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Abstract.  A passive control using flaps will be an alternative solution for flutter stability and buffeting 
response of a long suspension bridge. This method not only enables a lightweight economic stiffening girder 
without an additional stiffness for aerodynamic stability but also avoid the problems from the malfunctions 
of control systems and energy supply system of an active control by winglets and flaps. A time domain 
approach for predicting the coupled flutter and buffeting response of bridge deck with flaps is investigated. 
First, the flutter derivatives of bridge deck and flaps are found by experiment. Next, the derivation of time 
domain model of self-excited forces and control forces of sectional model is reported by using the rational 
function approximation. Finally, the effectiveness of passive flap control is investigated by the numerical 
simulation. The results show that the passive control by using flaps can increase the flutter speed and 
decrease the buffeting response. The experiment results are matched with numerical ones. 
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1. Introduction 

 
Rapid technological progress in bridge engineering has led to the construction of the Akashi 

Kaikyo Bridge in Japan (main span of 1990m), the Great Belt Bridge in Denmark (main span of 
1624m), and the Messina Strait bridge (under construction with main span of 3300m). It is 
believed that in the future designs with improved girder forms, lightweight cables, and control 
devices may be up to 5000 m long. For such extremely long bridges, besides problems of strength 
of material (cable); economic design (lightweight deck); seismic safety (earthquake); 
structure-wind interaction phenomena, static as well as dynamic, which are increasingly important 
as spans become longer and bridge girders more flexible, may be a serious problem – flutter and 
buffeting, especially when the girder depth-to-width ratio is small compared with existing long 
bridges. 

One of the promising solutions for flutter and buffeting control is the change of the cross 
section, for instance, a multi-box cross section. The aerodynamic advantages of this solution have 
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been exploited in the multi-box cross section design of the proposed 3,300 m span suspension 
bridge for the crossing of the Messina Strait (Brown 1996, 1999, Matsumoto et al. 2007). Another 
proposal for Japanese project is 2-box with slot girder (Sato et al. 2000, 2002). 

For suspension bridges with a main span of several kilometers, active methods to achieve the 
aerodynamic stability can provide a new design alternative. The application of the active mass 
driver was studied (Dung et al. 1996, Miyata et al. 1994). Körlin and Starossek (2007) also 
proposed the active mass damper to enhance the flutter stability. With linear control, the measured 
critical wind speed of the sectional model rises by about 16.5% (Körlin and Starossek 2007). 

The passive aerodynamic control is more attractive from a practical point of view. If a proper 
mechanism for a passive system is invented, it can easily be applied to the actual bridge because of 
its simplicity and reliability. One kind of the passive system is the tuned mass damper TMD was 
examined (Okada et al. 1998, Lin et al. 2000, Kwon et al. 2000, 2004, Gua et al. 1998, 2001, 
2002), and its performance was proven to be effective against flutter and buffeting. Vaurigaud et 
al. (2011) also proposed a passive control by using nonlinear energy sink. The analytical 
calculations showed that this control method was able to efficiently control the aeroelastic 
instability of the bridge. 

In the above references, the flutter suppression methods are based on the structural mechanics. 
Modifying the flow around the bridge deck or generating stabilizing aerodynamic forces from the 
flow is another approach to the flutter problem. 

The researches on aerodynamic control by using winglets and flaps or being called control 
surfaces were proposed and developed (Kobayashi and Nagaoka 1992, Kobayashi and Nitta 1996, 
Kobayashi et al. 1998, Kobayashi et al. 2001, Kobayashi and Phan 2005, Phan and Kobayashi 
2011). An extensive theoretical study on the active control of bridge flutter using a model similar 
to that proposed by Kobayashi was presented (Wilde and Fujino 1998, Preidikman and Mook 
1998, Nissen et al. 2004, Kirch et al. 2009). They also translated their active model to a passive 
one (Wilde et al. 1999). This model consists of two control surfaces attached to both edges of the 
deck and a pendulum placed inside the deck. The maximum improvement of the flutter speed is 
43%. The buffeting effect was not considered yet. Omenzetter et al. (2000, 2002) also proposed 
the passive flap control with springs and supplementary cables. They showed the numerical result, 
but the experimental study was not yet shown.  

This study investigates the efficiency of passive flaps (mechanically driven flap) for controlling 
of flutter and buffeting of a bridge deck. A flap is mechanically controlled after a pitching motion 
of the deck and the aerodynamic damping or suppressing aerodynamic force is produced. A time 
domain approach for predicting the coupled flutter and buffeting response of bridge deck with 
flaps is investigated. First, the flutter derivatives of bridge deck and flaps are found by experiment. 
Next, the derivation of time domain model of self-excited forces and control forces of sectional 
model is reported by using the rational function approximation technique known as Roger’s 
approximation. Finally, the effectiveness of passive flap control is investigated by the numerical 
simulation. The results show that the passive control by using flaps can increase the flutter speed 
and decrease the buffeting response. The experiment results are matched with numerical ones. 

 
 

2. Bridge deck with mechanically driven flap 
 
Turning the flap mechanically in proportion to the bridge deck torsion displacement is easily 

realized in a suspension bridge. Fig. 1 shows the bridge deck system having flaps which are 
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mechanically driven after the rotational motion of the deck. Fig. 2 shows the sketch of the flap 
driving mechanism. In these figures, h is the vertical displacement of bridge deck,  is the angle of 
attack of the bridge deck,  is the angle of the trailing edge flap, and  is the angle of the leading 
edge flap. The flap is fixed with a hinge at the longitudinal edge of the bridge deck. Two hanger 
cables from a main cable are fixed to an anchor beam at its ends. A cross beam of the deck system 
is fixed to the anchor beam with a hinge. 

The gears Gs and Gf are fastened to the anchor beam and flap, respectively. Both gears are 
connected by a driving belt. When a bridge deck causes a torsion motion in its natural oscillation 
mode, hanger ropes almost keep their vertical figure. The relative rotation angle is transmitted to 
the rotation of the flap through the driving belt with a given amplifying factor G = Rs/Rf where Rs 
and Rf are the radiuses of the gear Gs and Gf, respectively. Thus the flap is driven just after the 
pitching motion of the bridge deck mechanically.  

The same mechanism of flap driving system is installed at the leeward side of the bridge deck. 
When the flaps are driven through the above mentioned manner, if we set the head-up motion of 
the bridge deck as , the turning down of leading edge flap is  = G and the turning up the 
trailing edge flap is  = −G. The same flap motions are seen when the wind direction is reversed. 

Such driving system is installed at the position of every hanger cable where a flap is thought to 
be required for the control of bridge deck oscillation. The length of a fraction of the flap 
corresponds to the distance between the hanger ropes. The flaps are installed avoiding the center of 
the main span of suspension bridge. Because the short hanger ropes near the center of a main span 
of a suspension bridge rotate with the rotational motion of the bridge deck, the relative rotation 
angle between the anchor beam and the cross beam is difficult to be appeared. 

If the different amplification factors among the leeward and the windward flaps are required,  
= X;  = Y. where X and Y are amplification factors, the wind-detecting apparatus is used and 
driving mechanism is switched to the other one following the wind direction. The friction damping 
by the mechanism is also expected as a stabilizing effect for the aerodynamic responses. 

 
 

3. Experimental identification of self-excited forces and flapping forces 
 
For the bluff bridge deck sections, the flutter derivatives must be determined experimentally. 
 
 

 
Fig. 1 Bridge deck with flaps at leading and trailing edge 
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Fig. 2 Bridge deck with mechanically driven flap 
 

 
This is done through a system identification method in the frequency or time domain using free 
vibration or forced vibration testing in a wind tunnel. The drag component and the components 
associated with the lateral motion are negligible. In this section, the flutter derivatives of the 
self-excited forces of bridge deck and the ones of the control forces produced by flap motion are 
obtained experimentally.  

 
3.1 Testing method 
 
The governing equations of motion in the smooth flow with respect to the static equilibrium 

position of a two-dimensional bridge deck excited by aerodynamic forces are given by 

 2 22 2T T
h h h

L M
h h h

m I                     (1) 

In which m = mass per unit length; I = moment of inertial per unit length; h,  = damping ratios 
of heaving motion h and pitching motion , respectively; h,  = natural circular frequencies of 
heaving and pitching motion, respectively; LT = total aerodynamic lift force (positive when 
upward); MT = total aerodynamic moment (positive when clockwise). 

(b) Deformation of bridge and flaps 
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The total lift LT and moment MT are separated into their self-excited and control components 

 T se ad T se adL L L M M M     (2) 

where Lse = self-excited lift; Mse = self-excited moment; Lad = control lift; Mad = control 
moment.  
The self-excited forces per unit span can be expressed in the format below 

 

2
1 2 3 4

2 2
1 2 3 4

1

2

1

2

se

se

h B h
L U B H H H H

U U B

h B h
M U B A A A A

U U B

 

 

 
    

 
 

    
 

 

 
 (3) 

In which  = air density, U = wind speed, B = 2b = bridge deck width. Hi and Ai (i = 1 to 4) are the 
unknown coefficients, they play the roles analogous to the steady-state coefficients like dCL/dα.  
The section model is spring-mounted in a smooth flow, given an initial displacement, and allowed 
an oscillation. Then, the system identification techniques are employed to identify the Hi and Ai. 

If flaps are driven after pitching motion of bridge deck, the control forces can be expressed in 
the function of the velocity and the displacement of them 
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2 2
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


 (4) 

where FLi and FMi (i = 1 to 4) are the unknown coefficients. 
With the above control manners, the leading edge flap and trailing edge flap relate to the 

pitching motion by 

 X Y      (5) 

where X and Y are amplification factors of the leeward and the windward flaps, respectively. 
Take the derivatives of Eq. (5), substituting them into Eq. (4), and take the sum of Eq. (3) and 

Eq. (4), the total lift and moment of Eq. (2) generally are 
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where  

 10 1 20 2 1 2 30 3 3 4 40 4
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 (7) 
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Generally, at a given wind velocity, the heaving, pitching, damping ratio, and frequency of 
bridge deck can be measured experimentally in the smooth flow. Then, the coefficients Hi0 and Ai0 
can be found by using the least square method. 

First, the experiment is performed with the fixed flaps, X = Y = 0. The coefficients Hi and Ai (i 
= 1 to 4) are obtained. Next, the trailing edge flap is fixed with β = 0 while the leading edge flap is 
driven with γ = Xα (X ≠ 0) at the given wind velocity, the following coefficients FL1; FL3; FM1; FM3 
are calculated from Eqs. (7) 

 20 2 30 3 20 2 30 3
1 3 1 3L L M M

H H H H A A A A
F F F F

X X X X

   
     (8) 

Finally, the leading edge flap is fixed with γ = 0 while the trailing edge flap is driven with β = 
Yα (Y  0) at given speed. From Eq. (7) 

 20 2 30 3 20 2 30 3
2 4 2 4L L M M

H H H H A A A A
F F F F

Y Y Y Y

   
     (9) 

Generally, Hi and Ki are the functions of the reduced frequency K = ωB/U. Eq. (3) and Eq. (4) 
are commonly described utilizing flutter derivatives as follows (Scanlan 1978) 
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  (10) 

and 
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where * * * *, , ,i i Li MiH A F F (i = 1 to 4) = frequency dependent flutter derivatives. They can be 

calculated from , , ,i i Li MiH A F F  (i = 1 to 4) of Eqs. (3) and Eq. (4). 
 

3.2 Experimental model 
 
To find the coefficients * * * *, , ,i i Li MiH A F F  (i = 1 to 4) of Eq. (10) and Eq. (11), the two 

dimensional wind tunnel test was done using a two dimensional bridge deck model with flaps. The 
cross sectional shape of the model and flaps are shown in Fig. 3(a). The spring-mounting of the 
model is shown in Fig. 3(b). The driving system of the flaps in the wind tunnel test is different a 
little from the above-mentioned system in an actual bridge. The model is fixed with the hinge at 
H of the supporting frame and elastically supported by the pitching springs k from the frame 
only allowing a pitching oscillation about the hinge H. The frame is supported by the vertical  
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(a) Cross section of bridge deck system (b) Spring mount of the bridge deck system 

(c) Flap angles due to deformation of the bridge deck (d) Sketch of the driving mechanism 

Fig. 3 Wind tunnel model 
 
 

spring kh which allows only vertical motion of the frame including the model. The connecting rods 
AC and BD inhibit the sway motion and rotation of the frame. Thus the model has two degrees of 
freedom of oscillation, heaving and pitching.  

The flap installed at the leading edge of the model has a driving arm FH at its end of the 
rotation axis of the flap as shown in the figure. The vertical tie bar EF connects between a given 
point of the driving arm and the frame. The pitching motion of the flap is given by the pitching 
motion of the bridge deck through the driving arm. The magnitude of the turning angle and turning 
direction of the leading edge flap depend on the location of the tie bar EF as follows: X = (cb + 
l1)/l1; Y = −(cb + l2)/l2 If l1 = l2 and G = (cb + l1)/l1, the controlling angles are β = − Gα, γ = Gα. 
Thus the control manner as has been described in the above section is realized in this model. 
During a heaving motion of the model-mounted system, this driving arm does not move. The 
trailing edge also has the same mechanism. Fig. 3(c) explains the flap displacement when the 
angle of attack of the bridge deck is given. Fig. 3(d) shows the sketch of the flap driving 
mechanism.  

The model dimensions and dynamic properties are shown in Table 1 in which the weight of the 
model includes the mass of the frame. The damping ratios are measured when the flaps are fixed. 

Vertical wind gust is actively simulated in the Eiffel type wind tunnel based on Karman’s 
spectrum with turbulence intensity of 5% (Kobayashi and Hatanaka 1992, Kobayashi et al. 1994). 
Horizontal wind has no turbulence. 
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Table 1 Model dimensions and dynamic properties 

 
Table 2 Dynamic properties of system with flaps 

Amplification 
factor 

Fixed flaps Bridge with flap motion 

X Y fh(Hz) f(Hz) fh(Hz) h f(Hz)  I(kgm2) I(kgm2) Itotal(kgm2)

2.29 0 0.998 1.328 0.999 0.004 1.341 0.03 3.45E-05 0 4.02E-03

3 0 0.999 1.331 0.997 0.0036 1.346 0.031 3.03E-05 0 4.01E-03

4 0 1.000 1.329 0.996 0.0035 1.355 0.034 3.89E-05 0 3.94E-03

5 0 0.997 1.33 0.998 0.0041 1.364 0.035 4.04E-05 0 3.89E-03

0 -2.29 0.996 1.33 0.998 0.0045 1.34 0.032 0 2.66E-05 4.05E-03

0 -3 0.997 1.331 0.997 0.004 1.348 0.033 0 3.43E-05 3.99E-03

0 -4 0.998 1.328 0.999 0.0042 1.352 0.035 0 3.61E-05 3.96E-03

0 -5 0.995 1.332 0.998 0.0042 1.361 0.036 0 3.46E-05 3.93E-03

 
 

3.3 Experimental flapping forces results 
 
For without control case, X = Y = 0, the dynamic properties of method with fixed flaps are 

measured in still air as shown in Table 2. At a given speed in smooth flow, the model is given an 
initial displacement, and allowed an oscillation. The accelerations and velocities of heaving and 
pitching are calculated from measured data. Using the least square method for Eq. (1) in case of 
without control (Lad = 0, Mad = 0), Hi and Ai (i = 1 to 4) in Eqs. (3) or * *,i iH A  (i = 1 to 4) in Eq. 
(10) can be obtained easily. The results are shown in Fig. 4. Because the test is done in the smooth 

flow with the coupled motion of heaving and pitching, the sign of *
2A  is changed. At the change 

point, the flutter happens.  
The similarly test is done for the case of with flap motion with the different values of (X, Y). In 

each case of the test, the parameters of system are measured as shown in Table 2. 
The mean inertia moments of leading edge flap and trailing edge flap are about 3.6E-05 kgm2 

and 3.3E-05 kgm2, respectively. Fig. 5 shows the results of the flap derivatives ** , MiLi FF (i = 1 to 

4). 
 
 

Parameters Notation Value 

Length  Width  Depth (mm) L  2b  h 408  207  9 
Width of flap (mm) (1 - c)b 30 

Mass (kg) m 2.1 

Inertia moment (kgm2) I 0.0041 
Frequency (Hz) 

(fixed flaps) 
Heaving fh 0.998 
Pitching f 1.3 

Damping ratio 
(fixed flaps) 

Heaving h 0.0045 
Pitching  0.028 
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Fig. 4 Flutter derivatives of bridge deck 

0 5 10 15 20 25 30
-15.0

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

 

 

H
1*

U/(fB)

0 5 10 15 20 25 30
-10.0

-7.5

-5.0

-2.5

0.0

2.5

 

 

H
2*

U/(fB)

0 5 10 15 20 25 30
-25

-20

-15

-10

-5

0

5
 

 

H
3*

U/(fB)

0 5 10 15 20 25 30
-5

0

5

10

15

 

 

H
4*

U/(fB)

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

 

 

A
1*

U/(fB)

0 5 10 15 20 25 30
-1

0

1

2

3

4

 

 

A
2*

U/(fB)

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00

1.25

 

 

A
4*

U/(fB)

0 5 10 15 20 25 30
0

2

4

6

8

 

 

A
3*

U/(fB)

557



 
 
 
 
 
 

Duc - Huynh Phan and Hiroshi Kobayshi 

 

Fig. 5 Flutter derivatives of flaps 
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4. Rational function method 
 

The assessment of unsteady aerodynamic forces in the time domain requires identification of 
aerodynamic impulse or indicial response functions. The techniques for identifying the frequency 
domain force parameters such as flutter derivatives and admittance functions have been fully 
established, and a large data set for a host of geometric configurations of bridge sections has been 
developed (Walshe and Wyatt 1983, Sarkar et al. 1994, Bosch 1995, Matsumoto et al. 1995, 
Larose and Mann 1998). However, the flutter derivatives and admittance functions are normally 
known only at discrete values of reduced frequency K. It is difficult to directly use the 
aforementioned relationships to quantify the impulse or indicial response functions by means of 
the inverse Fourier transform. Therefore, approximate continuous functions of the reduced 
frequency are required for describing frequency dependent force parameters for future analysis. 
For the self-excited forces and the control forces, the rational function approximation technique 
known as Roger’s approximation can be utilized (Wilde et al. 1996, Mishra et al. 2008, Kirch and 
Peil 2009, 2011). 

 
4.1 Rational approximation for self-excited forces 
 
Eq. (10) represent the self-excited forces expressed into frequency-time domain for the 

complex sinusoidal motions with frequency  in two-dimensional oscillation i th he  ， i te   , 
and using the Fourier transform (F[…] is the Fourier transform operator) for the lift force of Eq. 
(10) 
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   (12) 

Eq. (12), using  F h i F h   
 , and similarly for moment, can be written in the compact form 

as follows 
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 (13) 

Starting from the hypotheses that self-excited forces derive from an overlapping of linear 
mechanisms, some authors propose another straightforward numerical model for self-excited 
forces in terms of the convolution integral between the structural motion and the impulse response 
function (Lin and Yang 1983); for the lift force it is 

          21

2

t

se Lseh LseL t U I t h I t d      


        (14) 

where Ii indicates the impulse function of the self-exciting forces, which are associated with the 
indicial aerodynamic functions (Scanlan et al. 1974, Scanlan 1984), and the subscripts represent 
the corresponding force components. 

Taking the Fourier transform of Eqs. (14) 

559



 
 
 
 
 
 

Duc - Huynh Phan and Hiroshi Kobayshi 

          21

2se Lseh LseF L t U F I F h F I F          (15) 

And similarly for moment, Eq. (13) can be written in the compact form as follows 
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 (16) 

Comparing between Eq. (13) and Eq. (16), the relationship between the aerodynamic impulse 
functions and flutter derivatives can be obtained 
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Using Roger’s approximation (Roger 1977) for the self-excited forces, for example 

      2*
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g g Lh
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where a0,Lh, a1,Lh, a2,Lh, ag,Lh, and dg,Lh (dg,Lh ≥ 0, g = 3 to n) are frequency independent coefficients; 
the first and second terms represent non-circulatory static-aerodynamics and the aerodynamic 
damping, respectively; the third term denotes the additional aerodynamic mass that is normally 
negligible; and the rational terms represent the unsteady components that lag the velocity term and 
permit an approximation of the time delays through positive values of the parameter dg,Lh. The 
value of n determines the level of accuracy of this approximation and the size of additional 
equations [given in Eq. (24)]. All of the coefficients in (18) can be determined by the linear and 
nonlinear least squares methods using the experimentally obtained flutter derivatives at different 
reduced frequencies. 

Replace is  , take inverse Laplace transform of Eq. (18) 
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Substituting Eq. (19) into Eq. (14) for ILseh(t), we can find the self-excited force Lseh(t) in time 
domain. 
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Similarly, the other self-excited lifts and moments are 
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where the memory term  is new variable that is introduced to express the aerodynamic phase lag 
and can be found as follows 

      , , , 1 , , 1x gy j g xy x gy j g xy g xy jψ t b t a c y t t      (24) 

where x is L or M, and y is h or , the component ∆t = tj − tj−1and 
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 (25) 

To find the coefficients of aerodynamic forces aj,xy (j = 0 to n) and dg,xy (g = 3 to n), the 

nonlinear least squares fit method is used. The general case of *
xseyI in Eq. (17) is 
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For example, choose n = 6, separating the real and imaginary parts in Eq. (26) and replace K = 
1/ε yields  

 

2 2 22
* 2 3 5 64

0 2 2 2 2 2 2 2 2 2
3 4 5 6

3 3 33
* 3 3 5 5 6 64 4

1 2 2 2 2 2 2 2 2
3 4 5 6

1 1 1 1

1 1 1 1

d d d d

d d dd

d d d d

         
   

        
   

     
   

    
   

 (27) 

With known values of * and * at discrete point K from wind tunnel testing in smooth flow, 
Eq. (27) can be solved by the least square method and the coefficients of aerodynamic forces are 
found.  

Summing lifts and moments from Eq. (20) to Eq. (23), the self-excited forces acting on bridge 
deck in time domain are 
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Table 3 Approximation coefficients of self-excited forces 

i ai,Lh ai,L ai Mh ai M di,Lh di,L di Mh di M 
0 0.466 -1.045 0.048 0.180 - - - - 
1 -2.348 -2.302 0.139 0.373 - - - - 
2 1.656 -0.712 -0.423 0.666 - - - - 
3 -1.322 3.388 0.139 -1.195 20.695 17.075 20.468 15.998 
4 -0.897 3.326 0.138 -1.203 20.098 17.033 20.465 15.992 
5 -2.464 3.330 0.143 -1.205 20.485 17.092 20.470 15.988 
6 4.045 3.269 0.138 -1.204 20.656 17.003 20.461 15.990 
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where Qse0 = ρB2U2; and 
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Basing on the flutter derivatives of bridge deck at the discrete point K as shown in Fig. 4, using 
the nonlinear least squares fit method, the values of approximation coefficients of self-excited 
forces can be obtained and listed in Table 4 for case of n = 6. 
 

4.2 Rational approximation for flap forces 
 

Using the same method presented above, the flapping forces of Eq. (11) can be written as 
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where  
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Table 4 Approximation coefficients of flapping forces 

i ai,L ai,L ai,M ai,M di,L di,L di,M di,M 
0 -0.156 0.070 -0.010 -0.017 - - - - 
1 -0.366 0.604 0.140 -0.214 - - - - 
2 -0.051 -0.027 0.038 -0.006 - - - - 
3 0.484 -0.530 -0.196 0.337 20.002 19.499 19.711 20.141 
4 0.461 -0.531 -0.195 0.335 19.986 19.501 19.716 20.137 
5 0.477 -0.539 -0.194 0.336 19.984 19.495 19.717 20.138 
6 0.458 -0.532 -0.195 0.336 19.971 19.492 19.714 20.139 
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From the plots in Fig. 5, the values of approximation coefficients of flapping forces can be 
obtained and listed in Table 4 for case of n = 6. 
 
 
5. Experiment and numerical simulation 
 

5.1 Control method 
 
In the equation of motion Eq. (1), with the effect of the turbulent flow, the total force and 

moment are 
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 (32) 

where Lb and Mb are buffeting force and buffeting moment, respectively. 
The time domain formulation of aerodynamics forces, self-excited forces and flapping forces, 

are obtained through the rational function approximation, Eq. (28) and Eq. (30), with the 
approximation coefficients were found and listed in Table 3 and Table 4. The buffeting forces are 
treated by using the quasi-static theory. If the flaps are driving by Eq. (5), Eq. (1) become 
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where ,i iH A  (i = 1 to 7) are given by 
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and the augmented aerodynamic states 
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5.2 Solution of control parameters 

 
The sensitivity numerical study about the critical speed was done with the combination of the 

coefficients X = G and Y = −G where G varies from -10.0 to 10.0. The instability phenomenon, it 
may be flutter, divergence, or large buffeting response, of the bridge deck is defined when pitching 
response exceeds 0.17radians in RMS. The wind speed at this phenomenon is called the critical 
speed Ucr. The equations of motion are solved by Runge-Kutta method. The horizontal wind speed 
U does not vary with time. The vertical wind W =W + w(t) has zero meanW = 0. The vertical 
gust w(t) is derived from the Von-Karman’s spectrum with turbulence intensity of 5%. 

Fig. 6, in which vertical axis shows the critical speed compared with that of no control case 
Ucr,0, shows the variation of the critical wind speed due to the gain of the control surfaces, G. 
Increase in positive gain results in the improvement of the critical wind speed. The maximum ratio 
Ucr / Ucr,0 is about 2 when G varies from −10.0 to 10.0. Further negative decrease of the gain G 
decreases the critical wind speed. For the gain G smaller than 0, the flutter wind speed becomes 
smaller than the flutter wind speed of the bridge deck without the control system.  

To check the effect of G on buffeting, the percentage of reduction effect of buffeting response 
(PRE) are introduced 
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c x

RMS RMS
PRE

RMS

 
  
 

 (36) 

where RMScc, RMSc0 = root mean square of buffeting response for with and without control case, 
respectively; subscript x indicates the heaving h or pitching . 
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Fig. 7 shows the effect of G on buffeting at the speed around the critical speed of without control 
case. When G increases, the high values of PRE are gotten. PREh reduces and gets negative value 
when G > 6. 

 
5.3 Wind tunnel test 
 
The test aimed at verifying the above theoretical derivations and numerical analysis as well as 

studying the effects of mechanically driven flaps on the responses of bridge deck.  
The flaps are driven through Eqs (5) with (X, Y) = (G, -G), where G = 5 Fig. 8 shows the 

measured time series of the response of the model for without and with control cases at reduced 
wind speed U/(b) of 2.6, where  is the natural circular frequency of pitching. After controlling, 
the heaving and pitching buffeting responses are reduced. 

565



 
 
 
 
 
 

Duc - Huynh Phan and Hiroshi Kobayshi 

 
Fig. 9 RMS comparison between numerical and experiment 
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Fig. 10 Time trace of without control - simulation and experiment at U/(b) = 2.3 
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Fig. 11 Time trace of with control – simulation and experiment G = 5 at U/(b) = 3.76 
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The RMS amplitude are measured and plotted in Fig. 9, in which the responses obtained in the 
numerical simulation are included. In the test, the bridge deck without control meets the critical 
phenomenon at reduced wind speed U/(b) of 3.47. The flaps driven after Eq. (5) could suppress 
the critical phenomenon up to reduced wind speed U/(b) of 6.07. RMS of pitching motion 
becomes small. 

The RMS of the response at each wind speed was obtained by numerical calculation. The time 
series of the model motion at reduced wind speed U/(b) of 2.3 for without control case and of 
3.76 for with control case are shown in Fig. 10 and Fig. 11, respectively. The trend of the 
experimental and numerical cases is nearly the same. The response amplitudes by both methods 
agree well. The experimental results matched the numerical results. 

 
 

6. Conclusions 
 
In this paper, a passive aerodynamic control by using mechanically driven flaps has been 

proposed and analytical and experimental studies of bridge deck section have been conducted. A 
time domain approach for predicting the coupled flutter and buffeting response of bridge deck with 
flaps was investigated. With experimental flutter derivatives of bridge deck and flaps, the 
derivation of time domain model of self-excited forces and control forces of sectional model was 
represented by using the rational function approximation. Then, the effectiveness of passive flap 
control was investigated by the numerical simulation and experiment. The following results were 
found: 

(1) In order to suppress the wind induced motion of a bridge, a bridge deck with mechanically 
driven flaps was proposed. Flaps are turned mechanically its angle in proportion to the pitching 
angle of the bridge deck.  

(2) The flutter derivatives of forces of bridge deck and flapping forces at the discrete point K 
were found experimentally. The values of approximation coefficients of self-excited forces and 
flapping forces were obtained by using the nonlinear least squares fit method. 

(3) The mechanically control by flaps with β = −Gα, γ = Gα could be better because it is not 
only got the effective control but also easy to install. Increase in positive gain G results in the 
improvement of the critical wind speed. The maximum ratio Ucr/Ucr,0 is about 2 when G varies 
from -10.0 to 10.0. 

(4) In turbulent flow, control by G = 5 could improve the flutter speed about 1.8 times and 
could suppress the critical phenomenon up to its wind speed. Buffeting in pitching motion was 
effectively suppressed but heaving motion was not. 

(5) The results of numerical simulation by using rational function approximation were matched 
with the experiment ones. 
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