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Abstract.  In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic 
expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of 
reinforced concrete frames were investigated. Current standards generally consider weight and fundamental 
period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, 
bays, shear walls and infilled bays.  Number of stories, number of bays in x and y directions, ratio of shear 
wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story 
were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as 
alternative approaches to model complex systems. The effects of these parameters on base reactions and roof 
drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained 
from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP 
models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as 
input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that 
the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC 
frames used in the training and testing phase of the study. The GEP model results better prediction compared 
to ANFIS model. 
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1. Introduction 

 

In structural analysis, the effects of infill walls are usually ignored during the design process. 

Several studies were investigated the contribution of these elements to building stiffness, strength 

and damping properties. The building performance and expected level of damage have affected by 

the distribution and amount of partition walls per unit floor area. So, the strength and deformability 

of non-structural elements have significant impact on the performance of buildings. Also, under 

dynamic forces, behavior of buildings depends upon mass and stiffness properties of buildings. So, 

in design process, any non-structural element should be taken into account (Kose and Karslioglu 

2011).  

The structural elements and non-structural elements are affected by the lateral deflection and 

drift. The non-structural elements experience deflections and rotations similar to the structural 
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system although they are generally ignored during the design process. The non-structural elements 

should be designed in a way that they do not interfere with the expected movement of the 

structural system in case of any lateral deflection. Otherwise, the non-structural elements lead to 

create short columns, torsion, or stiffness irregularities in the structural system. 

The design base shear is simply calculated by current code equations. However, current code 

equations do not provide any equation to estimate the vertical force distribution on the base of the 

structure. Dynamic analysis becomes advantageous but costly and time consuming compared to 

code equations to obtain the vertical force distribution on the base of the structure. 

In modern multistory structures, ground floors are generally designed as open story without 

infill walls and higher story height compared to upper floors due to the commercial stores or 

reception lobbies in the entrance.  Existence of such an open story in ground floor can cause soft 

story formation and largely affect behavior of the structure in case of an earthquake.  

Neuro-fuzzy inference system and genetic expression programming (GEP) have been widely 

used to model the complex relationship between the input parameters and output of the 

engineering problems (Fonseca et al. 2003, Darus and Al-Khafaji et al. 2012, Zheng et al. 2011, 

Vieira et al. 2004, Štemberk et al. 2013). 

The objective of this study is to investigate the usability of neuro-fuzzy inference system 

(ANFIS) and genetic expression programming (GEP) in predicting the base ractions and roof drifts 

of RC frames. Results from a study (Kose and Karslioglu 2011) were used in training and testing 

phase of ANFIS and GEP approaches. 216 computational results in total were used to investigate 

the effects of the infill walls to the base shear, normal base reaction and the roof drift of the 

structures. In this study, number of floors, number of bays, ratio the infilled bays to the total 

number of bays, ratio of the area of the shear walls to the total area of the floor and the existence 

of open floor were selected as parameters. Complex relationship between the number of floors, 

number of bays, ratio of shear walls and ratio of infilled bays and base reactions and roof drifts of 

RC frames can be easily modeled by use ANFIS and GEP approach unlike statistical models. 

 

 

2. Selected data 
 

Results obtained from a study (Kose and Karslioglu 2011) were used in training and testing 

phase of ANFIS and GEP models. In that study, building models were divided in two groups. In 

the first group of the models, entrance floor was designed as open floor. There are no internal infill 

walls between the columns in open floor. In the second group of the models, entrance floor was 

designed as residential floor. The number of bays was selected as 3, 4 and 5 in both directions. The 

ratio of the number of infilled bays to the total number of bays was selected as 0%, 40-50%, 50-

70% and 70-90%. The ratio of the total areas of the shear walls to the floor area was selected as 

0%, 0.5% and 1%, and the number of upper floors was selected as 5, 7 and 10. Infill walls were 

modeled as structural members with mass. Using these combinations, 216 3-dimensional computer 

models were prepared and analyzed.  

In computer models, frame elements were used to model beams and columns. The equivalent 

diagonal compression strut elements were used to model the effects of infill walls and these strut 

elements were connected to the structural system by hinge connection. Plate elements were used to 

model shear walls and slabs. Area mass elements were used to model mass of the infill walls. 

Window opening of 120x120 cm were assumed in all exterior infill walls and there was no 

opening in all interior infill walls. All computer models were generated and analyzed in SAP2000 
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Effects of infill walls on RC buildings under time history loading 

(CSI 2006) using nonlinear time history analysis. Bingol earthquake was used in time history 

analysis. Since symmetrical floor plans on x- and y- directions were used, time history loading was 

applied only on x-direction.  

 

 

3. Current code equations for storey drift and base shear 
 

3.1 Storey drift limitations 
 
In Eurocode 8 (2003), interstorey drift is limited to about 1% of storey height for general 

structures. UBC (1997) requires that storey drift be limited to 0.025h for short period structures 

and 0.020h for long period structures. The intent of the code was to limit the interstorey drift to a 

reasonable value, beyond which it was thought that the structure might experience loss of 

vertical stability. UBC also allows these limits to be exceeded, provided that the greater drift could 

be tolerated by both structural elements and nonstructural elements that could affect life safety. 

 

3.2 Base shear equations 
 

In UBC (1997), the static base shear, V, equation is given as 

           (
   

  
)  (

      

 
)  (1) 

where, Ca and Cv are acceleration spectrum coefficient and velocity spectrum coefficient, 

respectively. 
Coefficient I is importance factor and varies between 1.0 and 1.25. W is the total weight of the 

building. Coefficient R is response modification factor which accounts for building ductility and 

damping. Coefficient T is fundamental period of the structure.  

However, in Eurocode 8 (2003), base shear, Fb is given as 

Fb = Sd(T1 )W                                                              (2) 

where Sd(T) stands for the design spectrum which is normalized by the acceleration of gravity, 

g. T1 is fundamental period of the building. 

 

 

3. Genetic Expression Programming (GEP) 
 

GEP which is a new algorithm based on genetic algorithms (GA) and genetic programming 

(GP) was developed by Ferreira (2001).  In this method, a computer program is encoded in linear 

chromosomes of fixed-length. For the main process, GEP utilizes the most of the genetic operators 

of GA such as selection, mutation and recombination. Its principal goal is to develop a 

mathematical function that fits to a set of data presented it (Muñoz 2005, Cevik 2007). The basic 

algorithm of genetic expression programing which needs five elements such as the function set, 

terminal set, fitness function, control parameters and stop condition is sketched in Fig. 1. Before a 

GEP model is configured, the fitness function is designated and then the algorithm encodes the 

problem by composing randomly an initial population of viable individuals (chromosomes). The  
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Fig. 1 The algorithm of genetic expression programing (Eurocode 8 2003) 

 
 

Fig. 2 Schematic indication of a chromosome with one gene and its expression tree and corresponding 

mathematical equation 

 

 

each chromosome is converted into an expression tree corresponding to a mathematical expression 

fits to the data presented to it. The last step of the GEP process is that the results obtained from 

mathematical expression are compared with the actual values according to the fitness score of each 
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Effects of infill walls on RC buildings under time history loading 

chromosome. If the desired error level is not achieved some chromosomes are selected using 

roulette-wheel sampling and then mutated to obtain the new generations. If the results are 

satisfactory, the algorithm is stopped and then the knowledge that is encoded in a chromosome is 

decoded for the best solutions of the problem (Teodorescu and Sherwood 2008, Sherrwood 2008). 

The chromosomes and the expression trees are primary elements of GEP structure. The 

chromosomes can contain one or more genes that correspond to a mathematical expression. For 

coding of a gene, a special language known as Karva Language which has two types such as the 

language of the genes and the language of the expression trees (ET) is employed. The genes are 

separated two parts with the head and the tail. The mathematical operators, variables and constants 

such as  +, -, *, /, , sin, cos, 1, a, b, c that are employed for coding a mathematical expression 

are in the head. In the tail, there are only variables and constants such as 1, a, b, c known as 

Terminal Symbols which is used when the symbols in the head are deficient. Fig. 2 indicates a 

simple chromosome as linear string with one gene and its ET and the corresponding mathematical 

equation. On the other hand, more than one chromosome called multigenic chromosomes may be 

used for definition of more complex mathematical equations. The genes in the chromosomes are 

joined by linking function such as addition, subtraction, multiplication, or division. 

Several operators are used for the modifications of chromosomes for the next generation. 

Selection of chromosomes is used to select the chromosome that is mutated by applying the 

method the roulette-wheel sampling. So, new offspring with higher probability is obtained. 

Mutation of chromosomes is used to change the any symbols which define the genetic codes of 

any chromosome. Transposition of chromosomes is used to duplicate and carry the part of 

chromosome to another location. Finally, Recombination (Cross-over) arranges the changed 

information of a chromosome. 

 

 

4. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
 

There is crisp definition in classical set theory for belonging of a variable to a set. It belongs to 

a set or not. Whereas, there is a softer answer in fuzzy theory introduced by Lotfi Zadeh (Zadeh 

1965). According this theory a variable may partially belong to a set with continuous membership 

functions which vary between 0 and 1 (Zadeh 1965, Topcu and Saridemir 2008). In general, two 

types of fuzzy approach are employed known as Mamdani and Tagagi-Sugeno (TS) (Takagi and 

Sugeno 1985). In the Mamdani fuzzy approach, the human expertise and linguistic knowledge’s is 

used to design the membership functions and if-then rules. There some superiorities in TS model, 

since the model parameters and the membership functions are selected by using optimization and 

adaptive techniques and also the output membership function is simpler constructed as either linear 

or constant (Tutmez and Tercan 2007, Shahin et al. 2003). 

ANFIS that is suggested by Jang (1993) uses some properties of artificial neural network 

(ANN) such as learning and parallelism. It generates adaptively fuzzy rules and membership 

functions by neuro training process with data that is presented to it. Two methods are used for this 

aim such as grid partitioning and subtractive clustering. An example of if-then rules of sugeno type 

fuzzy inference system with Linear function (Padmini et al. 22) that is referred as first-order is 

shown as below. 

If x=A1 and y=B1 then f1(x,y)=p1x+q1y+k1                                                              (3) 
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Fig. 3 First order TS model reasoning and ANFIS architecture (Padmini et al. 2008) 
 

 

where x (or y) : the input node, i, p, q and k: the consequence parameters obtained from the 

training,  A:  the label of fuzzy set defined suitable membership function. 

In order to enhance the membership functions, one of the methods that are a hybrid learning 

algorithm and backpropagation learning algorithm is employed. They are described in detail in 

Demuth and Beale (2001). The simple indication and algorithm of first order TS model reasoning 

is sketched in Fig. 3 in which the mathematical process is performed in five layers. In first stage, 

the value of the ith node is calculated using the equation below 

U1,i=Ai(x) for i=1,2 or                                                                                  (4) 

U1,i=Bi-2(x) for i=3,4                                                       (5) 

where =The membership function 

U2,i is defined as product of the incoming signals using following equation in second stage in 

which the nodes are represented as the fire strength of the rule.  

U2,i=wi==Ai(x)Bi(y)  i=1,2                                                  (6) 

In subsequent stage, firing strengths are normalized, this shows the ratio of the ith rule’s firing 

strength versus all rules’ firing strength are computed by following equation 

U3,i= ,
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Effects of infill walls on RC buildings under time history loading 

Table 1 Parameters used in GEP Models 

 Model-Rd Model-Fx Model-Fz Model-My 

Generation 3243 99266 262350 620824 

Program size 63 37 54 38 

Number of the genes 5 4 4 3 

Length of the gene head 10 8 10 8 

Max. fitness 1000 

Linking function + 

Function set +, -, *, /, ,exp,log, sin, cos, arctan 

Mutation rate 0.044 

One-point recombination rate  0.3 

Two-point recombination rate 0.3 

Inversion rate 0.1 

Transposition rate 0.1 

 

 

The contribution of the ith rule to output is calculated by using equation given below in fourth 

stage 

)(,4 iiiiiii kyqxpwfwU 
                                            

  (8) 

where w : the normalized firing strength found from layer, pi, qi and ki: the consequent parameters. 

As a last calculation, the final output of the ANFIS is calculated by the equation below 

ii

iii

iiii
w

fw
fwU




 ,5

                                                  

  (9) 

 

 

5. Model development using GEP and ANFIS 
 

5.1 GEP model development 
 

The fundamental aim of development of GEP models was to generate the mathematical 

functions for the prediction of the base reactions and roof drift of reinforced concrete frames. The 

GEP Model has five input parameters; number of stories, number of bays in x and y directions, 

ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and 

existence of open story. The parameters used in GEP model developments were given in Table 1.  

GEP model was prepared and analyzed by DTREG software (Jang 1993). The maximum 

numbers of generations was 1793 in training of GEP model. The functions obtained for base 

reactions and roof drift from the GEP model were given in the followings 
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(13) 

where x1 = number of bays, x2 = existence of open floor (0 or 1),  x3 = ratio of the area of the 

shear walls to the total area of the floor, x4 = number of floors and x5 = ratio the infilled bays to 

the total number of bays. 

 

5.2 ANFIS model development 
 
ANFIS model was developed using the same input parameters used in GEP model. In ANFIS 

modeling, the grid partition and subtractive clustering methods were employed for generation of 

the membership functions associated with each input parameter. The Gaussian membership 

function was assigned. The hybrid learning algorithm, which allows a fast identification of 

parameters and reduces the time to reach convergence, was used for optimizing the parameters. As 

the stopping criterion, the minimum validation error is used to avoid over fitting. The ANFIS 

Model has 64 linear parameters, 48 nonlinear parameters, 161 nodes and 64 fuzzy rules. The fuzzy 

toolbox of MATLAB software (Demuth and Beale 2001) was used for ANFIS model 

development. 

 

 
6. Results and discussions 

 

Although several previous studies (Cavaleri and Papia 2003, Villaverde 2006) investigated the 

contribution of infill walls to overall building behavior, in code equations, structures are designed 

to remain elastic, and the effects of infill walls are ignored. The range of distributions of partition 

walls per unit floor area may have a significant impact on building behavior and level of damage 

during an earthquake (Anil and Altin 2007). Building behavior under dynamic forces depends 

upon the dynamic characteristics of buildings, which are controlled by both their mass and 

stiffness properties. So, any element with mass and/or stiffness (infill walls and shear walls) and 

structural system (number of floor, number of bays and presence of open floor) must be taken into 

account in calculation any parameter related to building behavior.   
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Effects of infill walls on RC buildings under time history loading 

Table 2 MSE and MAE of GEP and ANFIS models in training process 

Quantity 
MSE MAE 

GEP ANFIS GEP ANFIS 

Base Shear Fx 0.0154 0.0002 0.0959 0.0039 

Base Normal Fz 0.3480 0.0016 0.4456 0.0159 

Overturning Moment My 2.5797 0.1505 1.2546 0.2744 

Roof Displacement Rd 0.1968 0.0069 0.3477 0.0789 

 

 

Current code specifications (Eurocode 8 and UBC) are over simplified and don’t take the all 

relevant parameters into the account. These equations usually take into account only weight and 

natural period of buildings when estimating the story drift and base shear reactions. Other base 

reactions such as base overturning moment and base normal force are not predicted by any code 

equations as shown in Eqs. (1) and (2). However, all the relevant parameters were included in GEP 

and ANFIS models to have better estimate of story drift and base reactions of RC frames.  

The acceptance of GEP and ANFIS models for predicting story drift and base reactions is based 

on their predictions to a new set of inputs, which are not included in training process. The training 

process must be completed successfully, before the performance of GEP and ANFIS models are 

tested for new set of inputs. 

 

6.1 Training process 
 

The GEP and ANFIS models were trained to predict the story drift and base reactions of RC 

frames. 195 roof drift and base reactions were selected from computer models (Kose and 

Karslioglu 2011) for training process. As mentioned previously, each training pattern contains five 

parameters, which are the number of floor, number of bays, presence of open floor, ratio of shear 

wall areas to floor area and ratio of bays infilled with masonry walls to total number of bays, and 

corresponding targets, which are the story drift, base shear reaction, base normal reaction and base 

overturning moment. The training of GEP and ANFIS models were completed when the GEP and 

ANFIS models correctly predicted the story drift and the base reactions of RC frames. Training 

results of base shear force Fx, base normal force Fz, overturning moment My and roof drift Rd by 

GEP and ANFIS models were shown in from Fig. 4 to Fig. 11. The predicted roof drift and base 

reactions and the computed roof drift and base reactions were compared by drawing a 45-degree 

equity line.  

Also, mean squared error (MSE) and mean absolute error (MAE) for the predictions obtained 

by GEP and ANFIS models were shown in Table 2 to determine trend capture and the degree of 

scatter. The MSE values of ANFIS modeling much less than that of GEP modeling. Base shear 

response have the minimum value of error value whereas overturning moment have the maximum 

value of error in both MSE and MAE calculations. So, best trend capture (minimum value of error) 

was obtained for base shear forces. GEP and ANFIS modeling of base shear response have the 

error value of 0.0154 and 0.0002 in MSE calculations, respectively and also have the error value of 

0.0959 and 0.0039 in MAE calculations, respectively. However, GEP and ANFIS modeling of 

overturning moment response have the error value of 2.5797 and 0.1505 in MSE calculations, 

respectively and also have the error value of 1.2546 and 0.2744 in MAE calculations, respectively 

Although both models have small values of MSE and MAE, the ANFIS models have the minimum 

degree of scatter and maximum ability of trend capture for base reactions and roof displacement.  
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Fig. 4 Predicted Base Shear Force Fx by GEP model versus computed Base Shear Force Fx after                 

training process 

 

 
Fig. 5 Predicted Base Shear Force Fx by ANFIS model versus computed Base Shear Force Fx 

after training process 

 

 

6.2 Testing process 
 
The acceptability of a trained GEP and ANFIS models depend on the generalization and 

performance of their predictions when the GEP and ANFIS models are tested with new set of data  
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Effects of infill walls on RC buildings under time history loading 

 
Fig. 6 Predicted Base Normal Force Fz by GEP model versus computed Base Normal Force Fz 

after training process 

 

 
Fig. 7 Predicted Base Normal Force Fz by ANFIS model versus computed Base Normal Force 

Fz after training process 

 

 

different from the input variables used in training process. So, performance of the GEP and ANFIS 

models to predict the story drift and the base reactions for the data excluded in the training process 

must be validated. The GEP and ANFIS models were tested with a total 21 new input parameters 

randomly selected from computer models (Kose and Karslioglu 2011) and required to predict the 

story drift and the base reactions. 
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Fig. 8 Predicted Overturning Moment My by GEP model versus computed Overturning Moment 

My after training process 

 

 
Fig. 9 Predicted Overturning Moment My by ANFIS model versus computed Overturning 

Moment My after training process 

 

 

The predicted roof drift and base reactions and the computed story drift and base reactions were 

compared by drawing a 45-degree equity line as shown in Fig. 12 to Fig. 19. The GEP and ANFIS 

models successfully predict the story drift and the base reactions of RC frames for given input 
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Effects of infill walls on RC buildings under time history loading 

 
Fig. 10 Predicted Roof Displacement Rd by GEP model versus computed Roof Displacement Rd 

after training process 

 

 
Fig. 11 Predicted Roof Displacement Rd by ANFIS model versus computed Roof Displacement 

Rd after training process 

 

 

data. Also, mean squared error (MSE) and mean absolute error (MAE) for the predictions obtained 

by GEP and ANFIS models were shown in Table 3 to determine trend capture and the degree of 

scatter. Base shear response have the minimum value of error whereas overturning moment have 

the maximum value of error in both MSE calculations. However, roof displacement have the 
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Fig. 12 Predicted Base Shear Force Fx by GEP model versus computed Base Shear Force Fx 

after testing process 

 

 
Fig. 13 Predicted Base Shear Force Fx by ANFIS model versus computed Base Shear Force Fx 

after testing process 

 

 

minimum value of error whereas overturning moment have the maximum value of error in both 

MAE calculations. So, best trend capture (minimum value of error) was obtained for base shear 

forces in GEP modeling and for roof displacement in ANFIS modeling. GEP modeling of base 

shear have the error value of 0.0187 and 0.0094 in MSE calculations and ANFIS modeling of roof 
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Fig. 14 Predicted Base Normal Force Fz by GEP model versus computed Base Normal Force Fz 

after testing process 

 

 
Fig. 15 Predicted Base Normal Force Fz by ANFIS model versus computed Base Normal Force 

Fz after testing process 

 

 

displacement have zero error and 0.0020 in MAE calculations. However, GEP and ANFIS 

modeling of overturning moment response have the error value of 2.3984 and 1.3163 in MSE 

calculations and have the error value of 0.5400 and 0.5047 in MAE calculations, respectively. 
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M. Metin Kose and Cafer Kayadelen 

 
Fig. 16 Predicted Overturning Moment My by GEP model versus computed Overturning 

Moment My after testing process 

 

 
Fig. 17 Predicted Overturning Moment My by ANFIS model versus computed Overturning 

Moment My after testing process 
 

 

Although both models have small values of MSE and MAE, the ANFIS models have the minimum 

degree of scatter and maximum ability of trend capture for base reactions and roof displacement.  
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Effects of infill walls on RC buildings under time history loading 

 
Fig. 18 Predicted Roof Displacement Rd by GEP model versus computed Roof Displacement Rd 

after training process 

 

 
Fig. 19 Predicted Roof Displacement Rd by ANFIS model versus computed Roof Displacement 

Rd after testing process 

 

 
7. Conclusions 

 

The following conclusions may be drawn based on the obtained results: 
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1. This study demonstrates the efficiency of GEP and ANFIS models to predict the story drift 

and the base shear reaction, base normal reaction and base overturning moment of RC frames 

under dynamic loading. The developed models were able to predict the story drift and the base 

shear reaction, base normal reaction and base overturning moment of RC frames for both input 

data used in training and testing processes.  

2. Predicting of the story drift and the base shear reaction, base normal reaction and base 

overturning moment of RC frames as a function of the number of floor, number of bays, presence 

of open floor, ratio of shear wall areas to floor area and ratio of bays infilled with masonry walls to 

total number of bays is a difficult task to achieve. However, a successfully trained GEP and 

ANFIS models can predict the story drift and the base shear reaction, base normal reaction and 

base overturning moment of RC frames easily and accurately. So, the GEP and ANFIS models can 

be a powerful alternative approach to current methods used in developing the relationship between 

the story drift, the base reactions of RC frames and the parameters affecting them. 

3. Although the performance of the developed GEP and ANFIS models is limited to the range 

of input data used in training process, the model can easily be extended by providing additional 

new set of data.   

4. It was seen that unused parameters in current code specifications and proposed equations 

have an effect on the story drift and the base shear reaction, base normal reaction and base 

overturning moment of RC frames.   

5. Current codes equations are limited to only the weight and the fundamental period to predict 

the story drift and the base shear reaction. Also, the current code equations usually overestimate 

the story drift and the base shear reaction to be on the safe side. The base normal reaction and base 

overturning moment of RC frames are not estimated by a code equation at all. However, the 

developed GEP and ANFIS models can incorporate the five parameters mentioned above to 

predict the story drift and the base shear reaction, base normal reaction and base overturning 

moment of RC frames more accurately.   

6. In training process, among the base reactions and roof displacement, base shear response 

have the minimum value of error and overturning moment response have the maximum value of 

error in GEP and ANFIS modeling.  Although both models have small values of MSE and MAE, 

the ANFIS models have the minimum degree of scatter and maximum ability of trend capture for 

base reactions and roof displacement. 

7. In testing process, among the base reactions and roof displacement, overturning moment 

response have the maximum value of error in GEP and ANFIS modeling. Base shear force have 

the minimum value of error in GEP modeling and roof displacement have the minimum value of 

error in ANFIS modeling.   

8. It was also seen that ANFIS models generally have the minimum degree of scatter and 

maximum ability of trend capture compared to GEP models and current code equations. 
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