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Abstract.   The receding contact problem for two elastic layers whose elastic constants and heights are 
different supported by two elastic quarter planes is considered. The lower layer is supported by two elastic 
quarter planes and the upper elastic layer is subjected to symmetrical distributed load whose heights are 2a 
on its top surface. It is assumed that the contact between all surfaces is frictionless and the effect of gravity 
force is neglected. The problem is formulated and solved by using Theory of Elasticity and Integral 
Transform Technique. The problem is reduced to a system of singular integral equations in which contact 
pressures are the unknown functions by using integral transform technique and boundary conditions of the 
problem. Stresses and displacements are expressed depending on the contact pressures using Fourier and 
Mellin formula technique. The singular integral equation is solved numerically by using Gauss-Jacobi 
integration formulation. Numerical results are obtained for various dimensionless quantities for the contact 
pressures and the contact areas are presented in graphics and tables. 
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1. Introduction 

 

In engineering mechanics, the contact problems have different applications to a variety of 

structures of practical interest. For example; foundations, roads, railways, airfield pavements, 
rolling mills, ball and roller bearings are some application areas of the contact problem. Although 
developments in the contact problems did not appear in the literature until the beginning of this 
century, the studies have been accelerated recently due to the improvements in computer 
technology. 

The frictionless contact problem of the layer which locates into elastic half-plane, quarter 

plane, rigid plane or another plane has been studied by many researchers so far. The first study 
about contact problems was made by Hertz therefore contact problems are known as “Hertz 
Contact Problem” in the literature Hertz (1895). The solution methods of contact problems by 
elasticity were given by Galin (1961) and the application methods of integral transformations in 
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solutions were given by Uffliand (1961). Layer was loaded by rigid or elastic punch and located 
into the half-plane is solved by Ratwani (1973), Erdogan (1974). Contact problem, when the half-

plane and the layer is anisotropic, was discussed by Kahya et al. (2007). Keer et al. (1972) solved 
while the elastic layer was loaded by distributed load. El-Borgi et al. (2006) considered a receding 
contact plane problem between a functionally graded layer and a homogeneous substrate. Comez 
et al. (2004) studied contact problem of the layer which suppressed by curvilinear punch and rest 
on elastic layer which is tied totally from the bottom. Contact problems about the quarter-plane 
and the development of the numerical methods about this problem were discussed by Gerber 

(1968). Solution methods of the key type problems and quarter-plane and stresses which come out 
in contact distances were discussed by Dundurs and Lee (1972), Bakioglu (1976). By discussing 
the contact problem of the distributed and singular loaded layer which sits into quarter-planes, 
stress and strain in the form of different loading and material conditions were studied by Aksogan 
et al. (1996), (1997), (1999), Akavci (1999). Examination of quarter-planes of boundary value 
problems were discussed by Aghili (1999). Ke and Wang (2005) investigated two-dimensional 

contact mechanics of functionally graded materials with arbitrary spatial variations of material 
properties. Fracture dynamic problems for elastic cracked solids with allowance for crack faces 
contact interaction is solved by Oleksandr et al. (2007). Two-dimensional frictionless contact 
problem of a coating structure consisting of a surface coating, a functionally graded layer and a 
substrate under a rigid cylindrical punch is investigated by Yang and Ke (2008). Contact 
mechanics of thin films bonded to graded coatings is investigated both analytically and 

numerically by Guler et al. (2012). Carbone and Mangialardi (2008) developed a numerical 
procedure to analyze the adhesive contact between a soft elastic layer and a rough rigid substrate. 
Contact mechanics for randomly rough surfaces is solved by Persson (2006). The contact pressure 
distribution beneath a square block sliding along an elastically similar half-plane, in the presence 
of frictions are found by Karuppanan et al. (2008). Plane contact problem of an infinite long 
cylinder pressured into an elastic laminated semi-space is considered by Perkowski et al. (2007). 

Mahmoud et al. are studied incremental finite element model for the solution of the two 
dimensional quasi-static frictionless nonlinear viscoelastic contact problems with large 
deformations. Long and Wang (2012) investigated effects of surface tension on axisymmetric 
Hertzian contact problem. 

In this study, the receding contact problem for two elastic layers whose elastic constants and 
heights are different has been considered. The layers and quarter planes are homogeneous and 

isotropic. The lower layer is supported by two elastic quarter planes and the upper elastic layer is 
subjected to symmetrical distributed load whose lengths are    on its top surface. It is assumed 
that the contact between all surfaces is frictionless and the effect of gravity force is neglected. The 
problem is formulated and solved by using Theory of Elasticity and Integral Transform 
Technique. The problem is reduced to a system of singular integral equations in which contact 
pressure are the unknown functions by using integral transform technique and boundary 

conditions of the problem. Stresses and displacements are expressed depending on the contact 
pressure using Fourier and Mellin formula technique. The singular integral equation is solved 
numerically by using Gauss-Jacobi integration. Finally, numerical results are analyzed and 
conclusions are plotted. 
 
 

2. Formula of the problem 
 

Consider the symmetric contact problem for the quarter planes and two elastic layers with  
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Fig. 1 The receding contact problem of two elastic layers which sets on two elastic quarter planes In the 

absence of body forces, two-dimensional Navier equations can be written as given in (1a) and (1b) 

 

 

different elastic constants and heights shown Fig. 1. While upper layer and lower layer are in 

contact over the interval (–    ), the lower layer and quarter planes are in contact over the interval 

(   ). The thickness of the upper layer and lower layer are    and   , respectively.           
(       ) are elastic constants of the layers and quarter planes. The subscript  (       ) refers 

to the layers and quarter planes respectively. Thickness in z-direction is taken to be unit. 

        

2 ( ) 0
u v

u
x x y

  
   

     
   

 (1a) 

        

2 ( ) 0
u v

v
y x y

  
   

     
   

 (1b) 

In these expressions,   and   are the Lame constant and the shear modulus,   and   are the 

displacement components in   and  -directions, respectively. The problem is symmetrical 

according to the  - axis and the following conditions must also be satisfied.  

             
( , ) ( , )i iu x y u x y    (2a) 

             

( , ) ( , )i iv x y v x y   (2b) 

Due to the symmetry, it is enough to consider the problem in the region of      . 

Displacement of each layer may be expressed as the Fourier sine and Fourier cosine transform of 

the unknown functions   (   ) and   (   ) as 
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   
0

2
, ( , )sin , ( 1,2)i iu x y x y x d i  





   (3a) 

             

   
0

2
, ( , ) cos , ( 1,2)i iv x y x y x d i  





   (3b) 

Substituting (3a) and (3b) into (1a) and (1b) and solving the resulting ordinary differential 

equation system, one may obtain the unknown functions    (   ) and   (   ) . Using these 

solutions into (3a) and (3b), the displacements    and    for each layer can be determined as 

        
0

2
, siny y

i i i i iu x y A B y e C D y e x d   




     (4a) 

             

        
0

2
, cosi iy y

i i i i iv x y A B y e C D y e x d
  

 
 





         
     (4b) 

Where    (     ) for plane strain and    is the Poisson’s ratio.          and    (     ) are 

the unknown functions for the layers which will be determined from boundary conditions of the 

problem. The subscripts 1 and 2 to the upper and lower elastic layers, respectively. Using Hooke’s 

law and Eqs. (4a) and (4b), the stress components may be expressed as follows 

       
0

3 31 2
, cos

2 2 2i

y yi i
x i i i i i i

i

x y A B y B e C D y D e x d  
    

 




         

            
       



 

(5a)  

       
0

1 11 2
, cos

2 2 2i

y yi i
y i i i i i i

i
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 




         

              
       



 

(5b) 

       
0

1 11 2
, sin

2 2 2i

y yi i
xy i i i i i i

i

x y A B y B e C D y D e x d  
    

 




         

             
       



 

(5c) 

The Airy stress function method is applied to the case in polar coordinates; the stresses are 

expressed as follows 

        

2

2 2

1 1
r

r r r






 
 

 
 (6a) 

      

2

2r









 (6b) 

        

1
r

r r







  
   

    
(6c) 
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Taking the Mellin transform of the latter equation, the solution in the transform domain is found to 

be. 

   2 ( 2) ( 2)

1 2 1 22 1 ( 1)( 2) (1 )( 4 4)

M

is is i s i su
r s s i F e F e s s s G e G e

r

        
                     

(7a) 

 
2

2

2

M
M

rr s 


 
      

                                                   (7b) 

 2 ( 1)
M

M

rr s 



                                               

          

(7d) 

( 2) ( 2)

1 2 1 2( , )M is is i s i ss Fe F e G e G e           

                                   

(7e) 

Where    is the displacement, the stress compounds for the quarter planes are 

  (   )   (   )    (   )  and    Airy stress function which will be used for the quarter planes 

in the solution of the problem is carried out by using Mellin transform technique. 

 

 

3. The boundary conditions and the system of integral equations 
 

The boundary conditions of the receding contact problem for the elastic layers can be written 

as 

(1) ( , ) 0xy x h 
                    

(0 )x  
                                            

(8a) 

0(1)
(0 )

( , )
0 ; ( )

y

p x a
x h

a x


   
  

                               

(8b) 

(1)

2( , ) 0xy x h 

                    

(0 )x  

                                            

(8c) 

(2)

2( , ) 0xy x h 

                    

(0 )x  

                                           

(8d) 

1(1)

2

( ) (0 )
( , )

0 ; ( )
y

p x x b
x h

b x


   
  

                               

(8e) 

(1) (2)

2 2( , ) ( , )y yx h x h 
                      

(0 )x  

                                    

(8f) 

 
2(2)
( ) ( )

( ,0)
0 ; 0 ,

y

p x c x d
x

x c d x


    
  

                          

(8g) 

(2) ( ,0) 0xy x 

                      

(0 )x  

                                          

(8h) 

245



 

 

 

 

 

 

Murat Yaylacı and Ahmet Birinci 

 2 ( ,0) uv x

x r




                       

( )c x d 

                                           

(9) 

 1 2 2 2v ( , ) ( , ) 0x h v x h
x


 

               
(0 )x b 

                                      

(10) 

For the quarter planes, the boundary conditions in polar coordinates are 

2( , ) ( ) ( ) ( 0)r p r c r d      
                              

(11a) 

( , ) 0 ( ) ( 0)r r d r     

                             

(11b) 

2( , ) 0 (0 ) ( )r r 
     

                            

(11c) 

2( , ) 0 (0 ) ( )r r r 
     

                           

(11d) 

Additional conditions are needed for a complete solution of the problem. The contact pressures 

must satisfy the equilibrium conditions, which can be expressed as 

1 1 1 0( ) 2
b

b

p x dx ap




                                                        

(12a) 

2 2 2 0( )
d

c

p x dx ap
                                                        

(12b) 

   is length of distributed load.   is the half-width of the contact area between two elastic 

layers. (   ) is the half-width of the contact area between lower layer and the quarter planes.    

is a known distributed load,   ( ) and   ( ) are the unknown contact pressures on the contact 

areas ( ) and (   ), respectively. In which   ( ) is the stress between the upper layer and the 

quarter plane. 

Using the boundary conditions given by (8a-8g), the unknown constants          and    
(     ), appearing in the stress and the displacement expressions for the layers, can be obtained 

in terms of the unknown contact pressures   ( ) and   ( ). Thus, the stresses and displacements 

can be expressed depending on the unknown contact pressures   ( ) and   ( )  which have not 

yet determined. Substituting Eqs. (7a)-(7e) into boundary conditions for the quarter planes (11a-

11d), is obtained boundary condition given by (9) by using Mellin transform technique. 

The solution (2) and (5) with          and    (     ) satisfies all the boundary conditions 

stated by Eqs. (8a)-(8g) expect the mixed conditions (9) and (10). The unknown functions   ( ) 
and   ( ) are determined from the mixed conditions which have not yet been satisfied. These 

conditions give the following system of integral equations, after some routine manipulations and 

using the symmetry consideration 

   ( )    (  ) and   ( )    (  ): 

11 11 1 1 1 12 2 2 2 0

1 1 1 1
( , ) ( , ) ( ) ( , ) ( ) ( )

b d

b c

M x t R x t p t dt R x t p t dt p M x
t x  



 
     

 
            

(13a) 
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32
21 1 1 1 22 22 2 2 2

3 2

11 1 1 1
( , ) ( ) ( , ) ( , ) ( ) 0

1

b d

b c

M x t p t dt M x t k x t p t dt
t x t x



   


 
     

   
 

  

(13b) 

Where    (     )    (     )    (     )    (     )    (     )  ( )        (     )  are 

given by (A1-A7) in Appendix. 

 

 

4. The solution of the system of the integral equations 
  

The numerical solutions of the integral equations will be achieved by Gauss-Jacobi Integration 

Formulation which was investigated by Krenk (1975), Erdogan et al. (1973).  

To simplify the numerical analysis of the integral equation, the following dimensionless 

quantities can be introduced. 

2

z

h
 

                                                                 
(14a) 

1 1t br

                                                                

(14b) 

2 2
2 2

d c d c
t r

 
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(14c) 

1 1x bs

                                                               

(14d) 

2 2
2 2

d c d c
x s

 
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(14e) 

1 1
1

0

( )
( )

p br
g r

p


                                                     

(14f) 

2 2

2

0

2 2
( )

d c d c
p r

g r
p

  
 

 

                                                

(14g) 

Using these dimensionless quantities, the integral Eqs. (13a) and (13b) can be written as 

1 1

11 11 1 1 1 12 2 2 2 1

1 11 1

1 1 1 1
( , ) ( , ) ( ) ( , ) ( ) ( )M s r R s r g r dr R s r g r dr M s

r s  
 

 
    

 
 

              

(15a) 

1 1

32
21 1 1 22 22 2 2

2 2 3 21 1
2 2

11 1 1 1
( , ) ( ) ( , ) ( , ) ( ) 0

( ) 1
( ) 2( )

M s r g r dr M s r k s r g r dr
d c r s

r s
d c



   
 

 
 

         
 

 

 
(15b) 

Similarly, the equilibrium conditions become 
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1

1 1 1

1

( ) 1
2

b
g r dr

a




                                                       

(16a) 

1

2 2 2

1

( ) 1
2

d c
g r dr

a





                                                    

(16b) 

The solution of the integral equations can be expressed as 

( ) ( ) ( )j j j j j jg r G r w r

                                                    

(17) 

One may notice that because of the smooth contact at the end point  , the unknown function 

  ( ) is zero at the ends, thereby the index of integral Eq. (15a) is -1. 

Where   (  ) is the weight function of   (  ). Using the Gauss-Jacobi integration formulas, 

the integral Eq. (15a) and equilibrium conditions (16a) become 

1 11 1 1 1 1 2 12 1 2 2 2

1 11 1

1 1
( , ) ( ) ( , ) ( ) ( 1,2,..., 1)

N N
N N

i k i i i k i i

i ii k

W k s r G r W R s r G r M k N
r s  

 
     

 
 

 (18a) 

1 1 1

1

1
( ) 0

2

N
N

i i

i

b
W G r

a 

 
                                                

(18b) 

where 

1 1

( ) (1 ) (1 ) , 1,2

0.5

j j

j j j jw r r r j
 

 

   

 
                                       

(19) 

   and     are the roots of  the related Jacobi polynomials and    
  is the weighting constant 

1 cos ( 1,2,..., )
1

i

i
r i N

N

 
  
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(20a) 

1

2 1
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2 1
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2

1
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1 r
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1

N i
i i N
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
 
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(20c) 

One may notice that because of the smooth contact at the end point  , unknown functions 

  ( ) is zero at the ends. Unknown function   ( ) is infinite in the point   which in the interior 

edge of the quarter plane, thereby the index of integral Eq. (15b) is 0. 

Where   (  ) is the weight function of   (  ). Using the Gauss-Jacobi integration formulas the 

integral Eq. (15b) and equilibrium conditions (16b) become 
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(21a) 
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2 2 2
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   and     are the roots of  the related Jacobi polynomials and    
  is the weighting constant: 

 2 2,

2( ) 0 ( 1,2,..., )N iP r i N
 

 
                                

(23a) 

 2 21, 1

2( ) 0 ( 1,2,..., )N kP s k N
  

 
                                

(23b) 
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N NN

N N N P r P r

 

   

  

    



 



       
 

       
 

(23c) 

It can be seen that the extra equations in (18a) and (21a) correspond to the consistency 

condition of the original integral Eqs. (15a) and (15b). It may be also shown that the (  ⁄   )-th 

equations in (18a) and (21a) are automatically satisfied. Thus, Eqs. (18a), (18b), (21a) and (21b) 

give      algebraic equations to determine the      unknowns   (   ) and   (   ),   and 

(   )  The system of equations are linear   (   ) and   (   ), but highly nonlinear in   and 

(   ). Therefore, an interpolation and iteration scheme had to be used to obtain these two 

unknowns. 

 
 
5. Numerical results 
 

The resulting values are contact areas and contact pressures between two elastic layers and 

between the quarter planes and the lower layer for various dimensionless quantities, such as 

(   ⁄ ), (   )⁄ , (    )⁄ , (     ) and  (    )⁄ . 

In Table 1, the contact areas between two elastic layers (   ⁄ ) and between the lower layer 

and quarter planes ((   )   ⁄ )  are analyzed for quantities of the materials (      )  by 

depending on the various of value distance between the two quarter planes (   ⁄ ) . With 

increasing distance between the two quarter planes, the contact area between the elastic layers 

increases. On the contrary, contact area between the lower layer and the two quarter planes 

decreases. 

Table 2 shows the variation of size of the contact areas (   ⁄ ) and ((   )   ⁄ ) with (   ⁄ ) 
for various values of length of distributed load (   )⁄ . With increasing distance between the two 

quarter planes, the contact area between the elastic layers increases, but the contact area between 

the lower layer and the two quarter planes decreases. 
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Table 1 Variation of the contact areas (b/h2) and ((d−c)/h2) with quantities of the materials (κ2/κ3) depending 

on the distance between the two quarter planes (c/h2), (a/h2=0.5, a/h2=0.5, h1/h2=1, κ2=2, μ2/μ1=2) 

c/h2

 2 3     
2 3 2    

2 3 2.5    

2

b
h  

2

( )d c
h


 

2

b
h  

2

( )d c
h


 

2

b
h  

2

( )d c
h


 

0.01 1.224843 1.530731 1.28842 1.561148 1.328485 1.581076 

0.05 1.228639 1.485792 1.293031 1.516519 1.333523 1.536648 

0.1 1.234141 1.427584 1.299625 1.458815 1.340663 1.479264 

0.2 1.248 1.305697 1.315922 1.338231 1.358092 1.359496 

0.4 1.291107 1.052237 1.365116 1.08763 1.409706 1.110678 

0.5 1.323315 0.928894 1.401032 0.965228 1.446864 0.988867 

0.6 1.364811 0.813174 1.44656 0.84979 1.493538 0.873611 

0.75 1.447688 0.659903 1.535358 0.695553 1.583466 0.718774 

1 1.647764 0.46526 1.739802 0.496484 1.786203 0.516879 

 
Table 2 Variation of the contact areas (b/h2) and ((d−c)/h2) with length of distributed load (a/h2) depending 

on the distance between the two quarter planes (c/h2), (h1/h2=1, κ1= κ2= κ3=2, μ2/μ1=2, μ3/μ2=2) 

c/h2

 1.0/ 2 ha  5.0/ 2 ha  1/ 2 ha  

2

b
h  

2

( )d c
h


 

2

b
h  

2

( )d c
h


 

2

b
h  

2

( )d c
h


 

0.01 1.171683 1.485043 1.28842 1.561148 1.608344 1.800536 

0.05 1.177525 1.44125 1.293031 1.516519 1.609762 1.753812 

0.1 1.186085 1.384639 1.299625 1.458815 1.611512 1.693408 

0.2 1.20774 1.266621 1.315922 1.33823 1.615275 1.566558 

0.4 1.273267 1.024201 1.365116 1.08763 1.62786 1.295324 

0.5 1.319969 0.907778 1.401032 0.965228 1.639846 1.15673 

0.6 1.37774 0.799268 1.44656 0.849789 1.658122 1.021359 

0.75 1.48621 0.656007 1.535358 0.695553 1.701206 0.83324 

1 1.723954 0.427744 1.739802 0.496484 1.824652 0.581203 

 

  
a/h2=0.5, h1/h2=1, c/h2=0.5, μ2/μ1=2, κ1,2,3=2 a/h2=0.5, h1/h2=1, c/h2=0.5, μ2/μ1=2, κ1,2,3=2 

Fig. 2 The Contact pressure distribution between 

two layers with variation of elastic constants (μ3/μ2) 

Fig. 3 The Contact pressure distribution surfaces 

between the lower layer and quarter plane                   

with variation elastic constants (μ3/μ2) 
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a/h2=0.5, h1/h2=1, μ2/μ1=2, μ3/μ2=2, κ1,2,3=2 a/h2=0.5, h1/h2=1, μ2/μ1=2, μ3/μ2=2, κ1,2,3=2 

Fig. 4 The Contact pressure distribution between 

two layers with variation of the distance between 

two quarter planes (c/h2) 

Fig. 5 The Contact pressure distribution surfaces 

between the lower layer and quarter plane with 

variation the distance between two quarter planes 

(c/h2) 

 

  
a/h2=0.5, c/h2=0.5,  μ2/μ1=2, μ3/μ2=2, κ1,2,3=2 a/h2=0.5, c/h2=0.5,  μ2/μ1=2, μ3/μ2=2, κ1,2,3=2 

Fig. 6 Contact pressure distribution between two 

elastic layers with variation of (h1/h2) 

Fig. 7 Contact pressure distribution between the the 

lower layer and quarter plane with variation (h1/h2) 

 

 

Figs. 2 and 3 show   ( )   ⁄  and   ( )   ⁄  the dimensionless contact pressure distributions. In 

the event of increase lower layer and the quarter plane ratio shear modules, it is indicated that the 

contact pressure distributions at the contact surfaces between two elastic layers and between the 

lower layer and quarter plane increase. 

The contact pressure distributions for various values of  (   ⁄ ) are shown in Figs. 4 and 5. 

With increasing distance between the two quarter planes, the contact pressure   ( )   ⁄  decreases. 

On the contrary, the contact pressure   ( )   ⁄  increases.   

As seen in Fig. 6, the contact pressure   ( )   ⁄  decreases with increasing of     ⁄  and in Fig. 

7, the contact pressure   ( )   ⁄  increases with increasing of     ⁄ . 
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6. Conclusions 
  

In this paper, the receding contact problem for two elastic layers whose elastic constants and 

heights are different and supported by two elastic quarter planes is considered. Dimensionless 

pressures distribution between two elastic layers   ( )   ⁄  and between the quarter planes and the 

lower layer   ( )   ⁄  and contact areas (   )⁄  and ((   )   )⁄  are investigated for various 

dimensionless quantities, such as    ⁄ ,    ⁄ , (     ),      ⁄  and      ⁄  . 

• With increasing distance between the two quarter planes, the contact area between the elastic 

layers increases. On the contrary, the contact area between the lower layer and the two quarter 

planes decrease. 

• The size of contact areas (   )⁄  and ((   )   )⁄  decrease depending on increasing     ⁄ . 

• As it can be seen in the figures that increasing thickness of upper layer, contact pressure 

along to contact area between two elastic layers decreases, but contact pressure along to contact 

area the lower layer and quarter plane increases. 

• The size of contact areas increase depending on increasing of the length of distributed load. 
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Notations 
 

The following symbols are used in this paper: 

, , ,i i i iA B C D

 

: Coefficients, 

a

 

: Length of distributed load, 

ih

 

: Thickness of layer 1 2( )h h h   

0
p

 

: Distributed load, 

1 2
( ), ( )p x p x

 

: Contact pressures, 
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,i iu v

 

: Displacement components in cartesian coordinates, 

,ru u
 

: Displacement components in polar coordinates, 

, ,x y xy  

 

: Stress components in Cartesian coordinates, 

, ,r r   

 

: Stress components in polar coordinates, 

,x y

 

: Cartesian coordinates, 

,r 

 

: Polar coordinates, 

,i i 

 

: Elasticity constants, 

i

 

: Material constants, 

c

 

: Distance between the quarter planes, 

, ( )b d c

 

: Contact areas. 
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Appendix A. 
 

 1 1 14 4 2 1
11 1 1 1 1 1 1

10

12 1 1
( , ) ( 1 4 )(1 ) sin

2 2

h h hm
M x t e e h e t x d

K

   
   



     
                   


 

(A1) 

 2 2 24 4 2 2
11 1 1 2 1 1 1

20

12 1 1
( , ) ( 1 4 )(1 ) sin

2 2

h h hm
R x t e e h e t x d

K m

   
   



     
                    


 (A2) 

      2 23 2

12 1 2 2 2 2 2 2

20

2 1
( , ) 1 (1 ) 1 sin cos

2

h hm
R x t e h e h x t d

K

      


    
              


 (A3) 

   
 

1 13 2

1 1 1

10

sin4 1
( ) ( 1 (1 )(1 ) sinh h am

M x e h e h x d
K

  
    





  
            


      

(A4) 

    2 23 2

21 2 1 2 2 2 1 2

2 20

2 1
( , ) ( 1 (1 )) 1 sin

1

h hm
M x t e h e h t x d     





   
          

    


   

(A5) 

 

   

2 24 2 2
22 2 2 2 2 2

2 20

2 2

12 1
( , ) ( 1 4 4 ) 1

1 2 2

sin cos

h hm
M x t e h h e

x t dz

  
  



 



     
            

        


      

(A6) 

 

2

2
2

22 2 2 2 2
2 2 20 2

log
1

( , ) 1
1 2 ( ) 4

t c
sin y

x csinh y
k x t dy

t x cosh y y x c x c

 

 



 
 

       
      


     

(A7) 

 

The expressions for       and   from Eqs. (A1)-(A7) 

 1 14 2 2 2

1 11 2 1 2h he e h         
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
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