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Abstract.   Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory 
nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the 
road bridges. The close proximity between estimations by some numerical methods and the measured data 
for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the 
numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under 
the effect of the trains entering from the opposite directions while running at unequal speed and having 
dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic 
analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge 
structural damping and many modes of vibrations are included. The concept of modal superposition is used 
to solve for the system motion equations. The method of solution is indeed a computer assisted analytical 
solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some 
case studies are also considered for the validation of the proposed method. Furthermore, the effects of 
varying some parameters such as the distance between the bogies, and the bogie wheelset distance are 
studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-
bridge specifications are investigated. 
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1. Introduction 

 
Expansion of railway industries based on its many advantages needed extended studies 

concerned with improving safety, profitability and speed of transporting goods and passengers. 
The higher speed of travel, safety and increased ride comfort and the lower running costs and the 
use of clean energy resources are some of the advantages that favor the widespread use of railway 
transportation. 

Bridges are vital components of the railroads. On the bridge section, the track stiffness is lower 
and its composition is different, compared to the rest of the path. This can make the bridges as the 
bottle necks for the railway transportation. Generally, the use of the bridges in railroads is  
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associated with shortening the routes and preventing increase in the cost of laying the tracks. They 
are therefore, very popular. In the past, the design of railway bridges included procedures that 
were almost the same as the design of road bridges. However, the specific particulates of the 
railway bridges and the rolling stocks in comparison with the road bridges and machineries 
warranted particular studies. Research results pointed to the increased attention on the details of 
the bridge and the railway rolling stocks. The high-speed trains travel at operational speed in the 
range of 250-350 km/hr that is much faster than the normal road vehicles. The railway bridges 
have higher vehicle to bridge weight ratio. There is regularity in the interactive loading between 
the rail vehicle and the bridge. Such regularity is caused by the similarity in the axle load and the 
wheelset distances in different wagons. All of the above noted factors are considered as the most 
important parameters that differentiate the railway bridges from the road bridges.  

Variety of models has become available for the analysis of the dynamic behavior of the rolling 
stocks over the bridges. Some recent models by Yang et al. (2004), Xia and Zhang (2005), Liu et 
al. (2009), Garinei and Risitano (2008) include the moving load, the moving mass and the 
suspended mass models.  

The moving load model was also used by Piccardo and Tubino (2012) for the analysis of the 
dynamic response of the Euler-Bernoullie beams. Fryba (1996) made general overview of the 
theories of the moving load, moving mass and the suspended moving mass models and presented 
the corresponding equations and general solutions. Many studies were also performed by other 
researchers that involved numerical solutions to the problem, (Dinh et al. 2009), (Majka and 
Hartnett (2009)). Study by Sridharan and Malik (1979) involved the numerical analysis of 
vibration of beams subjected to moving loads. Yau (2004) in a study on the vibration of simply 
supported beams due to moving loads added two trusses to the middle section of the beam as extra 
supports to the general structure and studied the effect of the ratio of the truss height to the beam 
span length. Garinei and Risitano (2008) assumed variable moving load and reported a solution for 
the high speed trains in their paper. 

Generally, many reports in this field were based on the assumption of the moving load model. 
It provided simplified methods of solution with results within acceptable levels of accuracy. 
Therefore, such methods of solution are still in use. After studying the behavior of the bridge 
under single moving load, series of moving loads were also tested in order to improve the 
modeling techniques and also to increase the accuracy of the results. Fryba (1996) reported 
studying many cases of moving loads traversing bridges. However, he did not consider series of 
loads and modeled the case of a multi axle vehicle. Fryba (1996) then used numerical methods to 
solve the system motion equations. Ricciardelli and Briatico (2011) reported study of a supported 
beam loaded by a force with sinusoidal time variation moving at a constant speed. During this 
work, they challenged the accuracy of the approach used by many codes of practice for the 
evaluation of the transient response of footbridges to walkers. Wu and Dai (1987) proposed the 
idea of considering two moving loads traversing in similar directions and also in opposite 
directions. They initially solved the problem for a single span bridge. After comparing with the 
exact solutions, they analyzed the multi span bridges and used series of loads instead of a single 
load. The finite element method and the transfer matrices were used in order to solve the problem. 
They also added the effect of the speed of travel on the deflection of the midpoint of the bridge. It 
included loads moving in opposite directions at either constant or variable speed. Later on, in a 
study by Yang et al. (1997) a set of moving loads was considered and the phenomenon of 
resonance was investigated. The step functions due to the entry and the exit of the loads were 
modeled by using the equivalent series. As a matter of simplicity, the effects of damping were 
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ignored. It was also assumed that the maximum deflection happens at the bridge midpoint at the 
time when the last vehicle passes by. Savin (2001) analytically calculated the response of the 
bridge midpoint under series of moving loads. He reached to the conclusion that under the effect of 
a set of moving loads the effect of the free vibrations cannot be neglected and it has to be 
considered in addition to the forced vibrations of the bridge. The effects of the different speed of 
travel were also investigated in practical as well as in theoretical studies. Amongst such studies, 
Wu et al. (2001) in two special cases studied the case of opposing traversing trains by using the 
FEM models. 

Research in this area resorted to simplifications in order to avoid complexities and curb the 
huge number of calculations that would have otherwise been obligatory. This can be apparently 
altered by developing an exact analytical solution that reflects on the effect of damping in addition 
to the condition of opposing traversing vehicles. 

It is the purpose of this research to develop an analytical solution for the dynamic response of 
the railway bridges under two series of moving loads traversing simultaneously in opposite 
directions. It is indeed a computer assisted analytical solution. It combines the accuracy of the 
closed form solutions and the speed of calculation that can be provided by computers. The 
outcome of the analysis is the displacement of the bridge in many selected points along the bridge 
span. The calculation time is small and the results are accurate. With 100 data points along the 
bridge and 1500 time intervals, the solution procedure takes only a few seconds. It also facilitates 
varying many vital design parameters and collecting the results in a matter of seconds. The method 
involves a step by step procedure in which movement of each load traversing the bridge is defined 
as an event. The time of the occurrence and the type of such events is clearly defined. This is then 
extended into the equations that govern the bridge vibrations under two opposing moving loads. 
Such a method results in the bridge dynamic model that is used to in order to reach to the 
analytical results. Verification of the proposed model is by comparing it with the results that are 
reported by other researchers. The model is also used to evaluate the percentage of error in using 
some of the existing simplifications. Such simplifications include the assumption of one moving 
load in place of each bogie (instead of two moving loads) and the assumption that the maximum 
deflection of the bridge happens at its mid plane. The conditions of resonance and cancellation for 
the case of the simultaneously travelling trains are also considered. This is performed while 
varying the distance between the bogies in a vehicle and the speed of travel of the two sets of the 
trains. Some suggestions are also offered in order to avoid the resonance phenomenon in the 
dynamic responses. 
 
 
2. The Method of solution 
 

2.1 The basic assumptions 
 
The problem at hand and some simplifying assumptions to solve it are explained in this section. 

The purpose of the modeling is to obtain the complete dynamic response of the bridge as a 
function of time and location on the bridge. It involves the simultaneous travel of two trains 
traversing the bridge in opposing directions, as in Fig. 1. 

The following assumptions are used to solve for the moving load conditions, (Yang et al. 2004). 
1) The beam is of Euler-Bernoulli type that is homogeneous with constant cross section. The 

beam plane cross sections remain plane after deformations. 
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Fig. 1 Schematic representation of two trains simultaneously traversing a bridge in opposite directions
 
 
2) Only gravitational effect of the load is considered and its inertia effect is neglected (the same 

fundamental assumption for the moving load model). 
3) The vehicle's speed of travel is constant. 
4) The damping of the beam is of Rayleigh type. 
5) The beam initial conditions are set to zero (the beam initially at rest). Meaning that the 

points along the bridge have neither deflection nor speed at time zero. 
6) There is no assumption for the road surface stiffness.  
7) The second train enters the bridge at the same time as the first train at x = l. 
8) The vehicles in the two trains are similar and have the same axle loads and the same distance 

between the bogies. 
9) Variations in the distances between the wagons are neglected. 
10) The effect of the twist in the bridge is ignored in the analytical procedure.  
11) Only vertical forces are included and the longitudinal and lateral vibrations of the bridge 

are not considered. 
 

In order to further elaborate on the 10th assumption, it needs to be emphasized that this research 
is concerned with the dynamic response of the bridge under two opposing moving trains. Under 
such conditions, and in comparison with the case of a single moving train, it is expected that the 
two sides of the bridge each carrying a train tolerate much of the torsion effects. Therefore, in 
comparison with the deteriorating effects of deflection it is justifiable to ignore the lesser effects of 
torsion in the beam cross sections. The basis for such an assumption is also presented in the results 
of a numerical modeling reported by Wu et al. (2001). 

Based on such assumptions and by including the internal damping coefficient of (Ci) and the 
external damping coefficient of (Ce) the motion equation for the beam can be written as in Eq. (1), 
(Yang et al. (2004)). 
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In this equation, m is the mass per unit length and EI is the flexural rigidity of the bridge. u(x,t) 
is the time dependant bridge deflection at location x. uu , are the 1st and the 2nd derivatives of  in 
time. f(x,t) is the bridge excitation force at location x at time t. The bridge excitation forces come 
from the moving trains and are represented in Eq. (2) 
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In this equation F1 represents the excitation caused by the moving loads of the 1st train and F2 
represents the excitation forces caused by the 2nd moving train. In this case, each vehicle is carried 
on four wheelsets. For consistency, it is assumed that the 1st moving train enters the bridge from 
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the left end and the 2nd moving train enters from the right end. Generally, subscript 1 is used for 
the train entering the bridge from the left side and subscript 2 is used for the train that enters the 
bridge from the right side. All excitation forces on the bridge are of the impact type. To serve the 
purpose, the entry and the exit time for each load of each train are defined as the events in the 
corresponding time matrix. An event represents the entry or exit of each load from the left or the 
right sides of the bridge. The model involves two trains that interact with the bridge. Each train 
consists of N number of vehicles. The model vehicle is carried on two bogies each equipped with 
two axles. Each axle load is represented as a moving load that is identifiable with two events. 
Therefore, the total number of events for such a moving train traversing a bridge adds up to 8×N 
events. With the prior knowledge about the position of the wheelsets in the trains that is associated 
with the train makeup and the sizes of the vehicles one can start codifying for the so called events. 
Adding the train speed of travel to such a code specifies the time of occurrence of the specific 
events of entry and exit of the individual loads on the bridge. Fig. 2 schematically presents the 
entry of two railway vehicles onto the bridge. The vehicles are 30 m in length and approach the 
bridge from opposing directions. The vehicles speed of travel is 25 m/s hence each axle needs 1 
sec to clear the bridge. It takes each vehicle 1.2 sec to travel along the bridge. The time matrix 
codified for the entry and the exit events for the sample case is also presented in Fig. 2. For this 
case, there are 16 entry and exit events and the time matrix holds 16 columns. Each row in the time 
matrix defines the entry or the exit events for the rail vehicle on two bogies and four axles. Each 
column in the time matrix can hold one nonzero element. Such nonzero element represents the 
time of the occurrence of the event that is associated with the corresponding column number. The 
first row in the time matrix that is marked with letter “A” represents the entry of the vehicle onto 
the bridge from the left side. 

The four wheelsets of this vehicle enter the bridge at time “0”, “0.2”, “1” and “1.2” in seconds, 
respectively. The second row in the time matrix that is marked with letter “B” presents the entry of 
the four wheelsets of the opposing train that enter at time “3”, “3.2”, “4” and “4.2” seconds, 
respectively. The third raw in the time matrix marked with letter “C” identifies the exit events of 
the wheelsets of the left entering vehicle. They leave the bridge at time “1”, “1.2”, “2” and “2.2” 

 
 

Fig. 2 The sample time matrix codified for the entry and the exit events for two rail vehicles while each 
carried on two bogies and each bogie equipped with two axles  
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seconds, respectively. The fourth raw in the time matrix that is marked with letter “D” identifies 
the exit events of the wheelsets of the right entering vehicle at time “4”, “4.2”, “5” and “5.2” 
seconds, respectively. The use of such a time matrix creates a systematic tracking code for the 
entry and the exit of the loads onto the bridge and facilities the solution procedure. Obviously the 
size of the time matrix depends on the train configuration. The case presented in Fig. 2 is only a 
demonstration that is useful for the special case under consideration. When trying to solve for the 
system motion equations, there will be two excitation forcing functions namely F1(x,t), F2(x,t) as in 
Eqs. (3)-(4) 

)))((())(())((),( 111111 eee nTtVxPtnTHnTtHtxF                            (3) 

))))(((())(())((),( 222222 eee nTtVlxPtnTHnTtHtxF                        (4) 

In the above equations, H is the unit step function, T1(ne) is the ne
th event that includes the entry 

of the 1st train load.  )(1 enT  is the exit event corresponding to the entry of the ne
th event. The event 

corresponding to the entry event of a load needs to be associated with the exit event of the same 
load. P1 is the axle load on the bogie of the 1st train and V1 is the speed of travel of the 1st train. 
The same parameters when marked with subscript 2 are used for the 2nd train. The correspondence 
between the entry and the exit events of a wheelset is presented in Eq. (5) 
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Eq. (1) is the general equation of vibrations of the beam that represents the bridge. With the 
assumption of simply supported ends for this beam with nil initial displacements, one can write the 
boundary conditions as 
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and the initial conditions are 
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By the concept of the modal superposition the deflection of the beam u(x,t) can be expressed as 
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Where q(t) denotes the generalized coordinate and (x) the shape function of the vibration 
mode. Substituting Eq. (8) into Eq. (1) and multiplying both sides of the equation by  (that 
represents the mode shapes) and integrating with respect to x over the length l of the beam, results 
in the motion equation for the nth mode of the simply supported beam, (Yang et al. (2004)) 
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The following definitions can be used 
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Where αi is the coefficient of the internal damping, αe is the coefficient of the external damping, ωn 
is the bridge natural frequency of the nth mode and n is the total damping coefficient of the nth 
mode of vibration of the bridge. In order to adjust to the support conditions, it is also considered 
that for the case of the simply supported beams, the nth modal shape of vibration is 

l
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x
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The above equations present the relations governing the time response of the beam by including 
the excitation functions of the left and the right entering trains. The buildup of the excitation forces 
consistent with Eq. (9) is presented in Fig. 3.  

It needs to be notified that the dynamic response of the beam given by Yang et al. (2004) 
excluded the effect of damping and considered only the first mode of vibration. Such 
simplifications in the solution procedure are capable of altering the results and do not exist in the 
present method. The solution process in the present research is by including damping and 
considering as many modes of vibration as necessary. The solution starts by seeking the excitation 
functions in the motion equations, Eq. (9). This equation needs to be solved repeatedly with the 
number of repetitions equal to the total number of the events. The initial conditions at the start of 
each event come from the status of the system at the end of the last event. Therefore, the system 
motion equation is actually solved in a piecewise manner while the initial conditions are 
continuously updated. It is observed that if the two loads enter the bridge at the same time, the odd 
terms in the frequency responses accumulate while the even terms in the frequency responses 

 
 

 
Fig. 3 The buildup of the excitation forces between the entry and the exit of a wheelset 
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subtract. The parameters defining the entry and the exit events are embedded in the time matrix 
that is already discussed in the last section. In Eq. (9), the only term that highlights the excitation 
function of the opposing train is the term (-1)n+1. Such a term inverts the even numbered mode 
shapes. The odd modes are of the same phases while the even modes are at opposing phases. 
 

2.2 Solving for the system motion equations 
 
Consistent with the prior description on the solution procedure, the time response of the system 

can be expressed as 
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Vn or 21
  is the excitation frequency and T(ne) is the time of the occurrence of the event 

number “ne”. The time response q(t) comprises of a number of sub-elements. The number of such 
elements is equivalent to the total number of the events that is already defined in the time matrix. 
Each sub-element carries two associated coefficient matrices A&B. As and Ac are the elements of 
matrix A and are the coefficients of the Sine and the Cosine terms in the homogeneous part of the 
solution. Bs and Bc are the elements of matrix B and are the coefficients of the Sine and the Cosine 
terms in the particular solution in the bridge dynamic response. Obviously, the elements of the 
matrices A&B need to be calculated, repeatedly. It is at this stage that the proposed solution 
procedure seeks computer assistance in order to calculate and fill in for all the elements of the 
coefficient matrices A&B. It is then fair to call the procedure as a computer assisted analytical 
solution. In order to reduce the number of such calculations, all harmonic functions in the time 
response carry a time shift equal to T(ne). The value of the elements in the coefficient matrix B 
(corresponding to the excitation) is only a function of the side of the entry of the load for the 
specified event. For the exit events, the corresponding element in matrix B drops to zero and 
according to Eq. (5) the value of the associated (entry) event needs to be zero, as well. At such a 
moment no load enters the bridge and the effect of the bygone load need to be suppressed. A is a 
matrix of coefficients corresponding to the free vibrations of the bridge. The elements of this 
matrix are calculated by applying the conditions of continuity in the response and its first 
derivative for any specific event in comparison to its prior event. In fact it is possible to write a 
computer program that uses series of back tracking equations in order to extract all elements of the 
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A & B coefficient matrices. For the purposes of this research, all such processes are performed by 
including the first five natural modes of vibrations of the bridge in the final solution. By summing 
up the results, the time response in the bridge displacement function is completely calculated.   
The solution to the system motion equation is assisted by writing a computer program in 
MATLAB environment. This program receives two sets of input in order to perform the primary 
calculations and to prepare the system idealized time matrix. The program solves for the system 
motion equations and outputs the bridge deflection. The flow of events corresponding to this 
computer program is presented in Fig. 4. Definitions for the symbols that are used in this flowchart 
are available in appendix 1. The consistency in the modeling procedure and the adequacy of the 
results are checked by using the computer software for solving some known problems that are 
already reported in the corresponding literature. 

 
 

3. Validation of the proposed vehicle-bridge dynamic interaction model and the 
solution procedures 
 

The issue of the dynamic response of the bridges under moving loads while the loads enter and 
traverse from the same side of the bridge is already practiced by some researchers. Such problems 
have been analytically and numerically investigated. There are reports by Wu et al. (2001) and 
Nguyen et al. (2009) about numerical solution to the vehicle bridge interaction dynamics including 
a complete model of a train and the bridge. Also, there are reports about the two special limited 
cases when the trains enter the bridge from different sides only at a specified speed and with 
certain delay time. Wu et al. (2001) also studied the case of opposing moving trains by using the 
Finite Element model under the assumptions that the trains travel at similar constant speed. 
However, they did not include the train geometrical specifications in the model. Also, the effect of 
varying the speed of travel or introducing the delay time between the trains on the dynamic 
response of the bridge was not considered. There is hardly any report regarding the response of the 
railway bridge under the effect of two trains entering from the opposite directions of the bridge 
while including different speed of travel or the train geometrical specifications. Such issues have 
been attended to in this research. The sample cases include two moving loads entering the bridge 
from the same and then from the opposite directions. The dynamic response of the bridge under 
such conditions is obtained. In what follows the results of such analysis are discussed. 
 

3.1 The case of a single train traversing the bridge 
 

Fig. 5 is a comparison between the results of the computer assisted analytical solution from this 
research and the analytical solution reported by Yang et al. (2004). It considers a concrete beam 
with length l=20 m, moment of inertia I=3.81 m4, modulus of elasticity E=29.43 GPa, mass per 
unit length m=34088 kg/m for which the first frequency of vibration solved is 1=44.75 rad/sec. 
The train is assumed to be consisted of N=5 cars of identical length d=24 m. The two bogies of 
each car are separated by a distance of 18 m. The mass per bogie is 22000 kg. For the bridge with 
this configuration the resonance speed found to be 34 m/s and the speed of cancellation equal to 26 

m/s, (Yang et al. (2004)). 
It was reported that for a train at the speed of 34 m/s the midpoint response of the beam tends to 

increase steadily as there are more loads passing the beam, which is indicative of the resonance 
phenomenon. For a train at the speed of 26 m/s, the response of the beam appears merely as a 
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Fig. 4 The computer program flowchart 

 
 
periodic function. No effect of amplification observed during the passage of the wheel loads on 
this bridge. As long as all the wheel loads depart from the beam, no residual response remains on 
the beam, which is a typical cancellation phenomenon. The comparisons are for the two cases 
when the speed of travel is equal to 26 m/s and 34 m/s. The case for the opposing movements of 
the loads cannot be considered, yet. This was not exercised in the work reported by Yang et al. 
(2004). Naturally, under such conditions, the bridge and the rolling stock are the only parties in 
implying the excitation and bringing up the responses. One may also expect to observe the 
resonance and the cancellation conditions. 

It is also needed to be emphasized that the solution method in this research is capable of 
including the bridge damping into the calculations. However, in order to compare the results with 
the results that are reported by Yang et al. (2004) the effect of the bridge damping is not included.  
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Fig. 5 A comparison between the results from this research and the results reported by Yang et al. 
(2004), a single vehicle traversing the bridge at the speed of 26 m/s and 34 m/s 

 
 

There is good agreement between the results from the two methods. In the work reported by Yang 
et al. (2004) the mathematical series representing the sequential loading is replaced with an 
equivalent sinusoidal series. However, only the 1st mode of vibration was included and the effect 
of damping ignored. That is while the method of solution that is proposed in this research 
correlates the position of the individual wheelset loads directly to their time matrix. The solution 
procedure is direct and does not contain any simplifications. It can handle as many modes of 
vibrations as felt necessary. 
 

3.2 The case of two opposing trains traversing the bridge 
 

The accuracy of the proposed method is further proved by comparing the results with that 
reported by Wu et al. (2001). A three dimensional model of the train with 15 wagons is presented. 
The bridge elements are also modeled and the interaction between such elements is numerically 
solved. The data in Table 1 is used for the modeling purposes. This is the case of a two-way 
railroad bridge with two trains on two different tracks crossing the bridge at the same or at 
different speed. The trains enter the bridge at similar speed of 100 m/s. Each of the two trains 
consists of 15 identical cars. The trains meet at the midspan of the bridge (referred to as the 
symmetric crossing movement). The maximum displacement of the bridge is found to be equal to 
7.8 mm. Wu et al. (2001) introduced the system damping in a matrix form. However, as per their 
suggestion and for the purposes of this research the damping coefficient is equal to 3.5%.The other 
input data to the model are the same as in Table 1. In this attempt, the dynamic response of the 
bridge at its mid point is calculated in 2 cases. Case (a) is for the simultaneous entry of the two 
trains onto the bridge. This case is considered as the symmetric crossing movement. In case (b) it 
is assumed that the 2nd train enters the bridge at a time when the midpoint of the 1st train passes the 
bridge midpoint (asymmetric crossing). All such cases are solved by the computer assisted 
analytical method that is proposed in this research and the results are compared with the numerical 
results reported by Wu et al. (2001). The results are presented side by side, in Fig. 6. 
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Table 1 The bridge and the rolling stock particulates as reported by Wu et al. (2001) 

EI=22.149×1010 N.m2 P1 = 0 & 27475 N d1B  = 17.5 m td = 0 & 1.9 Sec 
l = 30 m P2 = 274750 N d2B  = 17.5 m tf = 4.2 Sec 

m = 41740 kg/m V2 = 360 km/h d1C = 7.5 m TS = 0.01 Sec 
N = 15 V1 = 360 km/h d2C = 7.5 m n = 0.035 
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Fig. 6 A comparison between the computer assisted analytical results from this research and the results 
from the numerical solutions reported by Wu et al. (2001) 

 
 

The close proximity of the results of the two methods can clearly be noted specially in predicting 
the maximum values and the frequency of vibrations for the two cases considered. 

Nguyen et al. (2009) also used the same model as Wu et al. (2001) with the same specifications 
for the bridge and the rolling stock as in Table 1. They also used a numerical procedure to solve 
for the dynamic response of the bridge and ended up with the same results as in Fig. 6. 
Comparisons with the results from some numerical methods, assisted in verifying the method of 
solution that is proposed in this research. Having established the method, it is intended to highlight 
the differences in the dynamic responses when the trains enter the bridge from the same sides or 
from the opposite sides. 
 
 
4. The effect of the axle distances in the dynamic response of the bridge 
 

In many pioneer studies dealing with the rail vehicle-bridge interactions, the distance between 
the bogie axles is not considered, (Yang et al. (2004)). In such cases, the bogie is modeled as a 
single load with the amount of load equal to twice of the axle load or simply equal to half of the 
total mass of the vehicle. It was actually a remedy to avoid increasing the number of the unit step 
functions in defining the entry and exit of the load onto the bridge. The effect of such 
simplification (limitation) for one way entry or opposing entry onto the bridge is investigated in 
this section of the research. In order to reach to the purpose and by using the time matrix, initially 
half of the bogie load enters the bridge and after some time delay the second half of the bogie load 
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enters the bridge. Such time delay is equal to the ratio of the longitudinal axle box distance (ABD) 
and the vehicle speed of travel (V). Such practice is applied to all bogies of the 15 wagons that 
were included in the model. The data in Table 1 is used for the bridge and the rolling stock. The 
results are presented in Fig. 7.  

Fig. 7 presents the dynamic response of the bridge for three different wheel distances. Fig. 7(a) 
is for the dynamic response of the bridge midpoint when the train enters from one side only. Fig. 
7(b) presents the dynamic response of the bridge when two opposing trains traverse the bridge. It 
is clear from the results that ignoring the wheel distances has no major effect on the bridge 
dynamic response. The responses of the bridge are almost the same in both cases with slight phase 
differences that appear in the dynamic response after simplifications. Upon ignoring the axle 
distance in a bogie, it is assumed that the entire bogie load enters the bridge at one instant. When 
considering the axle distance, the bogie load enters the bridge in two instances. This can justify the 
slight phase differences that appear between the results. The above example is with the assumption 
that the speed of travel of the two trains is equal. 

In what follows the assumptions of one load per bogie or two loads per bogie are further 
investigated. It is mixed with the possibility for the two trains opposing each other and traveling at 
unequal speed. The same data as in Table 1 are considered for the bridge and the rolling stock. The 
problem is solved four times with the results presented in Fig. 8. While the speed of travel of the 
first train is assumed to be the same, it is assumed that the 2nd train traverses once at a speed of 
270 km/hr (V2=0.75V1) and again at a speed of 180 km/hr (V2=0.5V1). The trains enter the 
bridge from the opposite directions. Regarding the distance between the bogie axles, the problem 
is also surveyed by including and then ignoring the axle distances. When including the axle 
distances there are two loads per bogie. When ignoring such distance there is only one load per 
bogie. Based on such conditions, the dynamic response of the bridge midpoint is calculated and 
presented in Fig. 8. From these results it is clear that there is no noticeable sensitivity in the bridge 
midpoint dynamic response to the simplification in reducing the bogie load to one. In other words, 
when the speed of travel of the opposing trains is not the same, ignoring the axle distance does not 
generate noticeable error in the results. 

 
 

(a) (b) 
 Fig. 7 The effect of including the distance between the bogie axles in the dynamic response of the bridge 
midpoint (for three different axle distances) (a) Only one train traversing the bridge (b) Simultaneous 
entry of two opposing trains at similar speed 
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Fig. 8 The bridge calculated midpoint vertical displacement with the assumption of one load per 
bogie (vehicle carrying 2 loads) and two loads per bogie (vehicle carrying 4 loads) The vehicles 
traveling at the same or at different speed 

       
 
5. The location of the maximum bridge deflection 

 
So far, the adequacy of the proposed computer assisted analytical method is established. By 

comparison, it is accurate and reliable in predicting the dynamic response of the railway bridge 
under the influence of a combination of moving loads. Now, it is time to study the effect of 
varying some important parameters that are considered as the input to the model. Such parameters 
represent the bridge and the vehicle specifications. While studying the bridge dynamic response, it 
is often a good practice to introduce an index that can clearly define its behavior. In many 
references and also in the opening section of this paper it is mentioned that the deflection of the 
bridge at its midpoint is a proper index in order to study its dynamic response. Such an assumption 
is based on the importance of the odd mode shapes especially the 1st mode shape in comparison 
with the other modes. Any variation in the input data that may cause an increase in the maximum 
value of the midpoint displacement is undesirable and vice versa. The adequacy of such a criterion 
is investigated in this section. This includes the case of one way traverse or the simultaneous two 
way traverse of the rolling stocks over the bridge.  
 

5.1 Direction of travel and the bridge maximum deflection 
 

With this purpose in mind, the data in Table 1 is used to calculate the displacement of points 
along the bridge. In this case there is only one train consisting of 15 vehicles that crosses the 
bridge. It enters the bridge from the left side at time t=0. The results are calculated for 4.5 seconds 
that gives the train enough time to clear out of the bridge. The results are presented in Fig. 9.  
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Fig. 9 (a) The calculated bridge deflection and the instantaneous location of the point with maximum 
deflection for the one sided entry of the train (b) The difference between the maximum absolute vertical 
displacement and the vertical midpoint displacement 

 
 

Two parameters of interest are evaluated including the bridge midpoint displacement and the 
point with the maximum displacement. Such points may not necessarily be the same. Fig. 9(a) 
presents the spectrum for the vertical displacement of all points on the bridge against the time of 
the travel. Also the black line in this spectrum presents the time and position for the location of the 
point with maximum deflection on the bridge. According to many references concerned with this 
subject, the bridge midpoint displacement is a good indicator and an index of its behavior. In the 
above example, while the load traverses the bridge, if the maximum vertical displacement was 
always happening at the midpoint the black line existing in the spectrum in Fig. 9(a) should have 
stayed as a straight line passing through the bridge midpoint at x=15 m. Severe variations of this 
line around the bridge midpoint are obvious. Therefore, the maximum vertical displacement even 
in the case of a series of loads entering from one side does not always happen at the bridge 
midpoint. Such a point of maximum bridge displacement can also happen near the bridge supports. 
However, yet it is not fair to question the adequacy of the results that are presented in the reference 
papers. Even though, the points of the maximum bridge vertical displacement sometimes move 
away from its midpoint it is possible to prove that this happens only when the size of the 
displacements are very small. Fig. 9(b) presents the difference between the maximum bridge 
vertical displacement and its midpoint displacement against time. In this case, the maximum for 
such differences is less than 4% of the maximum vertical displacement during the whole process 
of the train traversing the bridge. Therefore, when the train enters the bridge from one side only, 
the point of maximum vertical displacement does not always lie at its midpoint. However, in the 
moments when the bridge undergoes large deflections the point of maximum deflection lies at the 
bridge midpoint. Therefore, the bridge midpoint can be a fair representative for its dynamic 
response during the passage of a series of loads on the one sided entry. To continue on, with the 
same data as in Table 1, two trains simultaneously enter the bridge. Each train consists of 15 
similar vehicles. The results for the dynamic response of the bridge are presented in Fig. 10. It 
presents a time based spectrum for the vertical displacement of points along the bridge. It also 
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presents the points with maximum displacement and the difference between the vertical 
displacement of the midpoint and the absolute maximum vertical displacement. Under the 
conditions of the simultaneous traverse of the two trains entering from the opposite sides, the 
bridge will be in a symmetrical condition at all times. Therefore, the spectrum for the vertical 
displacement of the points on the bridge needs to be symmetrical around the midpoint of the 
bridge at location x=15 m. Fig. 10(a) shows that the maximum vertical displacement does not 
happen at the bridge midpoint, at all time. It may happen at some other points, as well. The 
difference between the two cases of only one train entering from the left side and opposing 
movement of the trains presented in Figs. 9-10 lies in the size of the difference between the 
maximum displacement and the midpoint displacement. Contrary to the one way moving, when 
there are two trains traversing the bridge the difference between the maximum vertical 
displacement and the vertical displacement of the midpoint can be noticeable. It happens to be 
about 6% of the maximum bridge displacement, for this sample case. This is observed during the 
whole process of the train traversing the bridge. Such a phenomenon can be attributed to the 
cancelation of the even modes of vibration and the resonance in the odd mode shapes under such 
moving loads circumstances.  

Therefore, during the simultaneous opposing movement of the trains at similar speed, the 
bridge midpoint cannot be a proper representative to express out the dynamic specifications of the 
bridge. It will then be necessary to use the maximum displacement to judge about the bridge 
dynamics. 
 

5.2 The vehicles speed ratio and the maximum bridge deflection 
 

During the last exercise, it is also observed that the opposing movement of the trains over the 
bridge is considerably sensitive to the speed ratio between the two passing trains. Therefore, in this 
section the spectrum for the vertical displacement of the bridge is presented by varying the speed 
ratio of the moving vehicles. In the first instance the speed of travel of the 2nd train is half of that 
for the 1st train (V2=180 km/h). Also presented is the ratio of the difference between the  
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Fig. 10 (a) The calculated bridge deflection and the instantaneous location of the point with maximum 
deflection when two opposing trains traverse the bridge at similar speed (b) The difference between the 
maximum absolute vertical displacement and the vertical midpoint displacement 
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Fig. 11 (a) The vertical displacement of all points on the bridge and the location of the maximum 
deflection during the simultaneous entry of two trains at V2=0.5V1=180 km/h (b) The bridge deviation 
factor (DF) at V1 = 360 km/h 

 
 

maximum vertical displacement and the midpoint displacement to the maximum bridge 
displacement. This is calculated and reported as a deviation factor (DF) that is a function of the 2nd 
train’s velocity, according to Eq. (14) 








 


deflectionMax

deflectionspanMiddeflectionMax
VDF max)( 2                            (14) 

The corresponding results are presented in Fig. 11.  
The outcome is contrary to the one way trip or the two way trips of trains at similar speed. In 

such cases the location of the maximum displacement hovered around the bridge midpoint. 
However, in the present case the locus of the points with maximum deflection moves away from 
the bridge support at the side of the entry of the faster train and gets closer to the support at the 
side of the entry of the slower train. As an example, in this case that the speed of the 2nd train is 
half of it for the 1st train the locus of the points with maximum displacement drifts around the line 
going through x=20 m. Consequently, the maintenance of two-way bridges needs more rigorous 
testing. The search for the cracks is needed at points other than the midpoint and nearer to the 
supports on the side of the entry of the slower trains. Fig. 11(b) is a more general form of 
presenting the bridge dynamics. The horizontal axis represents the speed ratio of the 2nd train to the 
1st train. The vertical axis is the deviation factor (DF) as defined in Eq. (14). In this figure, when 
the speed ratio is small, the conditions are equivalent to the conditions of one way trip. In this case 
at the worst condition, the maximum bridge displacement has approximately 4% deviation from 
the bridge midpoint displacement. However, by increasing the speed of the 2nd train such deviation 
increases sharply to such extents that at some speed the maximum bridge displacement can be 27% 
more than the maximum midpoint displacement. Since the speed of travel is not the same, the 
excitation frequencies become variable and all modes of vibrations of the bridge are excited. At 
this situation, the even modes of vibration may experience resonance and the odd modes may 
experience cancellation. Therefore, the maximum displacement can happen at any location and it 
can be higher than the size of the maximum midpoint displacement. As the speed ratio gets closer 
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to 1, meaning that the speed of the 2nd train nears the speed of the 1st train, the size of the deviation 
factor decreases and eventually reaches to 6%. Such reduction is due to the increase in the 
symmetry in the excitation that pushes the maximum displacement toward the bridge midpoint and 
its size nears the midpoint displacement. 
 
 
6. The conditions of resonance and cancelation 
 

Yang et al. (2004) reported attempts to identify the conditions that end up to the resonance 
phenomenon. In the search for the resonance, he included the vehicles’ speed ratio and the ratio of 
the bridge length to the length of each vehicle in the “train consist”.  

It is also of interest to this research to study the conditions of resonance and cancellation under 
the simultaneous traverse of two trains at different speed ratios. The data in Table 1 are used. As 
an indicator of the geometry of the traversing rolling stock, the distance between the two bogies 
that represents the length of the vehicle is variable. While the speed of travel of the 1st train is kept 
constant at 360 km/hr the speed ratio between the trains is variable. The dynamic response of the 
bridge under such general input conditions is calculated and presented in Figs. 12(a)-(b). 
The maximum bridge displacement during the whole process of the train passage is used as a 
parameter that highlights the resonance and cancellation conditions. Fig. 12 includes the different 
speed and length ratios. The bridge is 30 m in length and the two trains have the same geometries. 
The abscissa in Fig. 12(b) is the trains speed ratio and the ordinate is the ratio of the bridge length 
to the distance between the bogies. The conditions of resonance and cancellation can clearly be 
noted in this figure. It also shows that there are no distinctions between the cancellation and the 
resonance zones. With any slight change in the passing trains’ geometry or any change in the 
trains’ speed ratio the dynamic response can cross over from the cancellation zone into the 
resonance zone (moving from the blue zone to the red zone in Fig. 12(b)). Generally by having the 
results as in Fig. 12(b) and by noticing the geometry of the passing train one can adjust the speed 
ratio in such a way that minimizes the damage to the bridges during the simultaneous traversing of 
the trains. The bridge design needs to be such that in case if there is any variation in the speed 
ratio, the bridge does not fall into the resonance. In the case of this example, the choice of a rolling 
stock with the ratio of the bridge length to the bogie distances about 0.78 or higher than 1.7 can be 
helpful. Such results are based on the assumption that the two traversing trains that enter the bridge 
from the opposite sides are of the same type with the same geometrical specifications. 

In order to observe the effect of working with dissimilar traversing trains, another set of results 
are obtained. It is assumed that the distance between the bogies of the 2nd train is constant at 12 m. 
With the assumption of 30 m for the bridge length, the distance between the bogies of the 1st train 
varies with the length to distance l/d ratio. The distribution of the bridge maximum displacement is 
presented in Fig. 13. It is shown that if the distance between the bogies in a train is kept constant 
the conditions of resonance and cancellation will be fairly independent from the train speed of 
travel. It is clearly more dependent on the train geometrical specifications. In this case, design with 
the distance ratio of 0.78 or higher than 1.7 increases the possibility of falling into the cancellation 
conditions. Another interesting outcome is the cancellation condition that happens at the speed 
ratio higher than 0.7. Fig. 13 shows that during the simultaneous traverse of the trains, the 
excitation on the bridge is so complex that one cannot be confident in claiming that reducing the 
speed of travel is of any benefit to the bridge. 
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Fig. 12 Variations in the bridge maximum displacement versus the speed and length ratios for the 
case of similar opposing trains 

 
 

It needs to be reminded that there are many more interesting situations that are worth 
investigating. Such are the effects of varying the distances between the axles of the bogies, or the 
distances between the vehicles. The effect of varying the vehicle axle load on the bridge dynamic 
response is also important. It is all with the purpose of reaching at proper values for the speed of 
travel over the bridge and the geometrical parameters that can maximize the bridge life time, as 
much as possible. 
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Fig. 13 Variations in the bridge maximum displacement versus the speed and the length ratios for 
the case of dissimilar opposing trains 

 
 

7. Conclusions 
 
In this research the dynamic response of the railway bridge during the simultaneous traverse of 

the series of moving loads investigated. The problem solved by developing a computer assisted 
analytical method. In comparison with other methods of solution, the proposed method exclusively 
benefits from offering an analytical closed form solution that also uses computers and some 
numerical procedures in order to facilitate and speed up its course of actions. It combines the 
accuracy of the closed form solutions and the speed of calculations that can be provided by 
computers. Also as another advantage, the effects of damping and many modes of vibrations in the 
dynamic response of the bridge are included. The proposed algorithm facilitates dynamic analysis 
of the vehicle-bridge interaction by allowing opposing loading scenarios and considering 
variations in the length and the velocity ratios. It also provides flexibility in defining the train 
geometrical particulates. To the knowledge of the authors, none of the available methods provide 
so much possibilities combined together that can also provide accurate, reliable and fast responses 
to the issue of the rail vehicle-bridge dynamics. 

In the process, the differences in the dynamic response in comparison with the case of one way 
trip of series of loads discussed. The adequacy of the method established by comparing the results 
with the results reported in the corresponding literature. It is concluded that during the 
simultaneous entry of the trains onto the bridge, with the same or at different speed of travel, the 
assumption of a single load per bogie causes no major error in the results. However, this can be 
jeopardized if there is any delay between the entries of the two trains. 

The location of the point with maximum deflection on the bridge that interacts with the railcar 
was also investigated. It is concluded that such a point does not always lie at the bridge mid-span. 
Contrary to the one way moving, when there are two trains traversing the bridge the difference 
between the maximum vertical displacement and the vertical displacement of the midpoint can be 
noticeable. The speed ratio of the traversing crossing trains also has noticeable effect on shifting 
the location of the point with maximum deflection on the bridge, away from its midpoint. 

Eventually by simultaneously varying the ratio of the bridge length to the bogie axle distance 
(l/d) the conditions of cancellation and resonance were investigated. It is shown that by proper 
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design for the bridge, the proper choice for the rolling stock and by controlling the speed of travel 
it is possible to lower the possibility for the resonance phenomenon during the bridge operation. 

The railway bridges with two-way traffics are more susceptible to damage. Very often they 
face the similar type of the fleet though, not guaranteed. It is a fruitful exercise to study the 
dynamic response of the bridge and its conditions for resonance and cancellation. It will then be 
possible to choose the speed of travel and the vehicle-bridge geometrical parameters in such a way 
that lowers the bridge dynamic loading and elongates its life span. Introduction of the time delay 
between the entries of the opposing trains onto the bridge can alter the results. This is the subject 
of further studies by the authors and is not reported in this article.   
 
 
Acknowledgements 
 

The Authors of this article would like to acknowledge the support of the research office of Iran 
University of Science and Technology throughout the course of this study. 
 
 
References 
 
Dinh, V.N., Kim, K.D. and Warnitchai, P. (2009), “Dynamic analysis of three-dimensional bridge-high 

speed train interactions using a wheel-rail contact model”, J. Eng. Struct., 31, 3090-3106. 
Fryba, L. (1996), Dynamics of Railway Bridges, Academia Praha, Czech Republic. 
Garinei, A. and Risitano, G. (2008), “Vibrations of railway bridges for high speed trains under moving loads 

varying in time”, J. Eng. Struct., 30, 724-732. 
Liu, K., De Roeck, G. and Lombaert, G. (2009), “The Effect of dynamic train-bridge interaction on the 

bridge response during a train passage”, J. Sound & Vibration, 325, 240-251.  
Majka, M. and Hartnett, M. (2009), “Dynamic response of bridges to moving trains: A study on effects of 

random track irregularities and bridge skewness”, J. Computers and Structures, 87, 1233-1252. 
Nguyen, D.V., Kim, K.D. and Warnitchai, P. (2009), “Simulation procedure for vehicle–substructure 

dynamic interactions and wheel movements using linearized wheel–rail interfaces”, J. Finite Elements in 
Analysis and Design, 45, 341-356. 

Piccardo, G. and Tubino, F. (2012), “Dynamic response of Euler-Bernoulli beams to resonant harmonic 
moving loads”, Struct. Eng. Mech., 44(5), 681-704.   

Ricciardelli, F. and Briatico, C. (2011), “Transient response of supported beams to moving forces with 
sinusoidal time variation”, J.  Eng. Mech., ASCE, 137(6), 422-430. 

Savin, E. (2001), “Dynamic amplification factor and response spectrum for the evaluation of vibrations of 
beams under successive moving loads”, J. of Sound & Vibration, 248(2), 267-288. 

Sridharan, N. and Mallik, A.K. (1979), “Numerical analysis of vibration of beams subjected to moving 
loads”, J. Sound & Vibration, 65, 147-150. 

Wu, J.S. and Dai, C.W. (1987), “Dynamic responses of multi-span non-uniform beam due to moving loads”, 
J. Struct. Eng., ASCE, 113(3), 458-474. 

Wu, Y.S., Yang, Y.B. and Yau, J.D. (2001), “Three-dimensional analysis of train-rail-bridge interaction 
problems”, J. Vehicle System Dynamics, 36(1), 1- 35. 

Xia, H. and Zhang, N. (2005), “Dynamic analysis of railway bridge under high-speed trains”, J. Computers 
and Structures, 83, 1891-1901.  

Yang, Y.B., Yau, J.D. and Wu, Y.S. (2004), Vehicle-Bridge Interaction Dynamics: With Applications to 
High-Speed Railways, Taiwan: World Scientific Publishing Co. Pte. Ltd. 

Yang, Y.B., Yau, J.D. and Hsu, L.C. (1997b), “Vibration of simple beams due to trains moving at high 
speeds”, J. Eng. Struct., 19(11), 936-944. 

733



 
 
 
 
 
 

Mohammad Ali Rezvani, Farzad Vesali and Atefeh Eghbali 

Yau, J.D. (2004), “Vibration of simply supported compound beams to moving loads”, J. of Marine Science 
and Technology, 12(4), 319-328. 

 
 
 
 
Appendix 1 
 
Definitions for the terms that are used in the computer program flowchart, presented in Fig. 4. 

 
d1B is the distance between the bogies in a railcar in the 1st train in meters 
d2B is the distance between the bogies in a railcar in the 2nd train in meters 
d1C is the distance between the railcars in the 1st train in meters 
d2C is the distance between the railcars in the 2nd train in meters 
d1ba is the distance between the wheelsets of a bogie in the 1st train in meters 
d2bs is the distance between the wheelsets of a bogie in the 2nd train in meters 
td is the time delay between the entry of the 1st and the 2nd train in seconds 
tf is the length of time for calculations in seconds 
N is the number of railcars in a train 
Z is a row vector of size (1×16N) that defines the sequence in the wheels loading of the bridge 
Tt is a row vector of size (1×16N) associated with Z and defines the time of occurrence of each wheel 
loading  
ne is the event counter 
As & Ac are the coefficients of the Sine and Cosine terms in the homogeneous solution of the bridge 
response 
Bs & Bc are the coefficients of the Sine and Cosine terms in the particular solution of the bridge response 
l is the length of the bridge in meters 
V1 is the speed of travel of the 1st train in km/h 
V2 is the speed of travel of the 2nd train in km/h 
EI is the bridge flexural rigidity in N.m2 
m is the mass per unit length of the bridge in kg/m 
P1 is the axle load of the 1st train in tonne 
P2 is the axle load of the 2nd train in tonne  
Wn is the un-damped natural frequency of the bridge in N.m/sec 
wd is the damped natural frequency of the bridge in N.m/sec 
alphaE is the external damping coefficient in N.m/sec 
alphaI is the internal damping coefficient in N.m/sec 
zeta is the total damping coefficient in N.m/sec 
omega1 is the excitation frequency of the 1st train in rad/sec 
omega2 is the excitation frequency of the 2nd train in rad/sec 
n is a natural frequency counter 

sc BB  &  are the coefficients of the associated cosine and sine terms in the particular solution 

u is the multi-facet displacement function at each vibration mode 
U is the bridge displacement (combination of the displacements at all vibration modes)   
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