in that there are external loads applied in the linear 
zone. To obtain the stiffness matrix of the superelement, a series of linear analyses has to be 
conducted based on the configuration shown in Fig. 3. 

Firstly, forces λP1 and λP2, where λ is a nonzero factor defined as 1/(P1
2+P2

2)0.5 so as to be 
consistent with the applied load in the structural analysis, are applied to the linear zone and the 
associated deformations at node 6 and node 5 are calculated. The corresponding deformation 
vector induced by a combination of all scaled forces applied on the linear zones (λP1 and λP2 in  
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Fig. 4 Linear zone of the 2D frame under virtual force scenario 
 
 

this example) is expressed as 0U=(0u6-x, 
0u5-x, 

0u5-y, 
0u5-z, 

0θ5-x, 
0θ5-y, 

0θ5-z)
T where superscript ‘0’ 

indicates the load case number. Note that the terms u and θ represent the nodal displacements and 
rotations, respectively. The Arabic number in the subscript denotes the node number, while the 
Latin letter indicates the respective coordinate axis. It should be mentioned that all the six 
components of the deformation at node 5 are stored in 0U but only one degree of freedom at node 6 
needs to be considered. In fact, among the six degrees of freedom at node 6, any nonzero 
component can be selected to form 0U. In this method, the component with the maximum 
translation or rotation for load case ‘0’ is selected as the additional component at the additional 
node. 

Then, the applied loads in the linear zone are removed and a unit load is applied sequentially at 
all the degrees of freedom of the shared nodes by the linear and nonlinear zones. For this example, 
in the second step the forces λP1 and λP2 are removed and a unit load P5-x is applied to node 5 in 
x-direction as shown in Fig. 4. Similar to the first step, the deformations at node 6 and 5 are 
denoted as 1U=(1u6-x, 

1u5-x, 
1u5-y, 

1u5-z, 
1θ5-x, 

1θ5-y, 
1θ5-z)

T. 
The second step is repeated five times at the common node 5 to generate five more load cases, 

viz. two unit loads (along the y and z-axis) and three unit moments (about x, y and z-axis) are 
applied in sequence. The corresponding deformation vectors are stored as 2U, 3U, 4U, 5U and 6U. It 
should be mentioned that the global stiffness matrix of the linear zone only requires to be 
factorized once during such calculations. Hence, 1U ~6U can be obtained with modest additional 
computational effort compared with the solution procedure of 0U. Based on the properties of linear 
elasticity, the above three steps can be summarized by the following equation 

1 6
7 7

6 1 6 6 7 7

s



  

 
  
 

0
K ψ I

0 I

1

                        

(1) 

where the displacement matrix ψ=(0U, 1U, 2U, 3U, 4U, 5U and 6U) is obtained by conducting a series 
of linear analyses with consideration of the external loads in the linear zone (the forces λP1 and λP2 
and the transferred internal forces from the common nodes (the assumed unit load cases applied to 
all degrees of freedom of node 5) and Ks is the superelement stiffness matrix and is equal to ψ -1, 
since the multiplication of Ks and the displacement matrix ψ is equal to the applied loads. The 
identity matrix is denoted by I in Eq. (1). In this example, the superelement has seven DOFs, 
including six DOFs at node 5 and only one DOF at node 6. 
 
 
3. Superelement displacement 
 

During a progressive collapse analysis of an RC building, based on the structural deformation 
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behaviour and the material states at different parts of the structure, the whole structure can be 
divided into two regions. The first is the linear elastic region where the nonlinear material effect is 
negligible so that the stiffness matrix does not change due to material nonlinearity and can be 
simulated by a superelement. The other is the nonlinear region where significant amount of 
nonlinear structural responses occur and the effects have to be solved by iterative computations in 
which the tangential stiffness matrix for this region will be updated as deformations increase.  

In general, two types of superelement can be constructed. The first type of superelement is 
connected to both the nonlinear zone and the foundation (or where essential boundary conditions 
are specified). The second type of superelement is only connected to the nonlinear zone. For the 
first type of superelement the whole structure is partitioned into superelement and 
non-superelement zone as shown in Fig. 5. In this case, a direct amplification of the deformation in 
the superelement can be applied as follows. Large rigid-body rotation will be prevented by the 
foundations. The tangential stiffness matrix of this type of superelement will remain the same 
throughout the loading history. Therefore, the superelement stiffness matrix is only computed once 
before the iteration starts. To calculate the superelement deformations, after each converged 
increment is achieved, the nodal force vector at the common nodes (along the boundary between 
the superelement and the nonlinear zone) is applied as external loads to the superelement as shown 
in Fig. 6. Meanwhile, the deformation calculation of the superelement takes into account the 
nonlinear effects due to the nonlinear zone. 

For the second type of superelement which is only connected to the nonlinear zone such as the 
framed structure shown in Fig. 7, ‘weak member method’, which assigns a relatively small value to 
the material properties (e.g. both Young’s modulus and shear modulus) for elements that are in the 
nonlinear zone, is employed to calculate the stiffness matrix of the superelement without the 
restraint of the foundation. In addition, ‘strong member method’, which assigns a relatively larger 
value to the material properties for elements that are in the nonlinear zone, is employed to 
eliminate the nonlinear effect from the nonlinear zone when calculating the relative deformations 
of the superelement for the initial load factor. With the assumption that the superelement zone 
remains elastic, the global deformations can be obtained by combining the relative deformations 
and the rotation of the nonlinear zone.  

It should be noted that only the relative deformations of the superelement zone (with respect to 
the nonlinear zone) show linear relationship with external loads in the superelement zone. In 
addition, the effects of nonlinear behaviour of the nonlinear zone on the superelement can be taken 

 
 

Fig. 5 First type of superelement Fig. 6 The equivalent loading for superelement 
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Fig. 7 Second type of superelement Fig. 8 Deformed configuration of a node of the superelement
 

Fig. 9 Rotation directions defined by the skew-symmetric matrix 
 
 

into account when calculating the rigid-body rotation which can be conducted with respect to 
certain connecting nodes as shown in Fig. 8. In Fig. 8(a), the resultant vector of a certain node 
within the superelement can be captured by the addition of the spatial vector (pointing from the 
interested node to the concerned node in the undeformed configuration) and the relative 
deformation. To take into consideration the effect of rigid-body rotation as discussed in Fig. 1 due 
to rotational deformation at the connecting node, the rotation matrix R will be employed to rotate 
the resultant vector with respect to the connecting node to the actual position in the deformed 
configuration, as shown in Fig. 8(b). 

A conventional approach to calculate the rotation matrix proposed by Crisfield (1990) (relevant 
to Argyris’ work (1982) dealing with 3D rotations) is to employ pseudo-vectors and 
skew-symmetric matrices to describe the rotational variables. Incorporating both local and global 
coordinate systems, the skew-symmetric matrix can be obtained as 

  
3 2

3 1

2 1
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0

0
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 

 
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  

S

                            

 (2) 

where θ1, θ2, θ3 are the natural rotational variables of the connecting node. The sign convention of 
rotational variables follows the right-hand rule as shown in Fig. 9. 

The orthogonal rotation matrix R that rotates a vector into a new position is given by Argyris 
(1982) and Crisfield (1990). 

                    2

sin 1-cos
( ) ( ) ( ) ( )

 
 

  R θ I S θ S θ S θ                      (3) 

P 

Superelement 

Nonlinear zone 

Ks  

2

13

2X

1X

3X

O

315



 
 
 
 
 
 

Xu Long, Weifeng Yuan, Kang Hai Tan and Chi King Lee 

where θ=( θ1 θ2 θ3)
T and θ = θ . It should be noted that  represents the L2-norm of a vector. 

Another approach to calculate the rigid-body rotation about a certain node is based on the nodal 
vector in the deformed configuration as discussed by Crisfield (1996). 

   
x y z   R e e e

                             
(4) 

where ex, ey, ez

 
are the unit local nodal vectors of the connecting node expressed in the global 

system. 
Since it is well known that the definitions of rotation variables depend on the large rotational 

formulation of the finite element employed in the analysis (Dvorkin et al. 1988, Li 2007, Long et 
al. 2012), both approaches using Eqs. (3) and (4) have been implemented in the current study in 
order to broaden the application range of the proposed superelement to different finite element 
formulations, such as the total Lagrangian formulation, the updated Lagrangian formulation and 
the co-rotational formulation. For example, the first approach using natural rotation to define R 
(Eq. (3)) can be directly used with the 3D total Lagrangian beam element suggested by Dvorkin et 
al. (1988). However, if vectorial rotational vectors are employed to define the rotational variables 
(Li 2007, Long et al. 2012), it will be more convenient to use the second approach (Eq. (4)).  

Rigid-body rotation and scalable relative deformation with respect to the nonlinear zone are 
computed to obtain the deformed configuration of the superelement in the global coordinate 
system. The computation procedure with superelement deformation is summarized in Fig. 10. 
Firstly, the superelement stiffness matrix Ks and its inverse matrix Ks

-1 are calculated using the 
‘weak member method’ and the ‘strong member method’ prior to the deformation predictions 
subjected to the total loading condition (Fig. 10(a)). Then as shown in Fig. 10(b), the relative 
deformation uL of the superelement with respect to the nonlinear zone due to nodal force F, nodal 
moment M and external load Ps (including gravity load) within the superelement zone can be 
computed from Eq. (5). 

                           
1

L s=
s



 
 
 
 
 

P

u K F

M
                               

(5) 

It should be noted that the additional node and its degree of freedom have been considered 
when calculating the stiffness matrix Ks in Eq. (5). Therefore, in the relative deformation vector uL 
there will be a relative deformation of the additional degree of freedom with respect to the 
nonlinear zone. 

Assuming that the natural rotational variable (Eqs. (2) and (3)) are employed for large rotation 
formulation, then the rotation variables of connecting nodes are available to form the rigid-body 
rotation matrix R so that RT=R-1. Hence, the transformation matrix T can be obtained by 
assembling RT corresponding to both the translational and rotational variables and the update of 
superelement stiffness matrix Ks can be calculated as  

                              T  update
s sK T K T                 (6) 

As illustrated in Fig. 10(c), after the convergence of the next load increment is reached and the 
updated superelement stiffness matrix Ks and the nonlinear zone stiffness matrix Kns are 
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(a) Undeformed configuration (formation of 
superelement) 

(b) Relative deformation of superelement 
due to nodal and external loads 

(c) Global deformation of superelement zone and nonlinear zone 

Fig. 10 Scalable relative deformation and rigid-body rotation with respect to the nonlinear zone 
 
 

computed, the rotation variables of connecting nodes can be extracted to form the new rigid-body 
rotation matrix R. Therefore, the superelement deformation uG for the next load increment in the 
global coordinate system can be calculated as 

G L=  u R u
                                 (7) 

It should be pointed out that in the case of multi-connecting nodes, the formation of resultant 
rigid-body rotation matrix R of the superelement is approximated based on the ‘average’ of the 
rigid-body rotation matrix Ri at each connecting node. For the first approach using the natural 
rotation, it is apparent that the rotation matrix formulation in Eq. (3) is not additive due to the 
non-vectorial property of the 3D natural rotation. Therefore, the resultant of rotation matrices 
should be obtained based on compound rotations. As discussed by Crisfield (1990), one should 
first calculate the pseudo-vector ω of the natural rotation at each connecting node, as given in Eq. (8) 

tan( 2)

2




ω θ
                              

(8) 

Then the compound pseudo-vector for all connecting nodes can be computed. For example, ωij 
is the compound pseudo-vector for connecting nodes i and j and can be expressed as 

1
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Lastly, the resultant rigid-body rotation matrix R(ωij) of the superelement can be formed (Eq. 
(3)).  

Compared with the first approach, the second approach using local nodal vectors to form the 
rotation matrix in Eq. (4) can be implemented more conveniently because of the additive property 
of the nodal vectors. Thus, the direct average of rigid-body rotation matrices Ri at connecting 
nodes can be treated as the resultant rigid-body rotation matrix R of the superelement. 

The calculations for the superelement deformation are summarized for both types of 
superelement in a flow chart as shown in Fig. 11. For the situation of a superelement fixed onto the 
foundation, a direct amplification of the deformation of the superelement is conducted with 
reference to load factor (the ratio of the current applied load with respect to the maximum load 
intended to apply). For the situation of a superelement connected to other structural members and 
not directly fixed to the foundation, the present work proposes the concept of ‘strong member 
method’ in the superelement zone to recover the deformation of superelement zone. The 
formulation concerning the superelement zone with large displacement and large rotation in the 3D 
space is presented for different definitions of the rotational variables. The stiffness matrix in the 
superelement zone can be efficiently updated or kept constant as calculated in the undeformed 
configuration, respectively, depending whether the simulations emphasize accuracy or efficiency 
as the priority. The calculation of superelement deformation will be conducted with respect to the 
connecting node(s) and will avoid intensive computations on members which only undergo small 
linear deformations. 

 
 

 
Fig. 11 Flow chart of the calculations for the superelement deformation 
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4. Numerical examples 
 

The proposed superelement technique is implemented into a self-developed finite element 
package FEMFAN3D in NTU, Singapore. To validate the accuracy and effectiveness of the 
proposed superelement formulation, five examples including first and second types of the 
superelement are employed. Examples involving either elastic material or elasto-plastic material 
are compared with the theoretical solutions or numerical results obtained from full nonlinear 
analyses. Two examples of 3D beam-column steel frames and one example of a 2D reinforced 
concrete frame are employed to validate the accuracy of the superelement formulation in analyzing 
progressive collapse. In addition, the CPU time needed to complete the analyses with or without 
superelement are compared to study the efficiency of the superelement formulation. All the 
examples presented in this paper were simulated on the same computer with 2.66 GHz processor 
and 3.25 GB RAM. 

It should be noted that an accurate and efficient finite element formulation is a prerequisite for 
the successful application of the proposed superelement formulation for progressive collapse 
analysis of structures. In the present work, the 3D three-node beam element with fibre model 
proposed by Long et al. (2012) was employed. In all the examples, the stiffness matrices of the 
superelement zone were kept constant and were calculated based on the original configuration. 
However, for the examples shown in this paper, it should be remarked here that further simulations 
using updated superelement stiffness matrix gave little changes in the calculation accuracy of 
nonlinear zone. In the first example where linear material properties were used, a simple four-fibre 
scheme was utilized to discretize the beam cross-section (Long et al. 2012), while more detailed 
fibre schemes were used for Examples 2, 3, 4 and 5 to capture more detailed stress and strain 
information such as yielding of steel fibres. For all of the examples employed in the present work, 
single-point integration was applied to each fibre and reduced integration procedure with two 
Gaussian points along the beam longitudinal axis was adopted. 

 
Example 1: a cantilever beam with a concentrated load at the free end 
 
A cantilever beam with length L=3.0 was employed as shown in Fig. 12 to demonstrate the 

feasibility of the proposed methodology to deal with superelement deformation. The 
cross-sectional dimension of the beam is 0.3×0.3. Young’s modulus and Poisson’s ratio are 
2.1×1011 and 0.3, respectively. Since in this example linear elastic material is involved with small 
deformation, the load control method was utilized to increase the magnitude of the load P applied 
at the free end in 10 steps with a load increment equal to 105. Two three-node co-rotational beam 
elements were employed to discretize the cantilever beam as shown in Fig. 12. From the beam 
bending theory, the theoretical solution for the vertical displacement profile of the beam can be 
expressed as Px2(3L-x)/(6EI), where x is the distance of the point of interest to the fixed support. 

 
 

Fig. 12 Example 1: a cantilever beam with a concentrated load at the free end 
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Both first type and second type superelements were considered in this example. Firstly, the 
element with nodes 1, 2 and 3 was employed to define a superelement. Hence, there is no 
rigid-body movement for the superelement and the corresponding deformation is shown in Fig. 
13(a). Secondly, the element with nodes 3, 4 and 5 was employed to define a superelement and the 
corresponding deformation obtained is shown in Fig. 13(b). 

As shown in Figs. 13(a) and (b), the proposed formulation produced the exact theoretical 
solution no matter where the superelement was defined. It should be noted that the computational 
time was 6.61 s and 6.98 s for the models with superelement at the fixed end and the free end, 
respectively. The computational time needed for the model without superelement was 10.89 s. 
Therefore, a reduction of about 40% in computational time was achieved in this example. 

To illustrate the improvement of computational efficiency in more detail, CPU time 
comparison for the models with and without superelement against 100 load increments is given in 
Fig. 14. Since the formation of the superelement was conducted at the beginning of the program, 
the total CPU time needed for the modelling with superelement was larger than that without 
superelement in the first few load increments. However, the efficiency of models with 

 
 

(a) Result comparisons for Example 1 with a 
superelement at the fixed support 

(b) Result comparisons for Example 1 with 
a superelement at the free end 

Fig. 13 Result comparisons for Example 1 
 

Fig. 14 CPU time comparison for Example 1 with 
and without superelement 

Fig. 15 The cantilever beam discretized by 
five beam elements 
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(a) Deformation (b) CPU time 

Fig. 16 Comparison of the cantilevers with and without superelement 
 
 

superelement increased as the numbers of load increments applied increased, because the saving in 
linear equations solution time gradually offset the CPU time needed for forming and factorizing 
the superelement in the first step. 

To confirm that the current approach is reliable with relatively large rigid-body rotation of 
superelement under small deformation (which is quite common in the scenario of progressive 
collapse applications), five elements were employed to discretize the same cantilever beam as 
shown in Fig. 15. In this model, the effects of different sizes of the superelement zone were 
investigated. As shown in Fig. 16, the superelement zones consisting of one, two, three and four 
CR beam elements from the free end are denoted as ‘SE (1e)’, ‘SE (2e)’, ‘SE (3e)’ and ‘SE (4e)’, 
respectively. When the load applied at the free end was equal to 3×107 (the load factor is equal to 
3×107/105=300), the results with and without superelement were compared and a good agreement 
between these simulations was achieved as illustrated in Fig. 16(a). Hence, the proposed 
superelement formulation can accurately predict the large rigid-body rotation of superelement with 
small deformation.  

It should be noted that with increasing the number of elements in the superelement, the 
prediction accuracy is reduced, but the computational was more efficient as shown in Fig. 16(b). 

 
Example 2: a 3D two-storey frame with material yield and failure at the first storey 
 
To demonstrate the capacity of superelement to simulate responses of 3D structures consisting 

of elasto-perfectly plastic material, a two-storey beam-column frame with different cross-sectional 
shapes is employed as shown in Fig. 17(a). A similar one-storey frame had been analyzed by 
Marino (1970), Yang and Fan (1988), Gendy and Saleeb (1993) based on different approaches. 
The two-storey frame is validated against published results (Marino 1970, Yang and Fan 1988, 
Gendy and Saleeb 1993), because the applied loading and material yielding points are located at 
the first storey and the second storey only undergoes through a rigid-body movement if the plastic 
zone is localized in the first storey. 

The columns and beams of the frame are made of W10×60 and W18×60 sections, respectively. 
The material properties are E=30,000 ksi (206.9 GPa), G=11,500 ksi (79.3 GPa), and σy=34 ksi 
(234.48 MPa). Each member is of length L=144 in (3.655 m) with warping restrained at both ends. 
All members were discretized by using eight beam elements and the cross-section orientations and 
fibre discretization are illustrated in Fig. 17(b). 

Firstly, the numerical analysis without superelement was conducted and the corresponding 
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result is compared with the available simulation results (Marino 1970, Yang and Fan 1988, Gendy 
and Saleeb 1993). As shown in Fig. 18, the fibre model beam elements employed (Long et al. 
2012) produced satisfactory prediction for the two-storey frame subjected to external loads. Then 
the numerical model with all elements at the second storey defined as a superelement was 
employed and compared with the full model without superelement. The deformation and the 
displacement versus loading curves obtained are shown in Figs. 19 and 20, respectively. To 
achieve an 8-inch deformation in the Z direction at node 2, a comparison of CPU time needed to 
complete the analysis is presented in Table 1. To demonstrate the amount of CPU savings, the 
comparison of CPU time for the analyses with and without superelement plotted against the load 
increment numbers is shown in Fig. 21. 

As shown in Fig. 20, the predictions with and without superelement for the ultimate strength of 
the structure are very close. However, the computational efficiency was not significantly improved 
at initial load increments, since the nonlinear zone consists of one-half of the structure. Moreover, 
it should be noted that additional constraints from the second storey will be applied at the first 
storey and the second storey will play a role to sustain the structure, which results in a certain 
discrepancy between the models with and without superelement. This explains why a discrepancy 
can be found in the linear region from the models with and without superelement in Fig. 20. 

To better demonstrate the efficiency improvement, an eleven-storey frame with the same 
material properties and cross-sectional dimensions are conducted in the next example. 

 
Example 3: an eleven-storey frame with material yield and failure at the first two storeys 
 
To illustrate the advantage of superelement in the analysis of localized material nonlinearity 

problems, the material properties and cross-sectional dimensions for both beams and columns in 
the previous two-storey frame example is employed to build an eleven-storey frame as shown in 
Fig. 22. The same loading condition shown in Fig. 17 was used again in the first storey. The 
numerical model and corresponding deformation are shown in Fig. 22. In the model with 
superelement, all elements above the first two storeys were combined as a superelement. The 

 
 

 
Fig. 17 Example 2: a 3D frame with material yield and failure at the first story 
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Fig. 18 Result comparisons for Example 2 
 

 

Fig. 19 Numerical model and deformation for Example 2 
 

(a) Z direction (b) X direction 

Fig. 20 Displacement versus loading curves for critical points in Example 2 
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Fig. 21 CPU time comparison for Example 2 with and without superelement 
 

Table 1 Comparisons of computational cost and CPU time for Example 2 

2-storey frame With superelement Without superelement Ratio (%) 

No. of nodes 137 252 54.4 
Computational time (s) 461.0 689.6 66.9 

 
Table 2 Comparisons of computational cost and CPU time for Example 3 

11-storey frame With superelement Without superelement Ratio (%) 

No. of nodes 253 1368 18.5 
Computational time (s) 738.2 3390.5 21.8 

 

Fig. 22 Example 3: numerical model and deformation for a 3D eleven-storey frame 
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(a) Z direction (b) X direction 

Fig. 23 Displacement versus loading curves for critical points in Example 3 

 

 

Fig. 24 CPU time comparison for Example 3 with and without superelement 
 

 
displacement versus loading curves for node 2 and node 1365 are shown in Fig. 23. The 
comparisons of the required CPU time for the 3D eleven-storey frame is listed in Table 2. The 
comparison of CPU time for the models with and without superelement for different numbers of 
load increments is shown in Fig. 24, after the deformation in Z direction of node 2 achieved 8 
inches. 

As shown in Fig. 23, the results of predictions with and without superelement for the ultimate 
strength of the structure agreed well. In addition, from Fig. 24 and Table 2, it is very obvious that 
the superelement significantly improved the computational efficiency of the analysis. A discrepancy 
in results from the models with and without superelement can be seen in Fig. 23(b) and it is again 
due to the additional constraint on the first two storeys from the superelement above. 

In Example 2 and 3, both superelements are of the second type of superelement, that is, the 
superelements are not directly fixed onto the foundation. To demonstrate the efficiency 
improvement for the first type of superelement, a 3D three-bay three-storey steel frame with the 
same material properties and cross-sectional dimensions are studied in Example 4, and a 2D 
three-storey RC frame with an exterior column removed is presented in Example 5. 
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(a) Elevation view (b) Plan view 

 

(c) Loading condition (d) Defined superelement zone (in purple) 

Fig. 25 Example 4: numerical model for a 3D three-bay three-storey frame 
 

Fig. 26 Displacement versus loading curves at the 
loading point in Example 4 

Fig. 27 CPU time comparison for Example 4 with 
and without superelement 

 
 

Example 4: a 3D three-bay three-storey frame with a horizontal load at the first storey 
 
The numerical model of the 3D three-bay three-storey frame is shown in Fig. 25. To avoid too 

much computational cost to analyze the full model without superelement, only three storeys are 
made in the present example. The cross-sectional dimension, material properties and element 
discretization for each beam and column member are the same with that in Example 2 and 3. To 
simulate a car bombing accident which is usually used to attack buildings by terrorists, a horizontal 
point load is applied at the middle point of one column at the first storey as shown in Fig. 25(c). With  
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Table 3 Comparisons of computational cost and CPU time for Example 4 

3-bay 3-storey frame With superelement Without superelement Ratio (%) 

No. of nodes 18 1864 0.97 
Computational time (s) 313.5 17621.0  1.78 

 
 

increasing the point load, steel will yield at those elements at the loading point and at the two ends of 
the column. Later, the steel yielding regimes will gradually propagate to other elements of the 
column. Therefore, it is assumed that material nonlinearity is localized within the column and the 
other structural regimes remain elastic and can be defined as a superelement as shown in Fig. 25(d). 

After analyzing the numerical models with and without superelement, displacement versus 
loading curves at the loading point are compared in Fig. 26, where good agreement is achieved 
before and after the material nonlinearity occurred. This means the assumption about the 
superelement zone is reasonable.  

As shown in Fig. 27, even though different load increments in the models with and without 
superelement were taken to achieve the same deformation (10 in.) at the loading point, the 
computational time of the model with superelement is significantly decreased. To illustrate the 
efficiency improvement when using superelement in the numerical model, the computational cost 
and CPU time are listed in Table 3 as well. It can be easily seen that the efficiency of the 
simulation with superelement is improved tremendously. 
 

Example 5: a 2D three-storey RC frame with an exterior column removed 
 
As a typical progressive collapse scenario, a 2D three-storey two-bay RC frame was studied 

and discretized by CR beam elements as shown in Fig. 28 and the missing exterior column of the 
first floor represents a column loss due to a car bombing at a building corner. Three point loads 
were applied downwards at the top level of the numerical model. The dimensions and 
reinforcement details of the beams and columns are given in Fig. 28. As for the fibre model, the 
concrete cross-sections of beams and columns were discretized by 100 concrete fibres and each 
longitudinal reinforcing bar was represented by one steel fibre at the corresponding location. The 
employed material properties for steel and concrete are listed in Table 4, where the ratio of 
elongation represents the ultimate tensile strain of longitudinal reinforcement, and the given value 
is taken as the average of measured ultimate tensile strains by steel gauges with five times and ten 
times the bar diameter. 

The region of the structure directly above the removed exterior column is of interest in terms of 
its nonlinear behaviour. Therefore, the right hand side half of the structure (highlighted in purple 
in Fig. 28) is treated as the linear zone and defined as a superelement. The numerical model with 
superelement is analyzed and the corresponding result is compared with the results based on full 
nonlinear analyses. Under the same value of the applied load, final deformations of the 2D 
three-storey RC frame with and without superelement are given in Fig. 29 which shows good 
agreements of the both models. The corresponding complete load-displacement responses of the 
two numerical models are essentially the same as shown in Fig. 30. However, it should be noted 
that the reason for the discrepancy of the two curves (with and without superelement) in Fig. 30 is 
that the material nonlinearity may have already propagated to the right half of the structure 
(highlighted in purple in Fig. 28), since the bar fracture occurs at the joints at the interface between 
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nonlinear zone and superelement zone. Therefore, the constraint on the nonlinear zone is 
overestimated, which can be reflected by a smaller displacement in the load-displacement 
responses. The numbers inside circles in Fig. 30 indicate the failure sequence as also shown in Fig. 
31. It can be seen that no matter a superelement is employed or not, the same failure modes and 
locations can be captured. Nevertheless, the computational time for the numerical models with and 
without superelement is significantly different. As shown in Fig. 32, the computational time for 
the numerical model without superelement is more than twice as much as that with superelement. 

 
 

Table 4 Material properties of reinforcing steel and concrete for Example 5 

Material Property Measured values 

Longitudinal reinforcement 
Yield strength, MPa 416 

Ultimate tensile strength, MPa 526 
Ratio of elongation 25% 

Lateral reinforcement Yield strength, MPa 370 
Concrete Cylinder strength in compression, MPa 20 

 

Fig. 28 Example 5: a 2D three-storey RC frame with an exterior column removed (unit in mm) 
 

Fig. 29 Deformation of the 2D three-storey RC 
frame in Example 5 

Fig. 30 Load-displacement response of the 
three-storey RC frame in Example 5 
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Fig. 31 Failure location and sequence of the 2D 
three-storey RC frame in Example 5 

Fig. 32 Computational time comparison for 
Example 5 with and without superelement 

 
 
5. Conclusions 
 

In this paper, a new superelement formulation is proposed and it improves significantly the 
efficiency of structural deformation analysis and can be directly implemented into an existing 
finite element program. The numerical examples demonstrate that it can be applied to 3D 
multi-storey frames and gives accurate results when compared with full nonlinear analysis. 
However, it is noteworthy that the definition of superelement in the numerical model should be 
determined reasonably and can only be applied at the region with elements undergoing elastic 
deformation.  

The improvement of computational efficiency with the superelement application will be much 
more obvious when a large portion of the structure is converted to the superelement zone. 
However, due to the preparation steps of superelement prior to the start of incremental-iterative 
solution, the simulation with the proposed superelement formulation may be relatively slower than 
the modelling without superelement in the first few increments. Nevertheless, the application of 
the proposed superelement formulation will be much more advantageous if a larger number of 
increments are applied in the nonlinear analysis.  

It should be noted that the current formulation of superelement can only be applied to structural 
simulations with material nonlinearity localized in certain critical structural members and these 
regimes do not dramatically spread throughout the whole structural domain. However, the obvious 
limitation can be eliminated by adaptively defining the zone of superelement and such 
development is now under the active consideration by the authors. 
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Notations 
 
ex, ey, ez

 
= local nodal vectors of the connecting node in the global system 

E = Young’s modulus 
G = shear modulus 
F = internal nodal force at connecting nodes 
M = internal nodal moment at connecting nodes 
Ks = stiffness matrix of the superelement  
Kns = non-superelement stiffness matrix 
L  = geometry dimension 
P  = external load  
Ps = external load within the superelement zone 
R = orthogonal rotation matrix  
Ri = rigid-body rotation matrix at connecting node i  
S = skew-symmetric matrix  
u = the nodal displacement 
uL = relative deformation of superelement with respect to the nonlinear zone 
uG = superelement deformation in the global coordinate system 
0U~6U = deformation components when forming stiffness matrix of superelement 
λ = arbitrary nonzero factor 
θ1, θ2, θ3 = rotational variables of the connecting node 
σy = yield strength 
ω = pseudo-vector of the natural rotation 
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