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Abstract.  The current paper presents the numerical blind prediction of nonlinear seismic response of two 
full-scale, three dimensional, one-story reinforced concrete structures subjected to bidirectional earthquake 
simulations on shaking table. Simulations were carried out at the laboratories of LNEC (Laboratorio 
Nacional de Engenharia Civil) in Lisbon, Portugal. The study was motivated by participation in the blind 
prediction contest of shaking table tests, organized by the challenge committee of the 15th World 
Conference on Earthquake Engineering. The test specimens, geometrically identical, designed for low and 
high ductility levels, were subjected to subsequent earthquake motions of increasing intensity. Three 
dimensional nonlinear analytical models were implemented and subjected to the input base motions. 
Reasonably accurate reproduction of the measured displacement response was obtained through appropriate 
modeling. The goodness of fit between analytical and measured results depended on the details of the 
analytical models. 
 

Keywords:  reinforced concrete structures; shaking table test; blind prediction; nonlinear modeling; 

numerical simulation; Opensees 

 
 
1. Introduction 

 

Empirical evidence provides a basis for judging the accuracy of modeling assumptions that are 

used in simulation of the actual response of reinforced concrete (RC) structures. The most realistic 

method for verifying these assumptions is the dynamic testing of full-scale structures. In this 

context, shaking table is a good tool for experimental testing and understanding the seismic 

behavior of RC structures. Several benchmark shaking table tests (e.g., Kabeyasawa et al. 2012, 

Panagiotou et al. 2012, Bayhan et al. 2013, Peloso et al. 2012, Gallo et al. 2012) for seismic 

assessment and rehabilitation of RC structures have been carried out in many facilities worldwide 

(e.g., NIED E-Defense Laboratory in Miki City, Japan; LHPO Shake Table, UC San Diego in 

USA; NCREE in Taiwan; EUCENTRE Trees Lab in Italy; Structural Laboratory of the University 

of Canterbury in New Zealand). However, shaking table tests including bidirectional dynamic 

loading of full-scale, three dimensional RC structures are scarce.  

This study was motivated by participation in a blind prediction contest that was organized by 

the challenge committee of the 15th World Conference on Earthquake Engineering (15WCEE).  
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(a) (b) 

Fig. 1 (a) Overall geometry of the structures and (b) additional weight on the slab. All dimensions are 

m. Adapted from the LNEC Team report, 2012 

 

 

The challenge among the participants was to simulate the dynamic response of two full-scale, three 

dimensional, one-story, one-bay RC structures designed for different ductility levels. The 

structures were tested on the LNEC (Laboratorio Nacional de Engenharia Civil) shaking table in 

the Earthquake Engineering and Structural Dynamics Division (NESDE), Portugal. The 15WCEE 

challenge committee provided the participants with the requisite drawings, material and geometric 

properties of the specimens (LNEC Team report 2012) and input table motion records. The results 

were requested before the shaking table tests were conducted. The objective of the contest with a 

“real” blind prediction test was to obtain reliable results through comparison of blind predictions 

with the experimental results. Thus, reliable evaluation of seismic response of RC structures could 

be based on the current state of knowledge, experimental and analytical research and engineering 

judgments. 

In this paper, it is intended to show that a good prediction of seismic response of a full-scale, 

three dimensional, RC structure can be obtained through appropriate modeling and computing 

techniques with reference to the shaking table tests and blind prediction results. 

 

 

2. Description of the physical models 
 

The test specimens are RC frame structures with four columns, four beams and a slab (Fig. 

1(a)). The height of the structure including abutment is 3.4 m. The bay lengths are 3.5 m and 4 m 

in orthogonal directions. The slab, 3.5 m by 2 m. in plan, with a thickness of 10 cm, does not cover 

the entire span in one direction, as shown in Fig. 1(a). Nine additional weights, each of which is 12 

KN, were placed on the half-slab as shown in Fig. 1(b). 

The test specimens are identical in geometry, but were constructed with different steel 

reinforcement details in order to obtain different ductility levels according to the Eurocode8 (2004) 

provisions. For reference in this paper, the specimens are identified by their ductility levels. Thus, 

specimen LD represents the structure designed for low ductility level whereas specimen HD stands 

for the structure designed for high ductility level. Reinforcement details of the test structures with 

different ductility levels are presented through Figs. 2-5. 
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Fig. 2 Elevation view of specimen LD. All dimensions are m (adapted from the LNEC Team report, 2012) 

 

 

Fig. 3 Elevation view of specimen HD. Dimensions are m (adapted from the LNEC Team report, 2012) 

 
 
2.1 Identical design features of specimens LD and HD 
 
The specimens LD and HD are identical in the followings aspects: (i) beams are cast 

monolithic with the half-slab; (ii) columns are fixed at the base and reinforced with continuous 

longitudinal bars (without splices) resulting in total longitudinal reinforcement ratio of 0.016; (iii) 
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Fig. 4 Reinforcement details of specimen LD. All dimensions are cm (adapted from the LNEC Team 

report, 2012) 

 

 

Fig. 5 Reinforcement details of specimen HD. All dimensions are cm (adapted from the LNEC Team 

report, 2012) 

 
 

all transverse bars within the beams, columns and footings have 135° end hooks and (iv) the 

concrete cover over the transverse reinforcement is 20 mm; (v) mean measured compressive 

strength of concrete cubes (150 mm side length) for the footings/piers and for the beams/slabs 

were 35.6 and 30 MPa, respectively and (vi) deformed longitudinal and transverse reinforcement 

were used in the specimens. The material properties of the reinforcing steel and concrete are given 

in Table 1. 

 

2.2 Dissimilar design features of specimens LD and HD 
 
The main differences between the specimens are the configuration of beam longitudinal 

 

 

154



 

 

 

 

 

 

Numerical simulation of shaking table tests on 3D reinforced concrete structures  

 

 

Table 1 Mean measured compressive strength of concrete samples and reinforcing steel properties  

Concrete 

Mean compressive 

strength of cubical 

concrete samples, MPa 

Equivalent 

cylinder 

strength, MPa 
Steel 

Mean yield tensile 

strength, MPa 

Ultimate 

strength, MPa 

fcm 
 

fcm  fym  fum  

Footings 

& Piers 
35.6 1.4 29.7 1.1 

8mm 561 4.0 654 1.2 

10mm 559 3.6 632 2.1 

Beams    

& Slabs 
30 0.1 25 0.0 

12mm 566 5.3 630 3.1 

*σ: Standard deviation (measured values were obtained from the LNEC Team report, 2012) 

 

 

reinforcement, anchorage of beam bottom reinforcement in the beam-column joints and transverse 

reinforcement ratios of the beams and columns. These dissimilarities are detailed in the following 

sections. 

 

2.2.1 Specimen LD 
Beam bottom reinforcement of specimen LD was anchored in the corner joints by hooks having 

tails extending 27 cm up in the joint while top reinforcement was anchored in the joint extending 

30 cm in the column (Fig. 4). The provided transverse reinforcement ratio, ρ”, for all beams was 

0.0025 (ρ” = Ast/bs where Ast is the area of transverse reinforcement parallel to the plane of the 

frame with spacing s, and b is the beam width) in the mid-span with a spacing of b and 0.0050 in 

the confined regions with a spacing of 0.50b. The provided transverse reinforcement ratio for all 

columns was 0.0033 in both mid-span and confined regions with a spacing of 0.75b, thus showing 

that no confined regions at column ends were considered in the design of specimen LD. 

 
2.2.2 Specimen HD 
Beam bottom reinforcement of specimen HD was anchored in the corner joints by hooks 

having tails extending toward the joint mid-height while top reinforcement was anchored in the 

joint extending 30 cm in the column (Fig. 5). Top and bottom reinforcements are inclined with 30 

degrees starting 10 cm distance from the column surface. Four additional longitudinal 

reinforcement bars extend from the joint to the beam along a distance of 100 cm. The provided 

transverse reinforcement ratio for all beams was 0.005 in the mid-span with a spacing of 0.5b and 

0.02 in the confined regions with a spacing of 0.25b. The transverse reinforcement ratio for all 

columns was 0.0057 in the mid-span with a spacing of 0.75b and 0.0172 in the confined regions 

with a spacing of 0.25b. 

 

2.3 Test setup 
 
The specimens were cast in-situ in two distinct phases. In the first phase, the footings and piers 

were cast together. Then, beams and slab were cast in the second phase. The concreting joint was 

set at 30 cm below the lower face of the beams. An epoxy connector was used to join the hardened 

concrete from the first cast, already with 8 days of age, with the second concreting phase concrete. 

Fig. 6 shows the general view of the test setup. 
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Fig. 6 General view of the test setup (adapted from the LNEC Team report, 2012) 

 

 

Fig. 7 Base acceleration histories for the Reference test recorded on the shaking table in each 

orthogonal direction 

 

 

Fig. 8 Linear response spectra (5% damping) for the four base motions recorded on the shaking table 

and the EC8 standard format, in each orthogonal direction 

 
 
2.4 Input base motions 
 
Input base motions, imposed by the shaking table are synthetic time series. These are generated 

from the two horizontal orthogonal components of a real strong motion signal, recorded during the 

Great East Japan (Tohuku) Earthquake and Tsunami (November 11th, 2011) and they are 

compatible with the Eurocode-8 (2004) standard elastic response spectra format. Four target 

motions with increasing intensity levels (low, medium, reference and high) are generated for each 

orthogonal component and applied to the specimens subsequentially. These are; 
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LOW : Corresponding to 20% of the target intensity level,   (PGAX=0.05g; PGAY=0.05g) 

MED : Corresponding to 70% of the target intensity level,   (PGAX =0.19g; PGAY =0.16g) 

REF : Corresponding to 100% of the target intensity level,  (PGAX =0.27g; PGAY =0.25g) 

HIGH : Corresponding to 200% of the target intensity level,  (PGAX =0.53g; PGAY =0.50g) 

Here, the target intensity level corresponds to the table motion that was applied during the 

“Reference” test in which the structure is expected to yield. PGAX and PGAY are measured peak 

table accelerations in horizontal X and Y directions, respectively. The input table motion recorded 

during the Reference test is depicted in Fig. 7 for each orthogonal direction. Fig.8 shows linear 

response spectra (5% damping) for each of the four motions compared to the Eurocode 8 (2004) 

standard format. 

 

 

3. Description of the analytical models 

 

Two analytical models were developed before the shaking table tests were conducted. Hence, a 

“blind” comparison of the measured and calculated results was provided. Analytical models were 

implemented in the software platform Opensees (2005) based on the 15WCEE challenge 

organization report (LNEC Team, 2012) including as-built geometrical and material properties of 

the test structures. The models introduce nonlinear beam-column elements for the columns. Linear 

and nonlinear flexural deformations of the columns are represented by single force based, fiber 

nonlinear beam-column elements with five integration points, assuming that plane sections remain 

plane and normal to the longitudinal axis at each integration point. Spread of plasticity is modeled 

using the Gaus-Loabatto quadrature rule through the element. Further details about the nonlinear 

fiber beam-column elements can be found in Spacone et al. (1996a, b). Beams are represented 

through linear elements with effective stiffness based on moment-curvature analyses. 

Realistic simulation of the connections is crucial in modeling strategy, in order to obtain 

reasonable results for the natural frequencies of the test structures (Kazaz et al. 2006). Hence, 

elastic rotational springs, representing flexibility due to slip of the reinforcing bars from the beams 

and footings were located at top and bottom of each element. Shear deformations in beam-column 

connections were modeled explicitly through a relatively simple nonlinear joint model including 

rotational springs. 

The calculated masses and mass moment of inertias were introduced to the model at specified 

nodes and rigid diaphragm was assigned for the half-slab with constraints. Gravity loads were 

assigned to the frame elements. The total weight of the structure was calculated as 160 kN 

including the additional weight of 120 kN on the slab. The additional weights were included in the 

model as lumped masses at the mass centers on the slab. The axial load on columns B and C are 57 

kN and 23 kN, respectively; concluding with an axial load ratio of 0.048 fc'Ag and 0.02 fc'Ag 

(Because of symmetry about the Y-axis, columns A and D are the same with the columns B and C, 

respectively; see Fig. 1(a)). 

The force-deformation relationships assumed for concrete, steel and linear slip springs are 

shown in Fig. 9. Unconfined and confined concrete were modeled using the stress-strain model of 

Mander et al. (1998) without considering the tensile strength of concrete. The confined concrete 

strength was calculated as 34.2 MPa and 51.9 MPa for the columns of specimens LD and HD, 

respectively. In order to prevent localization of curvatures in the force-based elements (Coleman 

and Spacone 2001), spalling of cover concrete was ignored in the stress-strain relationship of 

unconfined concrete. Longitudinal reinforcement was modeled using discrete elements and a  
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Fig. 9 Force-deformation relationships used in the analytical models: (a) confined concrete core in 

columns of specimen LD, (b) unconfined concrete without spalling, (c) Hysteretic steel model (d) 

Moment-rotation relationship for the elastic slip springs located at the ends of columns 

 

 

Fig. 10 Floor plan, location of the additional weights and reference nodes A, B, C and D (adapted 

from the LNEC Team report, 2012) 

 

 

hysteretic material (uniaxialMaterial Hysteretic) readily available in Opensees (2005). It provides 

a tri-linear backbone for the stress-strain curve where the initial slope is the modulus of elasticity, 

and the slope after the yield plateau is the strain hardening modulus. 

For reference in this paper, columns and beam-column joints are identified with the letters; thus 

beam-column joint A is the joint immediately above column A. Since the structures are symmetric 

with respect to the Y-axis, only the elements connecting to the nodes B and C will be described 

after herein (Fig. 10). 
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Table 2 Flexural strength ratios of columns to the beams connecting to joints B and C, considering negative 

and positive moment capacities of the beams. (e.g., flexural strength ratio of Col B to the negative flexural 

strength of Beam BC is 0.31) 

(Mu)col/ 

(Mu)beam 

Beam BC 

(+) 

Beam 

BC (-) 

Beam 

BA (+) 

Beam 

BA (-) 

Beam 

CB (+) 

Beam 

CB (-) 

Beam 

CD (+) 

Beam  

CD (-) 

Col B 0.60 0.31 0.60 0.32  

Col C  0.63 0.60 0.63 0.60 

 
 
3.1 Flexural capacity ratios of the structural members and strong-column/weak-beam 

check 
 
The flexural capacity ratios of the columns to those of beams were calculated in order to 

determine whether the test structures are weak-column/strong-beam or strong-column/weak-beam 

systems. In the light of such control, simplifications in the implementation of structural elements 

to the analytical models can be made, accordingly (e.g., linear elements with effective stiffness can 

be used for the beam elements if the strong-beam-weak-column mechanism exists).  

In calculation of flexural strength ratios, it is essential that flexural stiffness and strength of 

beams and columns be estimated accurately since with an inappropriate simulation and prediction, 

mechanism might not be reflected correctly in the analytical model. Hence, contribution of slab to 

the flexural stiffness and strength of beams have been taken into account where the beams are cast 

monolithically with slab (beams connecting to joints A and B). The effective flange width was 

calculated according to the recommendations of ACI-352 (2012) and Eurocode-8 (2004) which 

result in the same value. These recommendations assure an additional width of 400 mm for the L 

shaped beams that were considered in the analytical models. Table 2 shows the calculated flexural 

strength ratios at beam-column joints of both structures considering the positive and negative 

directions. The values are approximately the same for specimens LD and HD since the columns of 

both test structures are identical except for the transverse bar configuration and are subjected to 

low level axial load. The results indicate that a strong-beam/weak-column mechanism including 

flexural yielding at the base of columns is expected to occur in both structures. The failure type of 

columns and capacities of the beam-column joints are investigated separately, in the following 

sections. 

 

3.2 Failure type of columns 
 

The analytical models should be capable of capturing different failure modes of the columns 

such as shear and axial load failures if they occur during the shaking table tests. Hence the 

columns were investigated if they are flexure, shear, or flexure-shear critical through comparison 

of their plastic shear demand (Vp) with the initial nominal shear strength (Vn). The plastic shear 

demand (Vp) of the column here, is the sum of the ultimate moment strengths of columns divided 

by the column length and Vn is calculated by the given formulation in ASCE41 (2008) 

g

g

'

c

'

cyv

csn A8.0
Af5.0

P
1

Vd/M

f5.0
k

s

dfA
kVVV  

              

(1) 

where Av is the area of shear reinforcement within a distance s, fy is the yield strength of  
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Table 3 The ratios of the plastic shear demand (Vp) on the columns to the initial nominal shear strength (Vn) 

 Specimen LD Specimen HD 

 Col B Col C Col B Col C 

Vp (kN) 23.5 23.1 23.5 23.1 

Vn (kN) 73.4 72 320.9 319.4 

Vp / Vn 0.32 0.32 0.07 0.07 

 
 

reinforcement, d is the distance from extreme compression fiber to the centroid of longitudinal 

tension reinforcement, fc' is the compressive strength of concrete and, λ is taken as 1.0 for normal 

weight concrete, k is assumed 1 in regions where displacement ductility is less than or equal to 2, 

M/Vd is the largest ratio of moment to shear times effective depth under design loadings and shall 

not be taken greater than 4 nor less than 2, P is the axial compressive force and Ag is the gross 

sectional area of the column. 

In Table 3, the ratios of the plastic shear demand (Vp) on the columns to the initial nominal 

shear strength (Vn) were estimated to be 0.32 and 0.07 for the columns of both structures. This 

indicates that the columns would be governed by flexural yielding based on ASCE41 (2008) 

definition of “flexure columns”, hence simulation of axial and shear failures of the columns are not 

required in the analytical models. Since the design of the test structures were made by the research 

staff of the challenge organization and the classification of the columns in this study are based on 

different assumptions and calculations, the columns of the test structure designed for low-ductility 

are classified as flexure-type. 

 

3.3 Capacity and demand prediction of the beam-column connections 
 

Shear demand on the beam-column joints is expected to be controlled by the flexural strength 

of the columns because weak-column/strong-beam mechanism exists in the structures. Joint shear 

demand (Vu) is estimated based on the column flexural tension and compression forces when the 

column develops nominal flexural strength below the joint as follows 

c

c
u

u
jd

M
V                                 (2) 

where Mu
c
 is nominal flexural strength and jdc is internal moment arm of the column (assumed 

constant throughout the test). According to ASCE-41 (2008), joint nominal shear strength (Vn) is 

j
'
cn Af083.0V    (MPa)                       (3) 

where Aj is the joint area and  is a coefficient depending on joint geometry. Considering corner 

joints with discontinuous columns and provided transverse reinforcement,  is taken as 8 for 

structure HD following the ASCE-41 (2008) recommendations. Since beam-column joints of 

structure LD has inadequate transverse reinforcement, linear interpolation was performed between 

the recommended values for non-conforming and conforming conditions of ASCE-41 (2008)  

and  was calculated to be 6 for structure LD. Here, conforming stands for the case if hoops are 

spaced at hc/2 within the joint. Otherwise the transverse reinforcement is considered 

nonconforming. 
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Table 4 Calculated joint shear strengths (Vn) and probable demand (Vu) values 

 Specimen LD Specimen HD 

 Col B Col C Col B Col C 

Vn (kN) 99.6 99.6 132.8 132.8 

Vu (kN) 95.4 93.7 95.4 93.7 

 

 

Fig. 11 Internal forces in knee joints: (a) Opening moment (b) Closing moment 

 

 

The shear strengths of the joints (Vn) were calculated based on Eq. (3) and the mean values of 

compressive strength of concrete obtained from the tested specimens. Joint shear demands (Vu) 

were calculated to be very close to the joint shear strengths (Vn) for specimen LD while they are 

below the joint shear strengths (Vn) for specimen HD. Although the joint shear deformations are 

expected to occur in the effectively linear range for both structures, those in structure LD would be 

expected to be higher (Table 4). 

 
3.4 Simulation of the joint shear deformations 
 
In order to simulate joint shear deformations, a relatively simple analytical representation 

proposed by Alath and Kunnath (1995) was implemented. The finite size of the joint panel is 

modeled by two rigid links interconnected by an inelastic rotational spring. When the spring is 

subjected to moment, the rigid links rotate relatively one to another at an angle that represents 

shear distortion of the beam-column joint. In corner joints with discontinuous columns (knee 

joints), column axial force (NC) and beam shear force (VB) are in equilibrium and their directions 

change according with the direction of the excitation; under opening or closing moments as shown 

in Fig. 11. 

Following relations between moment Mj at the center of the corner joint and the nominal joint 

shear stress jv are obtained for negative and positive moment cases, with the consideration of knee 

joint and weak-column/strong-beam cases (plastic hinge assumption on the column outside the 

joint) 

C

CB
jvjvgsinclo,j

jd

L/h1

1
AM


                           (4) 
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Fig. 12 Pinching4 hysteretic material-uniaxial material model proposed by Lowes and Altoontash 

(2003) and implemented in OpenSees (2005). For details please refer to these references 

 

 

BC

CB
jvjvopening,j

L

2

jd

L/h1

1
AM




                         (5) 

where nominal joint shear stress jv and joint area Ajv are calculated according to ACI-318 (2011), 

hB is the beam depth, LB and LC are the total length of the beam and column, respectively. Eqs. (4)-

(5) can be derived by substitution of the formulations in Walker (2001) and FIB (2003) 

considering the case of corner beam-column connection with discontinuous column. 

The relative rotation of the two rigid links in the scissors model represents the change in angle 

between two adjacent edges of the panel zone assumed to exist in the beam-column connection. 

Thus, rotation (j) of the spring equals the joint shear strain (j), that is 

   jj    (6)
 

Pinching4 hysteretic material, a uniaxial material model proposed by Lowes and Altoontash 

(2003) and implemented in OpenSees (2005), was used to model the hysteretic behavior of the 

rotational joint spring. As it is shown in Fig. 12, it has a multi-linear envelope exhibiting 

degradation and a tri-linear unloading-reloading path representing a pinched hysteresis. The reader 

is referred to Lowes and Altoontash (2003) and command manual of Opensees (2005) for further 

details. The moment-rotation envelope relationship for pinching4 material was constructed based 

on Eqs. (4)-(5) and laboratory test no:2 reported by Pantelides et al. (2002). This test data was 

selected from among other test data because the tested joints were deemed most similar to those in 

the shaking table specimen; the beam bottom bars were continuous and axial load level in the joint 

was 0.1fc'Ag. However, in the tests of Pantelides et al. (2002), it is noted that the columns were 

continuous and stronger than the beams (contrary to the shaking table specimen).    

 

3.5 Simulation of reinforcement slip from anchorages 
 
Elastic rotational springs were included in the analytical models, in order to represent rigid 

body rotations associated with reinforcement slip from adjacent anchorages. Hence zero-length  

  load ((dmax, f(dmax)) (ePd3, ePf3) 
(ePd2, ePf2) 

(ePd1, ePf1) 
((rDispP.dmax, rForceP.f(dmax)) 

(ePd4, ePf4) 

deformation 
 (* , uForceN.eNf3) 

((rDispN.dmin, rForceN.f(dmin)) 

(eNd1, eNf1) 

(eNd2, eNf2) 
((dmin, f(dmin)) 

(eNd3, eNf3) 

(eNd4, eNf4) 

 (* , uForceP.ePf3) 
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Fig. 13 Analytical model of the specimens 

 

 

element at the top and bottom of each beam-column element is defined by two nodes that are at the 

same location. The nodes are connected by elastic rotational slip springs. Fig. 13 shows the layout 

of the nodes and elements defined in the models. 

The rotational stiffness of the slip springs, kslip, was calculated by assuming a constant bond 

stress of
'83.0 cfu  MPa (Sozen and Moehle 1990) along the column longitudinal bars within the 

footings and the beam-column joints until the calculated stress drops to zero, estimating bar slip as 

the total elongation of the bar along this stressed anchorage length, and assuming section rotation 

occurs about the neutral axis of the cracked section. With these assumptions, the rotational spring 

stiffness (Elwood and Eberhard 2009) is 

flex

yby

004.0

yb

slip EI
fd

u8M

fd

u8
k 


                        

(7) 

where db is the nominal diameter of the longitudinal reinforcement, EIflex is the effective flexural 

rigidity obtained from a moment-curvature analysis of the column section and fy is the yield stress 

of the longitudinal reinforcement. 

 

 

4. Analysis of the shaking table tests 

 
In this study only the “blind” results (without the knowledge of the measured response) that 

came out the 2
nd

 among the 38 participants in the 15WCEE blind test contest, are presented. It is 

possible to obtain improved correlation by “tuning” the model; however, it is not pursued in this 

study to objectively evaluate the accuracy of existing procedures. The available post-contest 

results included the top displacements of the structures relative to the shaking table that were 

measured in two control points A and B. These control points were located at the slab-top-face, 

along the column axes (Fig. 10). Thus, these limited data are utilized as effectively as possible. 

First, gravity loads were applied in the static analyses, followed by the dynamic analyses of the  
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Table 5 Root-mean-square error of the differences (eRMS) of measured and computed relative displacement 

response at nodes A and B  

Test 

Intensity 

Level 

eRMS (mm) 

Specimen LD Specimen HD 

Node A Node B Node A Node B 

X dir. Y dir. X dir. Y dir. X dir. Y dir. X dir. Y dir. 

Low 3.4 2.7 3.5 2.9 3.7 2.7 3.7 3.1 

Medium 14.5 7.2 14.6 8.5 6.4 8.1 6.4 8.7 

Reference 8.4 5.3 8.5 6.7 10.8 9.5 10.6 9.6 

High 28.1 18.6 27.7 22.1 13.3 14.2 13.0 14.8 

 

 

models. Numerical response simulations were conducted by subjecting the analytical models 

sequentially to the four measured shaking table motions, with concatenation of acceleration 

records from low to high intensity levels. Newmark time integration method was used with the 

parameters (=0.25, 0.5expressing the constant average acceleration strategy. Time step is 

equal to t=0.005 s. The Newton-Raphson method was used to solve the equations of motion at 

each time step. The convergence of the algorithm was based on the displacement increment. When 

the Newton method failed to converge at any time step, modified Newton algorithm was utilized. 

The equivalent viscous damping value was assumed to be approximately 3% of critical based on 

author’s previous studies (Bayhan et al. 2013, Yavari et al. 2010), concerning bare reinforced 

concrete frames tested on the shaking table. Hence, Rayleigh damping was introduced to the 

models through mass and stiffness-proportional coefficients resulting in 3% damping for the first 

and third modes and 100% mass participation was achieved. P-delta effects were considered in the 

analyses. 

 

4.1 Comparison of analysis results with the test data: blind prediction 
 
The accuracy of the numerical prediction of the seismic response was evaluated based on root-

mean-square (RMS) error. RMS error value is generally used to distinguish between different 

model performances. Here, it represents the residuals or differences between the measured and 

predicted displacement time series and aggregates them into a single measure of predictive power. 

With a single value, it provides information about the goodness of fit between the measured and 

predicted response histories .The displacement response was obtained from two control nodes A 

and B, for each orthogonal direction, X and Y (Fig. 10). The formula to calculate the errorRMS 

(eRMS) is as follows 




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1
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1
error

 

      (8) 

In Eq. (8), comi and meai stands for the computed and measured relative displacements at each 

step, respectively. N is the number of time steps. AX, AY, BX and BY correspond to the relative 

displacements of nodes A and B in global X and Y directions, respectively. The RMS error values  
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Fig. 14 Measured and calculated relative displacement response histories of Nodes A and B in 

orthogonal directions – specimen designed for low ductility (LD) - Reference test 

 

 

Fig. 15 Measured and calculated relative displacement response histories of Nodes A and B in 

orthogonal directions – specimen designed for high ductility (HD) - Reference test 
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Table 6 Measured and calculated absolute max. displacements at nodes A and B for each orthogonal 

directions (X and Y). All displacements are measured relative to the base. Errors are calculated as the 

absolute value of (calculated-measured)/measured for each quantity 

Shaking 

Table 

Test 

Intensity 

Level 

Specimen LD Specimen HD 

Node A, Disp. (mm) Node B, Disp. (mm) Node A, Disp. (mm) Node B, Disp. (mm) 

X dir. Y dir. X dir. Y dir. X dir. Y dir. X dir. Y dir. 

Me

a
* 

Ca

l
* 

Me

a 

Ca

l 

Me

a 

Ca

l 

Me

a 

Ca

l 

Me

a 

Ca

l 

Me

a 

Ca

l 

Me

a 

Ca

l 

Me

a 

Ca

l Low 11.

4 
9.0 6.0 7.6 11.

6 
9.0 8.0 8.3 8.6 10.

5 
5.7 8.6 8.5 10.

5 
7.9 10.

4 Error_L

ow (%) 
21.6 26.9 22.4 4.8 23.1 50.7 24.3 32.0 

Medium 42.

1 

41.

5 

34.

8 

31.

0 

41.

4 

41.

5 

48.

2 

42.

4 

40.

4 

40.

6 

28.

8 

35.

0 

39.

6 

40.

6 

34.

4 

40.

2 Error_M

ed (%) 
1.3 10.9 0.3 12.0 0.5 21.3 2.5 16.7 

Referenc

e 

54.

4 

52.

5 

36.

9 

43.

4 

54.

1 

52.

5 

51.

2 

49.

3 

58.

5 

50.

3 

57.

5 

47.

3 

57.

4 

50.

3 

62.

0 

56.

3 Error_R

ef (%) 
3.5 17.6 3.0 3.7 13.9 17.7 12.3 9.2 

High 125

.5 

79.

5 

90.

5 

71.

7 

122

.0 

79.

5 

122

.0 

92.

0 

96.

0 

81.

2 

77.

1 

74.

2 

93.

5 

81.

2 

96.

5 

95.

9 Error_H

igh (%) 
36.7 20.8 34.8 24.6 15.4 3.7 13.2 0.6 

*Mea: measured; Cal: calculated. 

 

 

obtained for each test are given in Table 5. The results are reasonably well with the exception of 

those provided for the response of specimen LD, during the test with high intensity level.  

Figs. 14-15 show the comparison of measured and calculated relative displacements for 

specimens LD and HD, respectively; during the test with reference intensity level. The analytical 

results closely follow the measured displacement histories from the beginning of the test through 

the time that maximum table accelerations in X and Y directions hit the structures (around 15.4 s 

and 18.5 s, respectively), with poorer correlation in the subsequent response. 

The absolute values of peak relative displacements measured and computed at nodes A and B 

of specimen LD and HD are compared in Table 6, for each input table motion, in each orthogonal 

direction. The percentage errors are also given in order to assess the accuracy of the prediction. 

The analytical results of specimen HD match the measured peak results fairly well for the medium, 

reference and high intensity levels. The results of specimen LD match the measured peak results 

fairly well for the medium and reference intensity levels; however, the values are consistently 

underestimated for the high intensity level. The errors increase as inelasticity level and cumulative 

damage increase. The assumptions for modeling joint flexibility and use of linear slip springs in 

the analytical model of specimen LD might have been the reason for why the measured peak 

displacements were not well predicted for the test with high intensity level. Parametric study on 

shear force-deformation model of beam-column joints could be conducted and slip springs could 

be improved with nonlinear models. More refined models likely could be developed by “tuning” 

the models to obtain improved correlation, such as development of such “tuned” models, however, 

is not pursued in this study.  

Fig. 16 shows the calculated force-deformation envelope and simulated hysteretic response of 

beam-column connection B during the tests. The deformations occur in the effectively linear range 

during the tests as it was estimated in the preceding sections. Although consideration of joint shear 

deformations in the analyses was not expected to have a noticeable impact on the prediction of 

dynamic response, it decreases the RMS error between the measured and predicted relative 

displacement response by a ratio of 3%, for specimen LD. 
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Fig. 16 Calculated moment-rotation hysteresis of the beam-column joint B, representative of shear 

force- deformation at the joint 

 

 

Fig. 17 Measured and calculated (Specimen LD) relative displacement response histories for each 

shaking table test (with increasing intensity levels from low to high). Texp and Tcal are the estimated 

effective periods as the time between zero crossings 

 
 
4.2 Further analysis using the experimental and analytical results 
 
The accuracy of the displacement responses of the analytical models has been proved but with 

the available data (only the top displacement histories have been released by the challenge 

organization), it is not possible to come to any definite result, whether on the global damage state 

of the structures or in which tests the structures were in linear or nonlinear ranges. Nevertheless, a 

tentative conclusion can be drawn from the available experimental and analytical results. 

In order to estimate the probable damage that occurred in the specimens during the four tests 

and assess the capability of corresponding analytical models, elongation in the effective periods of 

the test structures and their numerical models are investigated comparatively. Hence, the effective 
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Fig. 18 Measured and calculated (Specimen HD) relative displacement response histories for each 

shaking table test (with increasing intensity levels from low to high). Texp and Tcal are the estimated 

effective periods as the time between zero crossings 

 

 

Fig. 19 Relation between peak base shear and peak displacement calculated at node B for (a) X and 

(b) Y directions. Peak quantities are the maximum absolute values of the respective quantities 

calculated during the tests with low, medium, reference and high intensity levels 

 
 

periods were estimated as the time between zero crossings in Figs. 17-18.  

The vibration periods of the numerical models matched the apparent periods in most of the 

tests. Figs. 17(a) and 18(a) indicate that the periods of vibration of the test structures estimated 

from the “measured” data are approximately 0.44 s and 0.47 s for specimens LD and HD, 
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respectively. They elongated to 1.03 and 0.98 s at the end of the tests (Figs. 17(d) and 18(d)), 

suggesting that the effective flexibility of the structures had increased by factors of 

(1.01/0.44)
2
=5.3 and (0.87/0.47)

2
=3.4, respectively. The periods of vibration of the specimens 

estimated from the “calculated” data are approximately 0.48 s and 0.52 s (Figs. 17(a) and 18(a)) 

for specimens LD and HD, respectively. They elongated to 0.98 s and 0.87 s at the end of the tests 

with high intensity level (Figs. 17(d) and 18(d)), suggesting that the effective flexibility of the 

structures had increased by factors of (0.98/0.48)
2
=4.2 and (0.87/0.52)

2
=2.8, respectively. This 

shows that the numerical models capture the significant elongation in periods of the specimens 

fairly well. The difference between the factors estimated from the measured and calculated data is 

mainly due to the error in estimation of the measured initial periods of the structures (Figs. 17(a) 

and 18(a)). 

Relation between the peak base-shear and the peak displacement demand was investigated in 

order to predict the stages in which the test specimens were in linear or nonlinear range, using the 

calculated data. Fig. 19 plots relation between peak base shears and peak displacements calculated 

for each of the four earthquake simulations. Both structures are in nonlinear range during the tests 

with reference and high intensity levels. 

 
 
5. Conclusions 

 
This paper presents the numerical models of two full-scale, 3d, one-story RC structures and 

simulation of their seismic response to the shaking table excitations. The structures, designed for 

low and high ductility levels, are geometrically identical. They were subjected to four consecutive 

shaking table motions with increasing intensity from PGA=0.05g to PGA=0.53g. The excitations 

were applied bidirectionally in horizontal orthogonal axes. 

3d analytical models of the test structures were developed. The numerical models predicted the 

earthquake responses of the specimens fairly well and this was provided by the comparison of 

blind prediction results with the experimental data, including response histories of relative 

displacements recorded at the predetermined control points. Reasonably accurate results were 

provided in general, except for the high level intensity simulation of the specimen with low 

ductility level. The success of numerical models simulating the nonlinear dynamic response of the 

three dimensional structures subjected to bidirectional loading particularly depends on the 

following statements: 

• Material nonlinearity, dynamic and stiffness properties of the test structures, boundary 

conditions and application of load are reasonably well defined. 

• The calculated masses and mass moment of inertias were introduced to the model at specified 

nodes and rigid diaphragm was assigned for the half-slab with constraints. 

• Elastic rotational slip springs, considering flexibility due to slip of the reinforcing bars from 

the beams and footings, are located at top and bottom of nonlinear beam-column elements.  

• The beam-column joint shear deformation is taken into account with a nonlinear joint model. 

The discrepancy between the predicted and experimental results might be related to either input 

modelling parameters, coupling effects, strain rate effects in dynamic testing, capabilities of the 

analysis program or combination of these factors. It is not possible to isolate the source with the 

available data; however, in the future, this study can be improved by (i) tunning the beam-column 

joint shear force-deformation model particularly for the structure with low ductility level; (ii) 

introducing nonlinear slip-springs to the models and (iii) considering coupling effects that would 
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affect shear and slip deformation in beam-column and column-footing connections, respectively.  

This study has shown that successful simulation of a 3d reinforced concrete structure subjected 

to bidirectional dynamic loading can be achieved through a relatively simple numerical model if 

essential features of nonlinear behaviour are properly introduced to the model. Thus, nonlinear 

dynamic analysis of larger structural systems would not require huge amount of computational 

effort. 

The reasonably accurate correlation with the measured data of the model for the blind 

prediction contest is motivating, but combined effort for experimental-analytical studies on the 

seismic response of 3d, reinforced concrete buildings is needed to isolate each component 

contributing to the system. 

This study, for the limited conditions in which it was applied, also contributes to the current 

research by helping us to see explicitly how successful we are in predicting seismic response of 

reinforced concrete structures tested in the laboratory, where less uncertainty exists compared to 

the field conditions.   
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