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Abstract.  In this paper, the wave propagation in generalized thermo elastic plate immersed in fluid is 
studied based on the Lord-Shulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of 
thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. 
The frequency equations that include the interaction between the plate and fluid are obtained by the perfect-
slip boundary conditions using the Bessel function solutions. The numerical calculations are carried out for 
the material Zinc and the computed non-dimensional frequency, phase velocity and attenuation coefficient 
are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The 
wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and 
the fluid interaction. 
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1. Introduction 

 
The circular plates are often used as structural components and their vibration characteristics 

are important for practical design. In view of available experimental evidence in favor of the 
finiteness of heat propagation speeds, the generalized thermo elasticity theories are considered to 
be more realistic than the conventional theory in dealing with practical problems involving very 
large heat fluxes and/or short time intervals, such as those occurring in laser units and energy 
channels. Further, the interaction of liquid with varying temperature can be utilized as a thermal 
source in addition to normal load (hydrostatic pressure) simultaneously in many engineering 
applications. The analysis of thermally induced wave propagation of a cylindrical plate immersed 
in fluid is a problem that may be encountered in the design of structures such as atomic reactors, 
steam turbines, submarine structures subjected to wave loadings and other devices operating at 
elevated temperatures. Moreover, it is recognized that the thermal effects on the elastic wave 
propagation supported by fluid interaction may have implications related to many seismological 
applications. This study can be potentially used in applications involving nondestructive testing 
(NDT) and qualitative nondestructive evaluation (QNDE) using ultrasonic transducers and  

                                          
Corresponding author, Ph.D., E-mail: Selvam1729@gmail.com 



 
 
 
 
 
 

R. Selvamani and P. Ponnusamy 

resonators.  
The generalized theory of thermo elasticity was developed by Lord and Shulman (1967), which 

involves one relaxation time for isotropic homogeneous media, and is called the first 
generalization to the coupled theory of elasticity. Their equations determine the finite speed of 
wave propagation of heat and the displacement distributions. The corresponding equations for an 
isotropic case were obtained by Dhaliwal and Sherief (1980). The second generalization to the 
coupled theory of elasticity is known as the theory of thermo elasticity with two relaxation times, 
or as the theory of temperature-dependent thermoelectricity. A generalization of this inequality was 
proposed by Green and Laws (1972). Green and Lindsay (1972) obtained an explicit version of the 
constitutive equations. These equations were also obtained independently by Suhubi (1975). This 
theory contains two constants that act as the relaxation times and modifies not only the heat 
equations, but also all the equations of the coupled theory. The classical Fourier’s law of heat 
conduction is not violated if the medium under consideration has a center of symmetry. Erbay and 
Suhubi (1986) studied the longitudinal wave propagation in a generalized thermoplastic infinite 
cylinder and obtained the dispersion relation for the cylinder with a constant surface temperature.  

Sharma and Pathania (2005) investigated the generalized wave propagation in circumferential 
curved plates. Modeling of circumferential waves in a cylindrical thermo elastic plate with voids 
was discussed by Sharma and Kaur (2010). Ashida and Tauchert (2001) presented the temperature 
and stress analysis of an elastic circular cylinder in contact with heated rigid stamps. Later, Ashida 
(2003) analyzed the thermally induced wave propagation in a piezoelectric plate. Tso and Hansen 
(1995) studied the wave propagation through cylinder/plate junctions. Heyliger and Ramirez 
(2000) analyzed the free vibration characteristics of laminated circular piezoelectric plates and 
discs by using a discrete-layer model of the weak form of the equations of periodic motion. The 
thermal deflection of an inverse thermo elastic problem in a thin isotropic circular plate was 
presented by Gaikward and Deshmukh (1979). The study about a plate immersed in fluid is 
important for design of structures such as biosensor, atomic reactors, steam turbines and submarine 
structures with wave loads other devices operating at elevated temperatures. Rama Rao (1999)  
studied the acoustic of fluid filled boreholes with pipes. Here he developed a three dimensional 
elasto dynamic equation for axis symmetric waves of pipes immersed inside fluid filled boreholes 
in infinite elastic spaces. Nagy (1995) investigated longitudinal guided wave propagation in a 
transversely isotropic rod immersed in fluid based on the superposition of partial waves. Ahamed 
(2001) discussed the guided waves in a transversely isotropic cylinder immersed in fluid. 
Ponnusamy (2007) has studied the wave propagation of generalized thermo elastic solid cylinder 
of arbitrary cross section immersed in fluid using Fourier collocation method. Ponnusamy and 
Selvamani (2012) have studied the dispersion analysis of generalized magneto-thermo elastic 
waves in a transversely isotropic cylindrical panel using the wave propagation approach. 
Ponnusamy and Selvamani (2012) discussed the wave propagation in a generalized thermo elastic 
plate embedded in elastic medium using Winkler model. Here they analyzed the influence of 
thermal relaxation time and foundation impact on the fundamental vibrational mode. Ahamed et.al 
(2002) discussed the guided waves in a transversely isotropic plate immersed in fluid. Chan (1998) 
studied the Lamb waves in highly attenuative plastic plate.  

In this paper, the in-plane vibration of a generalized thermo elastic thin circular plate immersed 
in an inviscid fluid composed of homogeneous isotropic material is studied. The solutions to the 
equations of motion for an isotropic medium is obtained by using the two dimensional theory of 
generalized thermo elasticity and Bessel function solutions. The numerical calculations are carried 
out for the material Zinc. The computed non-dimensional frequency, phase velocity and 
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attenuation coefficient are plotted as dispersion curves for the plate with thermally insulated and 
isothermal boundaries.  
 
 
2. Formulation of the problem 
 

We consider a thin homogeneous, isotropic, thermally conducting elastic thin plate of radius R 
with uniform thickness h and temperature T0 in the undisturbed state initially, immersed in an in 
viscid fluid with density ρ0 is shown in Fig. 1. The system displacements and stresses are defined 
in the polar coordinates r and θ for an arbitrary point inside the plate, with u denoting the 
displacement in the radial direction of r and v the displacement in the tangential direction of θ. The 
in-plane vibration and displacements of the plate immersed in fluid is obtained by assuming that 
there is no vibration and a displacement along the z axis in the cylindrical coordinate system (r, θ, 
z). 

The two dimensional stress equations of motion and heat conduction equation in the absence of 
body force for a linearly elastic medium are  

 1 1
, , ,rr r r rr ttr r u            

1 1
, , ,2r r r ttr r v           

     
2

1 2
, , , 0 , 0 0 2rr r tt rrk T r T r T c T T T e e

t t         
         

       (1) 

where ρ is the mass density, cv is the specific heat capacity, κ = k/ρcv is the diffusivity, k is the 
thermal conductivity, τ0, τ1 are the thermal relaxation time, and T0 is the reference temperature.  

 
 

 
Fig. 1 Geometry of the problem 
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The strain-displacement relations for the isotropic plate are given by 

   2 1 ,2rr rr rr k te e e T T           

   2 1 ,2rr k te e e T T             

2r re                                  (2)

 
where eij are the strain components, β = (3λ + 2μ)αT is the thermal stress coefficients, αT is the 
coefficient of linear thermal expansion, T is the temperature, t is time, λ and μ are Lame’s constants 
and the comma in the subscripts denotes the partial differentiation with respect to the variable foll
owing. Here δij is the Kronecker delta function. In addition, we can replace k = 1 for the L-S 
theory and k = 2 for the G-L theory. The thermal relaxation times τ0 and τ1 satisfies the inequalities 
τ0 ≥  τ1  ≥ 0 for the G-L theory only. 

The strain eij are related to the displacements as given by 

,rr re u ,   1
,e r u v 

  ,    1
, ,r re v r v u 

                 (3) 

in which u and v are the displacement components along the radial and circumferential directions, 
respectively. σrr, σθθ are the normal stress components and σrθ the shear stress component, err, eθθ th
e normal strain components and erθ the shear strain component. 

By substituting Eqs. (3) and (2) into Eq. (1), the following displacement equations of motions 
are obtained  

    
   

1 2 2 1
, , , ,

2
, , 2 1 , ,

2

3

rr r r

r k rt tt

u r u r u r u r v

r v T T T u

 



    

     

   



     

    
               

     
   

1 2 2 2
, , , ,

1
, , ,

2 3rr r

r t tt

v r v r v r v r u

r u T T v

 

  

    

    

   



     

     
            

   
2

1 2 1
, , , 0 , 0 0 1 , ,2

( )rr r tt k rk T r T r T c T T T u r u v
t t                        

     (4)  

In an inviscid fluid-solid interface, the perfect-slip boundary condition allows discontinuity in 
planar displacement components. That is, the radial component of displacement of the fluid and 
solid must be equal and the circumferential, longitudinal components are discontinuous at the 
interface. The above coupled partial differential equations are also subjected to the following non-
dimensional boundary conditions at the surfaces r = a, b. 
(i) Stress free inner boundary conditions 

     1 0f f
rr rp u u                           (5a) 

(ii) Stress free outer boundary conditions 

     2 0f f
rr rp u u                          (5b) 

(iii) Thermal boundary conditions 
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, 0rT hT                                (5c) 

where h is the surface heat transfer coefficient. Here h → 0 corresponds to a thermally insulated 
surface and h → ∞ refers to an isothermal one.      
 

2.1 Lord-Shulman (LS) theory 
 

Based on the Lord-Shulman theory of thermo elasticity, the three dimensional rate dependent 
temperature with one relaxation time is obtained by replacing k=1 in the heat conduction equation 
of Eq. (1), namely 

    
2

, , , 0 , 0 02 2

1 1
rr r v tt rrk T T T C T T T e e

r r t t    
                    

 (6a)

The stress-strain relation is replaced by 

       2rr rre e e T          

       2rre e e T           

    2r re    (6b)

By substituting the preceding stress-strain relations into Eq. (1), we can get the following 
displacement equation 

           1 2 2 1 2
, , , , , ,2 3rr r r ttu r u r u r u r v r v T u                       

   
        

   

1 2 1 2 2
, , , , ,

2
, ,

3 3

2

rr r r

tt

v r v r v r u r u r v

r v T v

  



      

   

    



       

   
 

(6c)

The symbols and notations involved have the same meanings as defined in earlier sections. 
Since the heat conduction equation of this theory is of the hyperbolic wave type, it can 
automatically ensure the finite speeds of propagation for heat and elastic waves.  
 

2.2 Green-Lindsay (G L) theory 
 

The second generalization to the coupled thermo elasticity with two relaxation times called the 
Green-Lindsay theory of thermo elasticity is obtained by setting k=2 in the heat conduction 
equation of Eq. (1), namely 

     , , , 0 , 02

1 1
rr r v tt rrk T T T C T T T e e

r r t                 
 (7a)

The stress-strain relation is replaced by 
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   1 ,2rr rr te e e T T            

       1 ,2rr te e e T T             

    2r re    (7b)

By substituting the preceding relations into Eq. (1), the displacement equation can be reduced 
as 

        1 2 2 1 2
, , , , , , 1 , ,2 3rr r r r rt ttu r u r u r u r v r v T T u                         

      
        

   

1 2 1 2 2
, , , , ,

2
, , 1 , ,

3 3

2

rr r r

t tt

v r v r v r u r u r v

r v T T v

  

  

      

    

    



       

    
 

(7c)

where the symbols and notations have been defined in the previous sections.  
To uncouple Eq. (4), the mechanical displacement u, v along the radial and circumferential 
directions given by Sharma (2010) is adopted as follows 

1
, , ,ru r      1 , ,rv r     (8)

Substituting Eq. (8) in to Eq. (4) yields the following second order partial differential equation 
with constant coefficients 

    2 2
2 1 ,2 0k tT T             (9a)

   2 2
0 0 1 0k C i T T i          (9b)

2 2 0
  


 
   
 

 
(9c)

where 2221222 ///   xxxx . 
 
 
3. Solutions of the solid medium 
 

The equations are given in Eq. (9) are coupled partial differential equations with two 
displacements potential and heat conduction components. We assume the vibration and 
displacements along the axial direction z to be zero. Hence, the solutions of Eq. (9) can be 
presented in the following form 

      ( , , ) ( ) exp ( )r t r i p t       (10a)
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       ( , , ) ( ) exp ( )r t r i p t       (10b)

         2( , , ) 2 ( ) exp ( )T r t a T r i p t         (10c)

where 1i   , ω is the angular frequency, p is the angular wave number,  (r, θ), ψ (r, θ), T (r, 
θ) are the displacement potentials. Substituting Eq. (10) into Eq. (9) and introducing the 
dimensionless quantities such as x = r/a,  /)2(2

1 c , 22
2 /  c = ρω2a2/μ,  / , 

0/ Tcd v  , we can get the following partial differential equation with constant coefficients 

         2 2
1 22 2 0T          (11a)

         2 2
1 1 0 0 1 1 0k i d T T i          (11b)

       2 2
1 0    (11c)

where 2
2 2

2 2

2

1 p

r r r r
   
   

and  0 01 i      , 1 1 01 ki    , 2 2 11 ki           

Eq. (11c) in terms of ψ gives a purely transverse wave. This wave is polarized in planes 
perpendicular to the z-axis. We assume that the disturbance is time harmonic through the factor eiwt

 
Rewriting Eq. (11) yields the following fourth order differential equation 

  4 2
2 2 , 0A B C T      (12)

where A = (2+  )k1, B = {k1 Ω
2 – iω(2 +  ) d η0 + iωT0 (2 +  ) βη1 η2}, C =  – (iωΩ2 d η0).   

By solving the partial differential Eq. (12), the solutions are obtained as  

        
2

1
i n i n i i

i

A J ax Y B ax  


     (13a)

         
2

1
i i n i n i i

i

T d A J ax Y B ax 


     (13b)

where 

di = {k1 (αiax)4 + (2 +  )βT0iωη1η2(αiax)2 – (2 +  )iω d  (14)

Eq. (11c) is a Bessel equation with possible solutions given as 

      

3 3 3

3 3

3 3 3

3 3

3

3 3

( ) ( ) 0

0

( ) ( ) 0

n n
n n

n n

ax ax ax

a a ax

ax ax ax

A J B Y

A B

A I B K

  
 

  









 
  

 
 (15)
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where Jn and Yn are Bessel functions of the first and second kinds, respectively, while In and kn are 
modified Bessel functions of first and second kinds, respectively. (Ai, Bi) i = 1, 2, 3 are arbitrary 
constants. Since α3ax ≠ 0, thus the condition α3ax ≠ 0 will not be discussed in the following. For 
convenience, we will pay attention only to the case of α3ax > 0 in what follows. The derivation for 
the case of α3ax < 0 is similar. 

   3 3 3 3n nA J ax Y B ax       (16)

where (α3a)2 = Ω2. 
 
 
4. Solution of fluid medium 
 

In cylindrical coordinates, the acoustic pressure and radial displacement equation of motion for 
an in viscid fluid are of the form 

  1
, ,

f f f f f
rp B u r u v 

     (17)

And 

2
, ,

f
ttf rc u    (18)

respectively, where (uf, vf) is the displacement vector, Bf is the adiabatic bulk modulus, 
fff Bc / is the acoustic phase velocity of the fluid in which ρf is the density of the fluid and 

  1
, ,

f f f
ru r u v 

     (19)

substituting uf =  f, r and vf = r–1 f
,θ  and seeking the solution of Eq. (14) in the form 

   , , cos exp ( )
f fr t n i p t        (20)

where 

 f = A4Jn
1 (δax) (21)

for inner fluid. In Eq. (17), (δa)2 = ff B2 in which 1 ,/ ,/ n
fff JBB    is the Bessel 

function of the first kind. If (δa)2 < 0, the Bessel function of first kind is to be replaced by the 
modified Bessel function of second kind Kn. Similarly 

   , , cos exp ( )
f fr t n i p t        (22)

where 

 1
5

f
nA H ax   (23)

for outer fluid. In Eq. (17) (δa)2 = fB2 . Hn
1 is the Hankel function of the first kind. If (δa)2 < 

0, then the Hankel function of first kind is to be replaced by Kn, where Kn is the modified Bessel 
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function of second kind. By substituting the expression of the displacement vector in terms of  f 
and the Eqs. (17) and (19) in Eq. (13), we could express the acoustic pressure both inner and outer 
surface of the ring as 

        12
1 4 cos exp ( )f

np A J ax n i p t        (24)

for inner fluid and  

        12
2 5 cos exp ( )f

np A H ax n i p t        (25)

for outer fluid. 
 
 
5. Frequency equations 
 

In this section we shall derive the frequency equation for the two dimensional vibration of the 
generalized thermo elastic cylindrical plate immersed in fluid subjected to perfect slip boundary 
conditions at the inner and outer surfaces at r = a, b. Substituting the expressions in Eqs. (1)-(3) 
into Eq. (5), we can get the frequency equation for free vibration as follows 

     0ijE    , 1, 2.....8i j   (26)

    
         

11 1 1 1 1 1

2

1 1 1 2 1

2 2 2
1

1

(2 ) ( ( ) ( ) ( )) (( ) ) ( )

( 1) ( ) ( )

n nnE ip ax ax ax ip ax ax

ip n ax ax ax i d ax

nJ J R n J

n n J J T  

     

    





    

   
 

    
         

13 2 2 2 2 2

2

2 2 2 2 2

2 2 2
1

1

(2 ) ( ( ) ( ) ( )) (( ) ) ( )

( 1) ( ) ( )

n nnE ip ax ax ax ip ax ax

ip n ax ax ax i d ax

nJ J R n J

n n J J T  

     

    





    

   

    15 3 3 3 3 3 31 1(2 ) ( ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )n nn nE ax ax ax ax ax axn n J J n n J J              

 2 2
17 1( ) ( ) ( ) ( )n nE ax ax ax axnJ J      ,   18 0E 

 
21 1 1 1 1( ) ( ) ( )n nE ax ax axnJ J   

 
23 2 2 1 2( ) ( ) ( )n nE ax ax axnJ J   

 
25 3( )nE axnJ  ,   27 1( ) ( ) ( )n nE ax ax axnJ J   

 
31 1 1 1 12 ( 1) ( ) 2 ( ) ( )n nE ax ax axn n J n J      

33 2 2 1 22 ( 1) ( ) 2 ( ) ( )n nE ax ax axn n J n J    
 

     2 2
35 3 3 1 3 3 32 ( 1) ( ) 2( ) ( ) ( ) ( )n nE ip ax ax ax ip ax n axn n J J J        

 
37 0E   

 41 1 1 1 1 1 1( ) ( ) ( ) ( )n n nE d nJ ax ax J ax hJ ax     

 43 2 2 2 1 2 2( ) ( ) ( ) ( )n n nE d nJ ax ax J ax hJ ax       

45 0E 
   47 0E 
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 2 2
58 1( ) ( ) ( ) ( )n nE bx ax ax axnH H       

Obviously Eij (j = 2, 4, 6) can be obtained by just replacing the Bessel functions of the first kind 
in Eij (i = 1, 3, 5) with those of the second kind, respectively, while Eij (i = 5, 6, 7, 8)

 
can be 

obtained by just replacing a in Eij (i = 1, 2, 3, 4) with b.  
 
 
6. Numerical results and discussion 
 

The coupled free wave propagation in a homogenous isotropic generalized thermo elastic 
cylindrical plate immersed in water is numerically solved for the Zinc material. The material 
properties of Zinc are given as follows and for the purpose of numerical computation the liquid is 
taken as water. 

For the solid 
3 37.14 10 kgm      0 296T K    

2 1 11.24 10 degK Wm    

11 20.508 10 Nm       
6 2 15.75 10 degNm        1 0.0221   

11 20.385 10 Nm     and  2 1 13.9 10 degC J kg
    

For the fluid 
31000fp kg m    

11500fc ms  

The roots of the algebraic equation in Eq. (12) were calculated using a combination of the 
Birge-Vita method and Newton-Raphson method. For the present case, the simple Birge-Vita 
method does not work for finding the root of the algebraic equation. After obtaining the roots of 
the algebraic equation using the Birge-Vita method, the roots are corrected for the desired accuracy 
using the Newton-Raphson method. Such a combination can overcome the difficulties encountered 
in finding the roots of the algebraic equations of the governing equations. Here the values of the 
thermal relaxation times are calculated from Chandrasekharaiah (1986) as τ0 = 0.05 and τ1 = 0.75. 
Because the algebraic Eq. (12) contains all the information about the wave speed and angular 
frequency, and the roots are complex for all considered values of wave number, therefore the 
waves are attenuated in space.  

We can write c–1 = v–1 + iω–1q, so that p = R + iq, where R = ω/v, v and q are real numbers. 
Upon using the above relation in Eq. (26), the values of the wave speed (v) and the attenuation 
coefficient (q) for different modes of wave propagation can be obtained. When a solid medium 
such as the circular plate is surrounded by fluid medium, guided waves are transmitted across the 
interface. Thus bulk waves are excited in the embedding medium, radiating away from the solid 
medium. In addition, there exits two independent waves such as shear harmonic waves and Lamb 
waves. If the elastic plate immersed in an in viscid fluid, shear harmonic waves are unaffected, 
however the lamb waves are affected. 

A comparison is made for the non-dimensional frequencies among the Green -Lindsay Theory 
(GL), Lord-Shulman Theory (LS) and Classical-Theory (CT) of thermo-elasticity for the free and 
fluid loaded circular plate of thermally insulated and isothermal boundaries in Tables 1 and 2, 
respectively. From these tables, it is clear that as the sequential number of the vibration modes 
increases, the non dimensional frequencies also increases for both the free plate and fluid loaded 
plate. 
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Table 1 Comparison of non-dimensional frequencies among the Green Lindsay-Theory (GL), Lord-Shulman 
Theory (LS) and Classical-Theory (CT) of thermo-elasticities for thermally insulated boundaries of circular  
plate 

Mode Plate immersed in fluid Free plate 
LS GL CT LS GL CT 

1 0.1572 0.0865 0.0239 0.1408 0.0442 0.0115 
2 0.2345 0.2019 0.0651 0.2205 0.1969 0.0554 
3 0.5337 0.4977 0.1674 0.4473 0.3888 0.1444 
4 0.7292 0.5385 0.1994 0.5941 0.5023 0.2487 
5 0.9408 0.6952 0.3964 0.7303 0.6050 0.5504 
6 1.4579 0.9714 0.4051 0.8070 0.8512 0.5551 
7 1.6707 1.1350 0.7478 1.2107 1.0230 0.6038 

 
Table 2 Comparison of non-dimensional frequencies among the Green-Lindsay Theory (GL), Lord-Shulman  
Theory (LS) and Classical-Theory (CT) of thermo-elasticities for isothermal boundaries of circular plate 

Mode Plate immersed in fluid Free plate 
LS GL CT LS GL CT 

1 0.1681 0.1236 0.0455 0.1284 0.1039 0.0209 
2 0.2747 0.2636 0.1601 0.1530 0.1213 0.1702 
3 0.3492 0.3928 0.2263 0.4220 0.4563 0.1950 
4 0.5391 0.4727 0.3867 0.5295 0.4702 0.2837 
5 0.7853 0.6036 0.6010 0.6752 0.5031 0.5029 
6 1.5288 0.7308 0.6910 0.8349 0.6092 0.7727 
7 1.5824 1.7015 0.9025 0.9342 0.9231 0.8081 

 
 

Also, it is clear that the non dimensional frequency exhibits higher amplitudes for the LS theory 
compared with the GL and CT since; there exist two kinds of sub-waves for the LS and three for 
the GL model. One propagates at the speed of the quasi-heat wave, another at the speed of the 
quasi-elastic wave in LS but one propagates at the speed of the quasi-heat wave and two at the 
speed of the quasi-elastic wave in GL. From the classical theory of elastic waves, we know that 
when elastic waves are splitting, the only reason for this is that the material becomes damaged and 
dissipative. So, we can obtain the results such as: the LS model is suitable for elastic materials, and 
the GL model is more suitable for dissipative materials. 

Achenbach (2005) says unlike the hyperbolic solutions, the classical solutions show no distinct 
wave front and therefore as expected and increase in temperature starts at the initial time. 
However, the difference in the predicted temperature between the two theories is small and only 
apparent for very small in the fundamental modes. These fundamental frequencies are large 
enough for the solutions given by both the theories to be numerically undistinguishable in case of 
many nondestructive evaluation (NDE) applications.  

 
6.1 Dispersion curves 
 
In Figs. 2 and 3, the dispersion of frequencies with the wave number is studied for both the 

thermally insulated and isothermal boundaries of the immersed cylindrical plate in different modes 
of vibration. From Fig. 2, it is observed that the frequency increases exponentially with increasing 
wave number for thermally insulated modes of vibration. But smaller dispersion exists in the 
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frequency in the current range of wave numbers in Fig. 3 for the isothermal boundary. As the wave 
number increases in both Figs. 2 and 3, the effect of fluid loading becomes more pronounced in all 
the modes of vibration, resulting higher frequency with small oscillation and cross over points 
which denote the energy transformation between the two medium. 

 
 

     
 

Fig. 2 Variation of frequency with wave number of thermally insulated cylindrical plate 
immersed in fluid 

 
 

    
 

Fig. 3 Variation of frequency with wave number of isothermal cylindrical plate immersed in fluid 
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Fig. 4 Variation of phase velocity with wave number of thermally insulated cylindrical plate immersed 
in fluid 
 

      

Fig. 5 Variation of phase velocity with wave number of thermally insulated cylindrical plate immersed  
in fluid 

 
 

 The variation of phase velocities with the wave number is discussed in Fig. 4 and Fig. 5 for 
both the thermally insulated and isothermal boundaries of the immersed cylindrical plate in 
different modes of vibration. In Fig. 4 the phase velocity is decreasing at small wave number 
between 0 and 0.4 and become steady for higher values of the wave number for thermally 
insulated modes of vibration. For isothermal boundary there is a small deviation on the phase 
velocity in Fig. 5 due to the damping effect of fluid medium and thermal relaxation times. From 
the Figs. 4 and 5 it is observed that the phase velocity of both thermally insulated and isothermal  
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Fig. 6 Variation of attenuation with wave number of thermally insulated cylindrical plate immersed in 
fluid 
 

Fig. 7 Variation of attenuation with wave number of isothermal cylindrical plate immersed in fluid 
 
 

cylindrical plate with fluid interaction  attains quite large values at vanishing wave number which 
slashes down to become steady and asymptotic to the shear wave velocity with increasing wave 
number. 

In Fig. 6, the variation of attenuation coefficients with respect to the wave number of the 
cylindrical plate is presented for the thermally insulated boundary. The magnitude of the 
attenuation coefficient increases monotonically and attaining the maximum between 0.1 and 0.3 
for first four modes of vibration, and slashes down to become asymptotically linear in the 
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remaining range of wave number. The variation of attenuation coefficients with respect to the 
wave number of the isothermal cylindrical plate is presented in Fig. 7, where the trend and 
behavior of the attenuation coefficient attains the maximum between 0.1 and 0.3 with dispersion 
for the small values of wave number and decreases to become steady and linear due to the 
relaxation times.  

From Figs. 6 and 7, it is clear that the effects of stress free thermally insulated and isothermal 
boundaries of the plate are quite pertinent due to the combined effect of thermal relaxation times 
and damping effect of the fluid medium. When the ratio of the densities of the fluid and elastic 
material is small (0.14), then the mode spectrum of immersed plate is slightly different from that 
of free plate. But,  when the normal component of  the  guided  waves exceeds that of the 
sound in the surrounding fluid, energy is  radiated from the solid plate to the fluid medium and 
these waves are referred to be the Leaky waves. 
 
 
7. Conclusions 
 

The two dimensional wave propagation of a homogeneous isotropic generalized thermo elastic 
cylindrical plate immersed in fluid was investigated in this paper. For this problem, the governing 
equations of two dimensional linear theory of generalized thermo elasticity have been employed in 
the context of the Lord-Shulman and Green-Lindsay theory and solved by the Bessel function 
solutions with complex arguments. The effects of the frequency, attenuation coefficient and phase 
velocity  with respect to the wave number of a Zinc cylindrical plate was investigated, with the 
results presented as the dispersion curves. In addition, a comparative study is made among the LS, 
GL and CT theories and the frequency change is observed to be highest for the LS theory, 
followed by the GL and CT theories due to the thermal relaxation time factor and added mass of 
the surrounding fluid medium.   
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