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Abstract.  Railway truss bridges are amongst the essential structures in railway transportation.  
Minimization of the construction and maintenance costs of these trusses can effectively reduce investments 
in railway industries. In case of railway bridges, due to high ratio of the live load to the dead load, the 
moving load has considerable influence on the bridge dynamics. In this paper, optimization of the railway 
truss bridges under moving load is taken into consideration. The appropriate algorithm namely Hyper-sphere 
algorithm is used for this multifaceted problem. Through optimization the efficiency of the method 
successfully raised about 5 percent, compared with similar algorithms. The proposed optimization carried 
out on several typical railway trusses. The influences of buckling, deformation constraints, and the optimum 
height of each type of truss, assessed using a simple approximation method. 
 

Keywords:  railway truss bridge; moving load; numerical optimization; modified hyper-sphere algorithm; 
three-level technique 
 
 
1. Introduction 

 
Railway bridges vital to the transportation industries are among expensive and long life 

structures. These bridges endure heavy live loads with specific patterns, and are therefore in need 
of high precision accuracy in design. The live load is imposed by the passage of the moving load 
on the bridge deck. This makes the design more complicated. Bridge trusses are widely used in 
railway networks, all over the world. There is no stoppage on the efforts to minimize the 
construction and maintenance costs of the bridges. On the other hand, this should not jeopardize 
the structure integrity and its safety. Therefore, the industry owners and engineers always resort to 
paying considerable attention to the optimization techniques. 

In Railway bridges, the ratio of the live load to the dead load is much higher compared with the 
highway bridges. Besides, the impact loads in railway bridges are more serious than the highway 
bridges. The effect of the moving load is highly important. The stresses imposed due to the live 
load are dependent on the position of the load on the bridge.  

                                                            
Corresponding author, Assistant Professor, E-mail: mohammadz@iust.ac.ir 
aPostgraduate Research Student, E-mail: m.nouri.iust@gmail.com 



 
 
 
 
 
 

Saeed Mohammadzadeh and Mehrdad Nouri 

There are many valuable documents about the truss optimization methods. However, most of 
the optimization based research in the past was concerned with the typical trusses under static 
point loads. Only few, have considered the truss optimization under the moving load. A highway 
bridge optimization under truck load is one of the rare articles that considered the moving load 
scenario. Continuous and discrete design variables were assumed. Many solution algorithms such 
as the genetic algorithms and SQP were used. Eventually, some types of trusses under HS20 
moving load optimized (Toğan and Daloğlu 2009). Nevertheless, to the knowledge of the authors 
there is no distinct and recorded research concerned with the railway truss bridge optimization. 

This research in concerned with the optimization of the railway truss bridge. Specifications of 
the moving load imposed on the bridge are compatible with the Eurocode loading pattern. The 
analysis of the combination of the railway bridge and the moving load is intrinsically a 
complicated task. Adding the truss optimization to this, adds to the complexity of the issue at 
hand. This requires a suitable and efficient algorithm in order to solve the problem. To serve the 
purpose, an efficient numerical optimization method is selected and the algorithm is modified to 
include the moving loads. The foremost aim of this research is to minimize the railway truss 
weight under the moving loads. The stress and buckling constraints are considered. The effects of 
some other parameters such as the displacement constraint and the optimum moving load step 
lengths, etc. are assessed. 
 
 
2. The problem definition 
 

This paper presents the optimization of the railway bridge trusses under the moving load. The 
objective function is the weight of the structure and the constraints are the stresses and the 
buckling. The railway bridge is assumed as single track. Therefore, half of the Eurocode load 
pattern is imposed on the structure. The dynamic effects of the load are considered by multiplying 
the Eurocode impact factor with the live load. The truss optimization analysis is carried out using 
finite element analysis with stiffness formulation.  

Three types of railway trusses including WARREN, PRATT and PARKER with 36-meter 
length and three-meter bays were considered. In addition, as a sample, an indeterminate truss is 
optimized to obtain the symmetric optimal truss. The geometry of the selected railway trusses is 
presented in Fig. 1. It needs to be reminded that with the task already defined, the core objective of 
this research is to propose the appropriate solution algorithm. It is not intended to compare variety 
of trusses. 

 
 

3. The research methodology 
 

The solution procedure starts by developing a proper optimization algorithm. This is then 
followed by introducing some new ideas in order to enhance the algorithm performance. 
Applicability of the proposed method is examined by exercising the optimization of some 
commonly used trusses under the moving load. The results are compared with the results from 
some other existing methods. The next step involves applying a three-level algorithm in order to 
increase the convergence speed. This is followed by the determination of the proper starting point 
to solve the optimization problem. The research methodology is presented in a flowchart in Fig. 2. 
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Fig. 1 The geometry of the selected railway trusses 

 
 
4. The optimization algorithm 
 

4.1 A brief review of the structural optimization literature  
 
The subject of the structural optimization contains several well documented methods and 

strategies. Generally, such methods can be categorized as Mathematical programming techniques 
and Meta heuristic methods. Sequential linear programming is a significant mathematical 
programming technique while genetic algorithm is the most important among Meta heuristic 
methods. The references for some of these methods are categorically presented in Tables 1-2. 

 
 

Table 1 The summarized references related to the Mathematical programming techniques 

References Definitions or explanations Applied algorithms 
Schmit and Farshi (1974) 
Farshi and Schmit (1974) 
Vanderplaats (1982) 

Preliminary introduction of structure 
optimization 

Optimizations basics 

Farshi and Alinia-ziazi 2010 
John et al. (1987) 
Chen (1998)  
Pyrz and Zawidzka (2001) 
Pedersen and Nielsen (2003) 
Lamberti and Pappalettere (2000) 
Lamberti and Pappalettere 
(2003a,b,c) 
Lamberti and Pappalettere (2004) 
Lamberti and Pappalettere (2005) 
Gomes and Senne (2011) 

Move limit concept 
SLP modified methods 
Method of center and hyper-sphere 
algorithm 

Sequential linear 
programming 
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Table 1 Continued 

Sedaghati (2005) 
Study the typical examples by 
combination of Forces method and SQP

Sequential quadratic 
programming 

Payten and Law (1998) 
Lee et al. (1998) 
Gil and Andreu (2001) 
Kelesoglu and Ulker (2005) 
Achtziger and Stolpe (2007) 

- 
Other Mathematical 
programming techniques 

 
 

Table 2 The summarized references related to the Meta heuristic methods 
References Definitions or explanations Applied algorithms 

Rajeev and Krishnamoorthy 
(1992) 
Erbatur et al. (2000) 
Sarma and Adeli (2000) 
Kaveh and Kalatjari (2002) 
Kaveh and Kalatjari (2003) 
Kaveh and Abdietehrani (2004)
Kaveh and Kalatjari (2004) 
Kaveh and Rahami (2006a,b) 
Kelesoglu (2007) 
Rahami et al. (2008) 
Xu et al. (2010) 
Wei et al. (2011) 
Toğan and Daloğlu (2004) 
Zuo et al. (2011) 

Genetic algorithm introduction 
Hybrid Genetic Algorithms with Fuzzy 
Hybrid Genetic Algorithms with Forces method
Parallel genetic algorithm 

Genetic algorithm 

Camp and Bichon (2004) 
Camp et al. (2005) 
Bland (2001) 

 - Ant Colony 

Erol and Eksin (2006) 
Camp (2007) 
Kaveh and Talatahari (2009b) 

 - Big bang 

Perez and Behdinan (2007) 
Gomes (2011) 

 - Particle Swarm 

Sonmez (2007) 
Kolahan et al. (2007) 
Lamberti (2008) 

Simulated annealing introduction 
Modified methods 

Simulated annealing 

Lee and Geem (2004) 
Luo et al. (2006) 
Zhang (2007) 
Kaveh and Talatahari (2009a) 
Salajegheh et al. (2009) 
Toğan et al. (2011) 
Sonmez (2011) 
Fiouz et al. (2012) 
Toklu et al. (2013) 

Fuzzy logic methods 
Artificial Bee Colony algorithm 
Comparison of the methods and hybrid methods

Other methods 
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Fig. 2 The research methodology 
 

 

4.2 The applied algorithm 
 
Considering the moving load in the analysis, leads to the increase in the number of the problem 

constraints. This in turn necessitates a solution procedure that is highly capable of taking in all the  
 

 
required input data and provides proper convergence speed. Consequently, the hyper-sphere 
algorithm was selected due to the following reasons: 

1. A novel and newly presented method. 
2. Efficient (Farshi and Alinia-ziazi 2010) (the variation of the objective function in each cycle 

can be stated as high efficiency) 
3. Only requires first order derivatives. (unlike to the SQP method that requires second order 

derivatives and Hessian matrix, the hyper-sphere algorithm include simpler and faster 
calculations) 
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Fig. 3 The classical hyper-sphere method 

 
 
4. Much faster comparing to the past ordinary methods. (these methods such as the genetic 

algorithm, ant colony algorithm and simulated annealing, are time consuming algorithms)  
Furthermore, in the cases of simulation with some benchmark samples, the results obtained with 
this algorithm are more accurate. This is attributed to the modifications in the algorithm. 
 

4.2.1 The hyper-sphere algorithm 
The basis of the algorithm is presented in Fig. 3. The algorithm is completely explained in 

references (Schmit and Farshi 1974, Farshi and Alinia-ziazi 2010) and a summary is presented, 
hereunder. 

The linear approximations (g1, g2 and gj), their gradients and the objective function (W) are 
clearly depicted in Fig. 3. These linear approximations are estimated in Xp design point. Some 
constraints that are far apart from the design point (gj) are deleted and the largest circle is found 
between the remaining constraints and the linear objective function (rp is the radius of the circle). 
The centre of the drawn circle is the new design point for the following repetitive steps. The circle 
lies in two dimensions and the sphere in three dimensions. This makes the hyper-sphere an n-
dimensional problem hence the method is called “hyper sphere”. Fig. 4 shows the optimization 
algorithm of the classical hyper-sphere method. The finite differences are used in order to find the 
derivatives of the constraints.  
 

4.2.2 The algorithm modification 
To solve the problem, the following modifications performed on the algorithm (as indicated in 

Figs. 4-5): 
- The area to the maximum area ratios are calculated and presented in a matrix. After a certain 

number of iterations of the optimization algorithm, if the ratio is less than the determined initial 
value (e.g., 0.1) the value of the random variable is deleted and the variable is shifted to the initial 
value. 

The aforementioned procedure reduces the number of design parameters and increases the 
convergence speed. Constraint related variables are sufficiently increased to achieve the required 
condition, if reduction of the parameters leads to constraints violation. In addition, the value 
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obtained from the last iteration of the main cycle is assigned as new area, when an area increase is 
required for the truss member. New increased cross sectional area is constantly used till the 
optimization is ended. 

- Scaling of the variables 
The constraints that may be violated are stress or displacement constraints. If violated 

constraints are stress constraints, its related members are increased according to the amount of the 
violation.  If the displacement constraints are violated, the maximum cross sectional area of the 
connected members is raised to an amount equal to the size of the violation. 
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Fig. 4 The optimization methodology within the classical hyper-sphere method 

 

 
Fig. 5 The algorithm modification 
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Fig. 6 The planar 200-bar truss 
 
 
Example 1: 200-bar truss 
To examine the algorithm efficiency, benchmarking with a sample that was prevalently noticed 

in several papers is presented. The 200-member plane truss that is shown in Fig. 6 includes 77 
joints and its members, are categorized in 29 groups. The material properties and the allowable 
stress are as follows: 

4 3 3

L 2 2
all

E 206,842 MPa (3 10 ksi) 7833 kg / m (0.283 lb / in )

A 0.6451 cm (0.1 in ) 68.95 MPa (10 ksi)





  

    

Three different load cases are considered as follows: 
Case 1: 4449.741 N (or 1000 lb) load, in positive direction of the X axis applied in joints: 
1,6,15,20,29,34,43,48,57, 62 and 71 
Case 2: 44497.412 N (or 1000 lb) load, in negative direction of the Y axis applied in 
joints: 
1,2,3,4,5,6,8,10,12,14,15,16,17,18,19,20,22,24,26,28,29,30,31,32,33,34,36,38,40,42,43,44
,45, 46,47,48,50,52,54,56,57,58,59,60,61,62,64,66,68,70,71,72,73,74 and 75 
Case 3: Simultaneous application of the first and the second loading. 
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The assumed constraints in this problem are the stress constraints (Eq. 1). The algorithm used is 
such that the constraints obtained from Eq. (1), are less than zero. 

  1 1,2,..., 200



  i
i

all

c i   (1)

It needs to be reminded that this truss is almost the most complicated one surveyed and 
reported in several articles (Farshi and Alinia-ziazi 2010, Lamberti 2008, Lee and Geem 2004). 
The convergence procedure is indicated in Fig. 7. From the results it is clear that the weight 
variation is negligible after 60 iterations. 

The results from the implemented algorithm indicate that its accuracy is 5.55 percents higher 
than the classic hyper-sphere algorithm. It is nearly 5.51 percents higher than the approach 
presented by the Lamberti (2008), using the simulated annealing algorithm. Besides, unlike the 
results obtained from the other methods, no constraint has been violated in the proposed algorithm 
(see Table 3). 
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Fig. 7 The convergence procedure in 200-bar truss optimization 

 
Table 3 Comparison of the results for 200-bar truss 

Group 
number 

Members 
Lee and 

Geem (2004)
Lamberti 
(2008) 

Farshi and 
Alinia-ziazi 

(2010) 

The 
applied 

algorithm
area (in2) area (in2) area (in2) area (in2)

1 1,2,3,4 0.1253 0.1467 0.1470 0.1522 
2 5,8,11,14,17 1.0157 0.9400 0.9450 0.9443 
3 19,20,21,22,23,24 0.1069 0.1000 0.1000 0.1000 
4 18,25,56,63,94,101,132,139,170,177 0.1096 0.1000 0.1000 0.1000 
5 26,29,32,35,38 1.9396 1.9400 1.9451 1.9446 
6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37 0.2686 0.2962 0.2969 0.2988 
7 39,40,41,42 0.1042 0.1000 0.1000 0.1000 
8 43,46,49,52,55 2.9731 3.1040 3.1062 3.1193 
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 Table 3 Continued 

9 57,58,59,60,61,62 0.1309 0.1000 0.1000 0.1000 
10 64,67,70,73,76 4.1831 4.1040 4.1052 4.1196 

11 
44,45,47,48,50,51,53,54,65,66,68,69,71,72,74

,75 
0.3967 0.4034 0.4039 0.4070 

12 77,78,79,80 0.4416 0.1922 0.1934 0.1611 
13 81,84,87,90,93 5.1873 5.4282 5.4289 5.4587 
14 95,96,97,98,99,100 0.1912 0.1000 0.1000 0.1000 
15 102, 105, 108, 111, 114 6.2410 6.4282 6.4289 6.4591 

16 
82,83,85,86,88,89,91,92,103,104,106,107,109

,110,112,113 
0.6994 0.5738 0.5745 0.5666 

17 115, 116, 117, 118 0.1158 0.1325 0.1339 0.1614 
18 119, 122, 125, 128, 131 7.7643 7.9726 7.9737 7.9872 
19 133, 134, 135, 136, 137, 138 0.1000 0.1000 0.1000 0.2331 
20 140, 143, 146, 149, 152 8.8279 8.9726 8.9737 8.9875 

21 
120, 121, 123, 124, 126, 127, 129, 130, 141, 

142, 144, 145, 147, 148, 150, 151 
0.6986 0.7048 0.7053 0.8249 

22 153, 154, 155, 156 1.5563 0.4202 0.4215 0.7120 
23 157, 160, 163, 166, 169 10.9806 10.8666 10.8675 11.3003 
24 171, 172, 173, 174, 175, 176 0.1317 0.1000 0.1000 0.1823 
25 178, 181, 184, 187, 190 12.1492 11.8666 11.8674 11.9773 

26 
158, 159, 161, 162, 164, 165, 167, 168, 179, 

180, 182, 183, 185, 186, 188, 189 
1.6373 1.0344 1.0349 1.4133 

27 191, 192, 193, 194 5.0032 6.6838 6.6849 4.0896 
28 195, 197, 198, 200 9.3545 10.8083 10.8101 8.2151 
29 196, 199 15.0919 13.8339 13.8379 13.2923 

 
Weight (lb) 25447.1000

25446.3
316 

25456.5700 
24044.220

9 
Maximum amount of constraint 0.0203 3.23E-04 3.23E-04 -1.75E-08

 
 
5. Railway truss bridges optimization under moving load 
 

In this section, the optimization is carried out using the aforementioned algorithm. The moving 
load is imposed based on Eurocode pattern LM71 (Fig. 8). According to the assumption that two 
trusses exist in each bridge, half of the load (LM71 pattern), together with the impact factor, is 
imposed to the bridge deck. For the bridge with standard maintenance, the impact factor is 
calculated using the following equation (Final Draft prEN 2002, UIC Code 776-1 2006) 

  3 3

2.16
0.73 1.00 2.00

0.2L
     


  (2)

The mid-span deformation (δmid) under the moving load (see Fig. 8) is controlled using the Eq. 
(3) (EN1990–Annex A2 2005). 

  600
mid

L


   (3)
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The beginning of the first distributed load is outlined by X-Load. The moving of the load 
continues until the second distributed load is placed completely on the bridge. Hence, for 36-
meters truss, the beginning of the first distributed load started from zero and continues to 114 
meters (3 × 36 + 2 × 0.8 +3 × 1.6 = 114.4). To consider the effect of the moving load, the load is 
moved at very short steps along the bridge, and the structure is analyzed in each step. The results 
are considered lately as a constraint in the optimization problem. 

The objective function, structure weight and the constraints are separately applied in three 
different problems. Various formulations of the problem are presented in Eq. (4) and Table 4. 

 

1

Table 4

min :

1 1,2,...,

sub to: 1,2,...,

1

NM

i i
i

ik
ik
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jk
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M A L
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Table 4 The problem formulation 
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5.1 Development of the three-step algorithm 
 

A three-level algorithm is applied in the optimization, Fig. 9. In the first step, the unit load is 
applied to some of the truss joints and the optimization is carried out for each separate conditions. 
In the next step, the maximum values from the first step, are applied as the starting points. Then, 
the structure is optimized under the condition that the unit moving load is applied to the joints. 
In the last step, according to the member stress ratio (stress when unit load applied / stress when 
main load applied), the results of the previous step is multiplied and used as the new starting point 
for the optimization problem. In hyper-sphere optimization method, the starting point should fulfill 
all constraints. Therefore, the scaling method should be used if not all constraints are satisfied. 
Comparison of the three-level algorithm to the classical algorithm is presented in Fig. 10. 

 
Example 2: Highway bridge truss under moving load 
To verify the efficiency of the proposed optimization algorithm in solving the issues of the 

moving load, two trusses with different geometries are optimized, Fig. 11. The moving load 
pattern is compatible with HS20 (Toğan and Daloğlu 2009). The impact factors for the spans of 
the two trusses are calculated based on ASHTOO recommendations. The allowable stress 
equations presented in AISC, are used. Table 5 presents the constant values for the calculation of 
the radius of gyration. 

3 37850 / 210 10 212 0.6t
yield all yieldkg m E MPa MPa         

2

2 2

3

3

2

2

( )
(1 )

2 2

3( ) ( )5
3 8 8

12

23 ( )

1 ( , 5)

c c
all yield c

yield

c c

c
all

b

k L

R
C k L E

if C
k L k L R

R R
C C

E
else

k L

R

k R aA a b Table

 







    
 


  


  

   

 
            Table 5 The constant values for the calculation of the radius of gyration 
 

 
 
 
 

 

5.2 Solving a numerical example (36- meter truss) 
 
The mechanical parameters of the truss material and the other assumptions are presented 

hereunder: 
3 2205 7800 / 144 100 0.001L

allE GPa kg m MPa A mm eps      

 

Angle Pipe Tee Double Angle 

a 0.8338 0.4993 0.2905 0.584 
b 0.5266 0.6777 0.8042 0.524 
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Fig. 9 The optimization of the railway truss bridges with three-step algorithm
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Fig. 10 Comparison of the three-level algorithm to the classical algorithm 
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(a)  85-bar highway truss 
Fig. 11 Geometry of highway trusses

583



 
 
 
 
 
 

Saeed Mohammadzadeh and Mehrdad Nouri 

1 3 5 7 9 11 12 14 16 18 20 22 24 26 27

25

23

21
19

17

15

13

35

34

48

47

5342333129

28

30

32

37 39 41

36

38

40

44 46

43

45

50

49

51

522

1

1

1 1

1

1

2 2 2 2 2

3 6 4 7 5 7 4
6 3

8

8

8

8 8

8

8

8

9 9 9 9 9 9 9 9

10
11

12 13

14
15

16 16 12
11

10

15
14

2

4

6

8

10
1.300

2.100

2.700

3.000

1.100

1.650

2.200

142 kN 142 kN 36 kN

9.15 m 4.25 m
3.000 3.000

7 20 35 48
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Fig. 11 Continued 
 
Table 6 Impact factor values and the allowable deformations 

Allowable deformation Impact factor  

Joint 6,40 22

Joint 22,24 38
all

all

mm

mm

 
 

1,3

2

50
1,3 17.496 0.2741

17.496 3.2808 125
50

2 30 0.2238
30 3.2808 125

Span L m I

Span L m I

     

   
  

85-bar truss 

Joint 7,48 23

Joint 20,35 30
all

all

mm

mm

 
 

1,4

2,3

50
1,4 18 0.2717

18 3.2808 125
50

2,3 24 0.2454
24 3.2808 125

Span L m I

Span L m I

     

   
  

 100-bar truss 

 
 

Table 7 The optimum cross sectional area of the selected trusses (85 and 100-bar highway trusses) 

85-bar bridge truss 
A (mm2) 

Toğan and Daloğlu 
(2009) 

A (mm2) 100-bar bridge truss
A (mm2) 

Toğan and Daloğlu 
(2009) 

A (mm2) 

Group Section SCP SQP EVOL SLP_MHSM Group Section SCP SQP EVOL SLP_MHSM

1 
Double 
angle 

5235 5309 5423 5877.75 1 Tee 5379 5831 5638 4662.13 

2 
Double 
angle 

4840 4831 4722 3779.64 2 Tee 5140 4904 4911 3554.07 

3 Tee 5587 5312 5682 4795.2 3 Angle 550 749 619 1391.79 
4 Tee 3542 3810 3201 2645.38 4 Angle 550 631 567 1161.83 
5 Pipe 837 1138 905 1412.61 5 Angle 1902 1319 1813 1410.3 
6 Pipe 1167 1429 1509 2368.74 6 Angle 955 1265 70 1421.35 
7 Pipe 1713 1350 1717 1233.57 7 Angle 1024 1636 1047 1583.32 

8 Pipe 762 931 772 1982.78 8 
Double 
angle 

5465 5624 6034 4869.85 

9 Pipe 759 762 765 1912.4 9 
Double 
angle 

4287 4614 3789 4436.54 

10 Pipe 2271 2354 2516 2680.24 10 Angle 564 749 596 1386.17 
11 Pipe 1640 1599 1517 1427.28 11 Angle 601 717 631 1249.78 
12 Pipe 871 1357 998 1119.71 12 Angle 712 712 773 1330.48 
13 Pipe 936 1140 1005 937.46 13 Angle 1595 1015 941 1094.94 
14 Pipe 1222 913 1221 1008.45 14 Angle 1237 1524 1290 1308.45 
Weight (kN) 60.16 61.31 60.48 58.73 15 Angle 1059 1413 1078 1151.6 

16 Angle 1206 1419 1212 1221.27 
Weight (kN) 77.05 81.38 77.41 71.35 

 

361
60

600
L mmid

mid mm
L
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The optimization carried out using the modified algorithm, for four different types of 36-meters 
trusses, and the results are presented in Tables 8-9. It is evident that: 

• The algorithm efficiency is independent of the truss shape 
• The algorithm indicates reasonable convergence and stability. 
• The algorithm reaches the optimum solution after about 90 iterations (see Fig. 13) 
• The optimum solution is not dependent on the starting point in three-level algorithm, 

compared to the classical algorithm. 
Referring to Table 9, the Parker truss indicates more reasonable results and the Pratt truss has the 
maximum weight. The point that should be mentioned is that the Parker truss is actually the Pratt 
truss, with variable height at different points. The aforementioned point proves the importance of 
the truss geometry and its optimization. 

 
Table 8 The optimization results for 36-meter span trusses (Warren and Indeterminate trusses) 

Indeterminate truss Warren truss 

Group 
Stress 

constraints

Stress and 
Buckling 

constraints 

Stress, Buckling
and deformation

constraints Group 
Stress 

constraints

Stress and 
Buckling 

constraints 

Stress, Buckling
and deformation

constraints 
A (mm2) A (mm2) A (mm2) A (mm2) A (mm2) A (mm2) 

1, 12 5997.61 3033.28 2976.34 1, 12 3319.07 3319.07 4506.45 
2, 11 7901.77 9110.97 12757.68 2, 11 9284.27 9284.27 14121.47 
3, 10 14729.51 13851.94 18761.39 3, 10 14084.96 14084.96 21105.80 
4, 9 16819.63 17484.38 27726.28 4, 9 17690.77 17690.77 28265.14 
5, 8 20057.52 19874.94 30767.88 5, 8 20114.46 20114.46 34586.75 
6, 7 20965.40 20881.60 34992.85 6, 7 21308.15 21308.15 39781.27 

13, 49 647.88 5440.65 5892.43 13, 36 7421.66 8641.44 10077.37 
14, 48 8481.90 8310.15 7347.29 14, 35 7421.66 7421.66 10077.36 
15, 47 926.63 7113.79 15265.85 15, 34 6220.51 7911.31 9726.29 
16, 46 2194.37 100.00 100.00 16, 33 6220.51 6220.51 9271.95 
17, 45 2054.12 7736.01 8601.43 17, 32 5019.36 7106.56 8389.55 
18, 44 5879.23 4194.61 4186.40 18, 31 5019.36 5019.36 8389.55 
19, 43 100.00 843.23 4173.00 19, 30 3818.20 6198.19 7402.74 
20, 42 4206.93 6936.20 5475.50 20, 29 3818.20 3818.20 7402.73 
21, 41 2178.69 3411.53 11541.60 21, 28 2617.05 5131.47 6253.65 
22, 40 781.11 397.28 183.59 22, 27 2617.05 2740.74 6253.65 
23, 39 1374.41 6054.62 7089.51 23, 26 1677.81 4108.73 4108.73 
24, 38 3534.84 2564.51 2837.25 24, 25 1677.81 3426.82 3980.61 
25, 37 100.00 903.94 1890.55 37, 47 6638.13 7309.77 10565.59 
26, 36 1860.64 5058.66 4675.30 38, 46 12059.02 12059.02 18942.57 
27, 35 1479.37 2373.69 3460.82 39, 45 16264.18 16264.18 24880.07 
28, 34 713.94 737.36 359.27 40, 44 19297.69 19297.69 34057.33 
29, 33 543.48 3916.68 3858.00 41, 43 21101.19 21101.19 37515.17 
30, 32 1644.71 3163.77 4258.95 42 21674.68 21674.68 29706.30 

31 100.00 559.96 677.81 Weight (kg) 10851.47 11625.68 18031.83 
50, 61 647.88 5440.65 5892.43 
51, 60 10715.07 9533.92 11136.80 
52, 59 13538.65 14357.82 20444.61 
53, 58 18568.88 17980.65 24528.72 
54, 57 20171.39 20354.07 29310.55 
55, 56 21711.17 21734.79 35198.74 

Weight (kg) 10517.28 12559.90 17717.84 
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In the following, the effect of the bulking in constraints is considered. Therefore, in tension 
members, the allowable stress is used. In the compression members, first, the critical buckling load 
is calculated and then its corresponding critical stress is computed. The minimum value of the 
allowable stress and the critical stress is used for the compression members. 

The effect of the buckling is demonstrated in Fig. 12. When, only the stress constraints are 
considered, (Fig. 12(a)) the indeterminate truss changes into the Warren truss. However, when the 
buckling constraints are entered in the optimization (Fig. 12(b)), the inclined members are 
similarly parallel. Obviously, this is due to the fact that when the members in one direction are 
under  tension,  the members  on the opposi te  direct ion are  under  compression. 

The convergence procedure and percent variation of the optimum truss weight are presented in 
Figs. 13-14, respectively. In Fig. 14, in determinate trusses the convergence reached after 50 
iterations. However, in indeterminate trusses the iteration number is 65. It can be concluded that 
the shape of the trusses is not the influential factor in the optimization convergence.  

In determinate trusses, when the displacement constraint is considered, (Warren and Pratt) all 
cross sectional areas are increased and also the weight has increased about 56 percent. However, in 
indeterminate truss, some cross sectional areas have increased and some have decreased. Totally, 
there is a 41% increase in the optimum weight of the truss. In Parker truss, the displacement 
constraint has no effect on the optimum weight of the truss. 

 
Table  9 The optimization results for 36-meter span trusses (Pratt and Parker trusses)  

Parker truss Pratt truss 

Group 
Stress 

constraints 

Stress and 
Buckling 

constraints 

Stress, Buckling
and deformation

constraints Group 
Stress 

constraints

Stress and 
Buckling 

constraints 

Stress, Buckling
and deformation

constraints 
A (mm2) A (mm2) A (mm2) A (mm2) A (mm2) A (mm2) 

1, 12 6638.13 6638.13 6638.13 1, 12 6638.13 6638.13 9032.59 
2, 11 6638.13 6638.13 6638.13 2, 11 6638.13 6638.13 9032.60 
3, 10 8039.34 10666.44 10666.44 3, 10 12059.02 12059.02 17358.80 
4, 9 9293.82 9293.82 9293.82 4, 9 16264.18 16264.18 24933.05 
5, 8 10068.36 10068.36 10068.36 5, 8 19297.69 19297.69 31701.90 
6, 7 10550.60 10550.60 10550.60 6, 7 21101.19 21101.19 37595.06 

13, 35 9387.74 12293.52 12293.52 13, 35 9387.74 12293.52 12774.22 
14, 34 1868.49 1868.49 1868.49 14, 34 1868.49 1868.49 1868.49 
15, 33 2188.77 2417.86 2417.86 15, 33 7868.39 7868.39 11753.28 
16, 32 1060.45 4382.45 4382.45 16, 32 4489.45 6011.42 7519.76 
17, 31 2605.83 3686.78 3686.78 17, 31 6349.04 6349.04 10634.77 
18, 30 1467.94 6015.52 6015.52 18, 30 3415.10 5243.03 6635.25 
19, 29 2009.35 5060.71 5060.71 19, 29 4829.69 4829.69 9383.86 
20, 28 1291.74 6180.38 6180.38 20, 28 2340.76 4340.69 5605.30 
21, 27 1797.46 6132.86 6132.86 21, 27 3310.34 3899.04 7946.37 
22, 26 1375.01 6130.31 6130.31 22, 26 1500.68 3475.56 3567.88 
23, 25 1677.81 6853.63 6853.63 23, 25 2122.28 4875.07 5045.98 

24 100.00 100.00 100.00 24 100.00 100.00 100.00 
36, 45 8988.26 9509.85 9509.85 36, 45 12059.02 12059.02 17358.80 
37, 44 9579.85 9579.85 9579.85 37, 44 16264.18 16264.18 24933.03 
38, 43 10207.24 10207.24 10207.24 38, 43 19297.69 19297.69 31701.87 
39, 42 10587.17 10587.17 10587.17 39, 42 21101.19 21101.19 37541.27 
40, 41 10837.34 10837.34 10837.34 40, 41 21674.68 21674.68 42100.76 

Weight (kg) 6882.98 10089.27 10089.27 Weight (kg) 10949.11 11705.39 18247.70 
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(b) Stress and buckling constraints 

Fig. 12 The visual results of the indeterminate truss optimization 
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Fig. 13 The convergence procedure of the optimization algorithm for different trusses 
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Fig. 14 Percent variation of the optimum truss weight in different iterations 
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Fig. 16 The step length of the moving load 

 
 

5.3 The effect of member grouping and optimal grouping of cross section 
 

The important issue is that, considering all cross sectional areas in design, leads to large 
number of design parameters. Reduction in the number of the parameters is possible by 
considering symmetry in geometry. However, member grouping is an alternative method that can 
be used to reduce the number of parameters. Practically, this issue leads to considerable deduction 
in the final cost of construction projects. If a certain number of grouping increases, the response 
does not change significantly. Therefore, to reduce the solution time, a proper number of member 
groups should be utilized. Such a procedure for the current example is depicted in Fig. 15. 

 
5.4 Selection of the appropriate step length 

 
In theory, the load should move continuously along the length of the bridge. However, in 

practice, it is not continuous and the load moves in specific intervals. The moving of the load pattern is 
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Fig. 17 The effect of the step length on the truss optimal weight 

 
 
indicated in Fig. 16. Large moving intervals lead to inaccurate solutions. This comes from the fact that 
some constraints may have been ignored. On the other hand, small intervals decrease efficiency of the 
solution procedure. Due to some considerations, the appropriate step length is chosen as 1/3 of the bay 
of the truss (Fig. 17). 

 
5.5 Approximate concepts for the optimum shape and geometry selection 

 
It is already stated that, the structure shape parameters such as the truss height and the step 

length are the prominent factors. In several cases when one unique type of the truss was used in the 
railway network, the optimization of the shape and geometry highly affected the cost of the 
projects. Therefore, it makes sense to study the effect of the structure height on the optimum 
solution. It is highlighted that the accurate solutions are easily reachable, if the vital parameters of 
the optimization are considered. 

To estimate the optimum height for a 60-meter truss, initially, the optimum solutions for the 
different heights of 3, 5 and 9 meters are determined. Then by fitting a second order curve, the 
minimum value is calculated. Afterward, in increasing the truss height from 5 to 6 meters, the step 
length of 10 centimeters was used. Finally the optimum height is assessed. A comparison shows 
that the optimum height is obtained with an accuracy of 0.7%, to fit a second order curve (Fig. 18). 

 
5.6 The effect of the moving load on the optimum solution 

 
The noticeable point is that the structure response envelop to the moving load cannot be used 

for the optimal analysis. It does not lead to optimal solutions. Besides, the solution is highly 
dependent on the structure shape and this may lead to inaccurate results. 

In determinate trusses, using the force envelope (when only stress constraint is considered) may 
lead to accurate and real solutions. However, when the displacement constraints are entered in the 
optimization the envelope is not useful any more. This is due to the dependency of the 
displacement to the cross sectional area of the members. On the other hand, for indeterminate 
structures, with the internal forces of members dependent on the cross sectional area, using the 
force envelope does not lead to accurate solutions. 
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Fig. 18 The optimum height estimation 
 
 

6. Conclusions 
 

This research aimed at the modification of the hyper-sphere algorithm in order to optimize the 
truss structures. A major advantage of the proposed algorithm is the speed of convergence. While 
exercising a sample optimization, the Eurocode moving load pattern was applied to the structure. 
This led to the increased calculation time and convergence iterations. To speed up the 
convergence, the moving load was applied in three-stages and the starting point of the optimization 
was accordingly estimated. 

The proposed methodology of optimization is comprehensive, very accurate and highly 
reliable. It can easily take into account the various constraints of the problem. The optimization 
indicates reasonable convergence and the algorithm stability is independent of the number of 
constraints. The algorithm is highly capable of finding the optimum solutions while allowing for 
various constraints, (such as the fatigue constraints (Nouri 2011)). 

The algorithm is capable of minimizing the problem and omitting unnecessary constraints. This 
in turn indicates the efficiency in solving problems of higher scale. Due to such reasons, the 
algorithm was used for the optimization of a structure subjected to moving load. Such a structure is 
considered as a multi-constraint problem. 

Furthermore, the algorithm can take in new variables such as the radius and thickness for a pipe 
section. Such new set of variables can easily be introduced without altering the convergence speed 
of the solution processes. 

The versatility of the proposed algorithm examined for the railway truss optimization for some 
known examples. The effect of buckling constraint on the indeterminate truss evaluated. In 
addition, the minimum weight observed in Parker truss. 

While some trusses seem to be sensitive to a series of constraints some of the others seem to be 
indifferent. While surveying the Parker truss, it is concluded that the displacement constraint is not 
effective in optimum weight. However, it is highly effective in Pratt, Warren and indeterminate 
trusses (up to 56 percent). 
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The calculation time is directly dependent on the number of the design parameters. It is 
observed that after specific increase in the number of the parameters, the grouping has negligible 
effect on the optimum weight. This on the other hand increases the solution efficiency. 

The truss geometry is amongst the significant parameters. This article also presented an 
innovative method for calculating the optimized height of an arbitrary truss. 
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Nomenclature 

(p)
j  Distance between the design point and the jth constraint 

pS


 Vector variations of the design parameters 
M Mass of truss 
W Weight of truss 
E Young’s modulus of elasticity  
ρ Mass density 
σyield Yield stress 
σall Allowable stress 
σt

all Allowable tension stress 
σc

all Allowable compression stress 
σi Stress in the ith member 
σik Stress in the ith member under the kth loading condition 
δmid Deformation in mid-span 
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δjk Displacement in the jth degree of freedom under the kth loading condition 
Δall Allowable deflection 
L Span length 
Li Member length 
ri Radius of gyration  
AL area section lower bound 
Ai Cross sectional area of the ith member 
k* Ratio of effective length in buckling 
NM Number of members  
NL Number of loading conditions  
eps Convergence accuracy 
I Impact factor for highway bridge  
Φ3 Impact factor for railway bridge with standard maintenance 
csik Stress constraint in the ith member under the kth loading condition  
cdjk Displacement constraint in the jth degree of freedom under the kth loading condition 
AASHTO American Association of State Highway and Transportation Officials 
AISC American Institute of Steel Construction 
MHSM Modified hyper sphere method 
SLP Sequential linear programming 
SCP Sequential convex programming  
SQP Sequential quadratic programming 
EVOL Evolution strategy 
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