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Abstract.   The paper presents the formulation of 3-nodal line semi-analytical Mindlin-Reissner finite strip 
in the buckling analysis of thin-walled members, which are subjected to arbitrary loads. The finite strip is 
simply supported in two opposite edges. The general loading and in-plane rotation techniques are used to 
develop this finite strip. The linear stiffness matrix and the geometric stiffness matrix of the finite strip are 
given in explicit forms. To validate the proposed model and study its performance, numerical examples of 
some thin-walled sections have been performed and the results obtained have been compared with finite 
element models and the published ones. 
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1. Introduction 

 

The semi-analytical finite strip method is based on the harmonics functions, and proved to be 

an efficient tool for analysing prismatic structures. This method was pioneered by Cheung (1976), 

who used the classical plate theory of Kirchhoff. Many authors have adopted and extended this 

method to analyse thin-walled sections. Hancock (1978) presented the buckling curve of a thin-

walled I-section. This relates to buckling stress with half-wave lengths and enables a better insight 

into the elastic stability of a section. The distortional buckling phenomenon is also better 

understood. The semi-analytical finite strip method is also applied in the nonlinear elastic and 

elastic-plastic studies (Bradford and Hancock 1984, Key and Hancock 1993, Ovesy et al. 2005, 

Ovesy et al. 2006, Ovesy et al. 2006, Milašinović 2011).  

The semi-analytical finite strip method can be also based on the Mindlin-Reissner flat shell 

theory. The latter allows the shear effect to be calculated through the plate thickness. Hinton 

(1978) highlighted the dependence of the normalised critical stress on the thickness of isolated 

plates. Dawe et al. (1993), Wang and Dawe (1996) analysed the nonlinear elastic response of thin-

walled sections. The local and global behaviour is separately examined. Zahari and El-Zafrany 

(2009) considered the progressive faillure of composite laminated stiffened plates. Bui and Rondal 

(2008) studied the buckling behaviour of highly stiffened thin-walled sections, for which the 
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Mindlin-Reissner finite strips are better than the Kirchhoff ones.   

In the buckling analysis, most of the above works are limited to the members subjected to 

uniform compression or uniform bending or the combination of these two loading cases. Chu et al. 

(2005), Chu et al. (2006) examined a particular case, where stresses vary along the longitudinal 

axis of cold-formed sections under uniform distributed loads, which are applied at the shear centre. 

Bui (2009) established the formulation of 2-nodal line semi-analytical finite strip based on the 

Kirchhoff plate theory, this strip can analyse the buckling of thin-walled sections under general 

loading conditions.  

The objective of this paper is the application the approaches proposed in the previous works 

(Bui and Rondal 2008, Bui 2009) to develop a semi-analytical finite strip based on the Mindlin-

Reissner flat shell theory. For a general loading condition, we proposed realizing linear analysis 

first to give longitudinal stresses. The linear stiffness matrix is provided in the standard manner. 

Each strip is divided into cells and longitudinal stresses are recorded in these cells. The 

integrations are performed on each cell domain and the sum of them provides the geometric matrix 

of the strip. This work is limited in a linear buckling analysis, effects of the pre-deflection on 

stability of thin-walled beams in a non-linear model are not considered here. This issue can be 

found in a study of Mohri et al. (2012), among others.    
 

 

2. Deformation-displacement relation 
 

The deformation-displacement relation in the Mindlin-Reissner finite strip can be predicted by 

the combination of the plane elasticity and the Mindlin plate theory 
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(a)                                                     (b) 

Fig. 1 (a) 3-nodal line Mindlin-Reissner finite strip; (b) strip with edge traction 
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where u, v and w are the displacements in the x, y and z directions; θx and θy represent rotations of 

the mid-surface normal in the yz and xz-planes, respectively and they are presented by double-

arrow in Fig. 1(a). 

 

 

3. Formulation 
 

3.1 Displacement functions 
 
The three displacements and two rotations of the strip at a point (x,y) can be expressed as 
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(2) 

in which the chosen longitudinal harmonic functions are the classic „simply supported‟ boundary 

conditions; r is the number of harmonics considered and n is the number of polynomial shape 

functions.                  

For 3-nodal line strip (Fig. 1(a)) 
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3.2 Linear stiffness matrix of a strip 
 
The linear stiffness of a strip can be derived from the strain energy 

                                   
 A

ss

T

s

t

t A

pp

T

p areadDtdzareadDU )(
2

)(
2

1
2/

2/




                     (4) 

where κ is the shear corrective factor (κ=5/6). 

 p  and  s  represent the in-plane and out-of-plane shear strains, respectively, which are 

given by Eq. (1) 
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 pD and  sD are the elasticity matrices. 
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The in-plane and out-of-plane shear strains can be calculated by substituting Eq. (2) into Eq. (1) 
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in which, typical terms for nodal line i and m
th
 harmonic can be written as 
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The nodal displacements for nodal line i and m
th
 harmonic is written as 
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The linear stiffness matrix of the strip can be obtained by substituting Eqs. (9) and (10) into Eq. 

(4). Note that, for simply supported strips, each harmonic term is uncoupled and thus the global 

stiffness matrix consists of r sub-stiffness matrices, which have a diagonal location 
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in which the m
th
 sub-matrix can be given by 
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Fig. 2 Conformity of rotations at a spatial junction 
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3.3 In-plane rotation 
 

The in-plane rotation problem can arise when the semi-analytical Mindlin-Reissner finite strip 

is used in analysing thin-walled sections. Bui and Rondal (2008) have proposed a technique to fix 

this problem, in which a fictitious in-plane shear strain concerning in-plane rotation is added in the 

standard deformation-displacement relation of the Mindlin-Reissner flat shell theory. Once the in-

plane rotation was added, the conformity of rotations at a spatial junction of thin-walled section is 

assured as shown in Fig. 2. Consequently, fictitious stiffness associated with nodal in-plane 

rotations can be provided and this stiffness does not depend on harmonic terms. We rewrite here 

the fictitious stiffness for the 3-nodal line strip 
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The stiffness matrix (Eq. (16)) is expanded to add the fictitious stiffness (Eq. (17)) 

corresponding to nodal in-plane rotations. Hence, the expanded nodal displacements for nodal line 

i and mth harmonic is written as 
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The explicit form of the expanded stiffness matrix can be found in the Appendix A.1. 
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3.4 Geometric matrix and approach of general loading 
 
The geometric matrix can be derived from the potential energy done by stresses through the 

nonlinear strains of the buckling displacements (Cheung 1976, Chu et al. 2005, Chu et al. 2006). 

For thin-walled members, we consider only longitudinal stresses and other types of stresses are 

supposed to be ignorable. The potential energy can be calculated as 
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where g(x, y, σ)
 
is a function of co-ordinates (x,y) and the longitudinal stresses. It is assumed that 

this function can be expressed for a strip as 

)(),(),,( 21 yfxfyxg                                                        (20) 

If the load is applied at the shear centre, the functions f1(x, σ)
 
and f2(y) can be explicitly defined. 

The function f1(x, σ)
 
has a common form 
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where σ1 and σ2 are the compressive stresses (Fig. 1(b)). 

The function f2(y) depends on the type of loading and can be determined in some particular 

cases as written in Bui (2009). 

With the defined functions f1(x, σ) and f2(y), the element geometric matrix for each case of 

loading can be obtained by substituting Eqs. (2) into Eq. (19), for example: Schafer (1997) 

constructed the geometric matrix for cases where the longitudinal stresses are uniform, Chu et al. 

(2005) determined the geometric matrix for the case of uniform distributed loads applied at the 

shear centre and Bui (2009) formulated the geometric matrix for gradient moments; these authors 

developed their 2-nodal line finite strips based on the Kirchhoff plate theory. Note, in cases where 

the stress varies in the longitudinal direction, the element geometric stiffness matrices of different 

wave numbers are coupled each other and have the form 
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where  
e

mm
GK  is the geometric matrix associated with wave number m,    

e

nm
Ge

mn
G KK   is the 

coupled geometric matrix associated with wave number m and n.  

However, in the practice, the loading is more complex; the section can be warped when the 

load is not applied at the shear centre. In these cases, the function f2(y) is much more difficult to 

define. We apply the approach described in Bui (2009) to perform approximately the integration of 

Eq. (19) in a general loading condition; the strip is divided into cells in the longitudinal direction 

(Fig. 3). In a cell, the longitudinal stress is considered linear varying in the transverse direction and 

constant in the longitudinal direction. The potential energy (Eq. (19)) can be approximately 

determined by 
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Fig. 3 Division of a strip in cells 
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where N is the number of cells in the strip; k1  and k2  are the longitudinal stresses obtained 

from a linear analysis and recorded at the middle of the longitudinal sizes of the kth cell (Fig. 3); 

yk-1 and yk (Eq. (23)) are the ordinates of the cell in the longitudinal direction. If the strip is equally 

divided into N cells, yk-1 and yk are calculated as 

 
N

a
kyk 11  ,   

N

a
kyk                                                      (24) 

The element geometric matrix can be obtained by substituting Eq. (2) into Eq. (23). This 

geometric matrix has the same form of Eq. (22). The expression of  
e

mm
GK  and   

e

mn
GK  when the 

strip is divided into equal cells is given in the Appendix A.2. 

The buckling problem can be solved by eigenvalue equations 

    0 GKK                                                                    (25) 

where λ is a scaling factor related to the critical load. 

 

 

4. Numerical application 
 

In order to illustrate the application and to provide a better grasp of the capabilities of the 

approaches presented in the previous sections, the buckling behaviour of U-section beam-column 

and I-section beam are analyzed. Only sufficiently long members are considered. 

cell k
k1 k2

x

y

a

yk-1

yk

83



 

 

 

 

 

 

Bui H. Cuong 

 
Fig. 4 U-section beam-column subjected to eccentric loads 

 
Table 1 Buckling load of U-section beam-column (Pcr/Py) 

a (m) 
Case 1 Case 2 

FS FE Error (%) FS FE Error (%) 

1,0 0.7513(L) 0.7874(L) -4.6 0.8752(FT) 0.8851(FT) -1.1 

2,0 0.4522(F) 0.4510(F) 0.3 0.2701(FT) 0.2679(FT) 0.8 

Note: L-  local buckling; F-  flexural buckling; FT-  flexural-torsional buckling 
 

 

4.1 Buckling of U-section beam-column under eccentric loads 
 
The U-section beam-column under eccentric load is often found in structural trellis of cold-

formed members. The dimensions of the U-section and the material properties are shown in Fig. 4. 

The section is modelled by 10 strips of 3-nodal lines: 3 strips for each flange, 4 strips for the web; 

25 cells in longitudinal direction of the beam and 15 harmonics are used (the number of 3-nodal 

line strips utilized to model the section is suggested by a convergence study in Bui and Rondal 

(2008)). Two cases of load eccentricity are considered: for the case 1, the concentrated load 

applies at the middle of the height of the section and for the case 2 the concentrated load applies at 

the bottom corner. The critical stresses calculated by the 3-nodal line finite strip (FS) are compared 

with the results of 4-node finite element (FE), which is based on  thick shell theory and 

implemented in the well-known program SAP2000 (2007). Table 1 indicates that the difference 

between the critical stresses analyzed by FS and FE model is insignificant. Both of FS and FE 

model give the same types of buckling mode shape. For example: when the length of the member 

is equal to 1,0m; in the case 1, we obtain the local buckling shape and in the case 2, we obtain the 

flexural-torsional buckling shape (Fig. 5).  

    

4.2 Buckling of I-section beam 
 
The dimensions of the section and the material properties are shown in Fig. 6. The section is 

modelled by 10 strips of 3-nodal lines: 2 strips for each flange, 4 strips for the upper half of the 

web and 2 strips for the lower half; 25 cells in longitudinal direction of the beam and 25 harmonics 

are used. Fig. 7 shows the critical curves of the simply supported I-section beam subjected 
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                       (a) Case 1: local buckling                                          (b) Case 2: Flexural-torsional buckling 

Fig. 5 Buckling shapes of beam-column when a=1,0m 

 

 
Fig. 6 I-section beam subjected to some types of loading 

 

 
Fig. 7 Critical curves 

 
 

respectively to uniform distributed loads, a central concentrated load, two concentrated loads at the 

one-fourths and uniform bending (Fig. 6). It can be seen that each curve has two distinct regions,  
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(a) local buckling when a=10m                                (b) lateral buckling when a=20m 

Fig. 8 Buckling shapes of beam under uniform distributed loads 

 

 

which are corresponding to the local and the lateral buckling. The curves for the central 

concentrated load and the uniform bending represent the upper bound and lower bound, 

respectively. The critical moments of lateral loading for these two cases of loading are very 

different from the rest. The results analysed by 3-nodal line Mindlin-Reissner finite strip of this 

work are compared with those analysed by 2-nodal line Kirchhoff finite strip developed in Bui 

(2009). An excellent agreement between two types of strip can be seen in the lateral buckling 

region and a good agreement in the local buckling region. The buckling shapes of local and lateral 

buckling for the case of uniform distributed loads are showed in Fig. 8. 

 

 

6. Conclusions 
 

The buckling behaviour of thin-walled beam and beam-column subjected to arbitrary loads can 

be investigated using the 3-nodal line semi-analytical Mindlin-Reisnner finite strip. This behaviour 

can be better understood through the critical curve which relates the minimal buckling stress with 

the length of the thin-walled member. The linear stiffness matrix and the geometric matrix of the 

strip are explicitly given in the Appendices. To implement the linear and geometric stiffness 

matrices, we use the in-plane rotation and general loading techniques. Because the strip with 

simply supported boundary conditions is developed then the linear stiffness is uncoupled while the 

geometric stiffness is coupled because normal stresses are varied along the length of the member. 

The very good agreement between the results analyzed by the Mindlin-Reissner finite strip, by the 

finite element and by the Kirchhoff finite strip demonstrates the reliability of the Mindlin-Reissner 

finite strip. 

 

 

Acknowledgements 
 

This research was funded through a grant from the National Foundation for Science and 

Technology Development (NAFOSTED) of Vietnam. Their financial support is gratefully 

acknowledged. 

86



 

 

 

 

 

 

Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip 

References 
 
Bradford, M.A. and Hancock, G.J. (1984), “Elastic interaction of local and lateral buckling in beams”, Thin-

walled Structures, 2(1), 1-25. 

Bui, H.C. and Rondal, J. (2008), “Buckling analysis of thin-walled sections by semi-analytical Mindlin-

Reissner finite strips – a treatment of drilling rotation problem”, Thin-walled Structures, 46, 646-652. 

Bui, H.C. (2009), “Buckling analysis of thin-walled sections under general loading conditions”, Thin-walled 

Structures, 47, 730-739. 

Cheung, Y.K. (1976), Finite strip method in structural analysis, Pergamon Press, New York. 

Chu, X.T., Ye, Z.M., Kettle, R. and Li, L.Y. (2005), “Buckling behaviour of cold-formed channel sections 

under uniformly distributed loads”, Thin-walled Structures, 43, 531-542. 

Chu, X.T., Ye, Z.M., Li, L.Y. New York Kettle, R. (2006), “Local and distortional buckling of cold-formed 

zed-section beam under uniformly distributed transverse loads”, International Journal of Mechanical 

Sciences, 48(4), 378-388. 

Dawe, D.J., Lam, S.S.E. and Azizian, Z.G. (1993), “Finite strip post-local-buckling analysis of composite 

prismatic plate structures”, Computers & Structures,  48(6), 1011-1023.  

Hancock, G.J. (1978), “Local distortional and lateral buckling of I-beams”, Journal of the Structural 

Division, ASCE, 104(11), 1787-1798. 

Hinton, E. (1978), “Buckling of initially stressed Mindlin plates using a finite strip method”, Computers & 

Structures, 8, 99-105. 

Key, P.W. and Hancock, G.J. (1993), “A finite strip method for the elastic-plastic large displacement 

analysis of thin-walled and cold-formed steel sections”, Thin-walled Structures, 16, 3-29. 

Milašinović, D.D. (2011), “Geometric non-linear analysis of thin plate structures using the harmonic 

coupled finite strip method”, Thin-Walled Structures, 49(2), 280-290. 

Ovesy, H.R., Loughlan, J. and GhannadPour, S.A.M. (2005), “Geometric non-linear analysis of thin flat 

plates under end shortening, using different versions of the finite strip method”, International Journal of 

Mechanical Sciences, 47(12), 1923-1948. 

Ovesy, H.R., Loughlan, J., GhannadPour, S.A.M. and Morada, G. (2006), “Geometric non-linear analysis of 

box sections under end shortening, using three different versions of the finite-strip method”, Thin-Walled 

Structures, 44(6), 623-637. 

Ovesy, H.R., Loughlan, J. and GhannadPour, S.A.M. (2006), “Geometric non-linear analysis of channel 

sections under end shortening, using different versions of the finite strip method”, Computers & 

Structures, 84(13-14), 855-872. 

Schafer, B.W. (1997), “Cold-formed steel behaviour and design: analytical and numerical modelling of 

elements and members with longitudinal stiffeners”, Ph. D. Dissertation, Cornell University, Ithaca, 

NewYork. 

SAP2000 (2007), Structural analysis program, version 11.0, Computers and Structures, Berkeley, 

California. 

Wang, S. and Dawe, D.J. (1996), “Finite strip large deflection and post-overall-buckling analysis of 

diaphragm-supported plate structures”, Computers & Structures, 61(1), 155-170. 

Zahari, R. and El-Zafrany, A. (2009), “Progressive failure analysis of composite laminated stiffened plates 

using the finite strip method”, Composite Structures, 87(1), 63-70. 

Mohri, F., Damil, N. and Potier-Ferry, M. (2012), “Pre-deflection effects on stability of thin-walled beams 

with open sections”, Steel and Composite Structures, 13(1), 71-89. 

 

 

 

 

 

 

87

http://db.vista.gov.vn:2054/science/article/pii/S0263823110001965
http://db.vista.gov.vn:2054/science/article/pii/S0263823110001965
http://db.vista.gov.vn:2054/science/article/pii/S0020740305001876
http://db.vista.gov.vn:2054/science/article/pii/S0020740305001876
http://db.vista.gov.vn:2054/science/article/pii/S0263823106000851
http://db.vista.gov.vn:2054/science/article/pii/S0263823106000851
http://db.vista.gov.vn:2054/science/article/pii/S0045794906000368
http://db.vista.gov.vn:2054/science/article/pii/S0045794906000368
http://db.vista.gov.vn:2054/science/article/pii/S0263822307002917
http://db.vista.gov.vn:2054/science/article/pii/S0263822307002917


 

 

 

 

 

 

Bui H. Cuong 

Appendix 
 

A.1 The expanded stiffness matrix (Km) 
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Note:  The matrices )( mK  and )( mn
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Other components of these matrices which are not written are equal to zero.  
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