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Abstract.   A novel damage classification method based on wavelet packet transform and statistical analysis 
is developed in this study for structural health monitoring. The response signal of a structure under an impact 
load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet 
components are then calculated to obtain the energy distribution. Statistical similarity comparison based on 
an F-test is used to classify the structure from changes in the wavelet packet energy distribution. A statistical 
indicator is developed to describe the damage extent of the structure. This approach is applied to the test 
results from simply supported reinforced concrete beams in the laboratory. Cases with single and two 
damages are created from static loading, and accelerations of the structure from under impact loads are 
analyzed. Results show that the method can be used with no reference baseline measurement and model for 
the damage monitoring and assessment of the structure with alarms at a specified significance level. 
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1. Introduction 

 
In recent years, damage assessment of structures has drawn great attention from various 

engineering practitioners. Damage identification techniques can be classified into either local or 
global methods. Most existing techniques, such as visual, acoustics, magnetic field, eddy current 
etc., are effective but local in nature. They require that the vicinity of the damage is known a priori 
and the position of the structure being inspected is readily accessible. The global methods quantify 
the healthiness of a structure by examining changes in its vibrational characteristics or the static 
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behaviour under load. The core of this group of methods is to seek some damage indices that are 
sensitive to structural damage. Doebling et al. (1998), Sohn et al. (2003), Carden and Fanning 
(2004) presented literature reviews on the damage assessment methodologies based on parameters 
such as the natural frequencies, mode shapes, mode shape curvature, flexibility matrix and 
stiffness matrix. However, the modal properties, such as natural frequencies and mode shapes are 
poor indicators of damage, and more sophisticated methods have been derived based on the second 
derivative of mode shapes. Also a large number of measurement locations are needed to provide 
sufficient resolution on the mode shapes. 

Most of the vibration-based damage assessment methods require modal properties that are 
obtained from traditional Fourier transform (FT). However, when the damage is very small, the 
damage-induced changes of physical structural properties are always too insignificant to reveal the 
damage using the FT-based method. In addition, the measured vibration signals are often 
contaminated with noise. The Wavelet Transform (WT) based method for vibration signal analysis 
is gradually adopted in many areas due to its good time-frequency localization. Hou et al. (2000) 
used a simple structural model with multiple breakable springs subjected to harmonic excitation to 
show that the wavelet transform can successfully be used to identify both abrupt and cumulative 
damages. The wavelet packet transform (WPT) is an extension of the WT that provides complete 
level-by-level decomposition. The WPT enables the extraction of features from signals with 
combined stationary and non-stationary characteristics and arbitrary time-frequency resolution. 
Sun and Chang (2002) concluded that the WPT-based component energy is a sensitive condition 
index for structural damage assessment. This index is sensitive to changes of structural rigidity and 
insensitive to measurement noise. The WPT component energy combined with well-trained neural 
network models was used to identify the location and the severity of damage. Yam et al. (2003) 
also extracted the structural damage feature based on energy variation of structural vibration 
responses decomposed using wavelet packet, and neural network is used to establish the mapping 
between the structural damage feature and damage status. This method needs accurate model 
information for both the healthy and damaged conditions to train the neural network model. 
However, it is difficult and challenging in practice, especially for complex structures. Law et al. 
(2005) developed a method to identify damage in structures using wavelet packet sensitivity. The 
sensitivity of wavelet packet transform component energy with respect to local change in the 
system parameters is derived analytically basing on the dynamic response sensitivity. The 
sensitivity-based method is then used for damage detection of structures. Li and Law (2008) 
proposed a damage detection method based on the wavelet packet energy of covariance of 
measured acceleration responses of structures under ambient excitation. Ren and Sun (2008) 
developed a wavelet entropy based method for damage detection of structures. The relative 
wavelet entropy gave a measure of similarity between two probability distributions that are the 
wavelet energy distributions. More recently, the decentralized damage identification based on 
wavelet entropy indices was embedded on wireless smart sensors (Yun et al. 2011). The method 
was verified via experimental tests using a three-story shear building structure and a three-
dimensional truss bridge structure. The continuous and discrete wavelet transforms were used 
together for damage detection with more evident damage signature than that from traditional 
approaches based on direct investigation with the wavelet coefficients of structural response 
(Gokdag 2011). Bagheri et al. (2011) studied the detection of linear flaws in plate structures via 
two-dimensional discrete wavelet transform where the local damage was modelled with arbitrary 
length, depth and location. Beheshti-Aval et al. (2011) utilized the harmonic displacement 
response of a damaged square plate as the input signal function in the wavelet analysis without 
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information on the original undamaged structure. The location of damage was identified by sudden 
changes in the spatial variation of  the transformed response. The change in the stiffness or mass of 
the plate with damage will cause a localized singularity which can be identified by a wavelet 
analysis of the displacement response. 

Because all vibration-based damage detection processes rely on experimental data with 
inherent uncertainties, statistical analysis procedures are necessary if one is to state in a 
quantifiable manner that changes in the vibration response of a structure are indicative of damage 
as opposed to operational and/or environmental variability (Sohn 2007). Farrar et al. (2001) and 
Sohn et al. (2000) cast the structural health monitoring problem in the context of a statistical 
pattern recognition paradigm. This paradigm can be described as a four-part process: 1) 
Operational evaluation; 2) data acquisition and cleansing; 3) feature extraction and data reduction; 
and 4) statistical model development. Most references focus on methods for extracting damage-
sensitive features from vibration response measurements. Few of them take a statistical approach 
to quantify the observed changes in these features. Worden et al. (2000) developed a statistical 
method for damage detection using the outlier analysis. The damage sensitive features are assumed 
to have a Gaussian distribution with an estimated mean value and covariance matrix. The problem 
is one of novelty detection. Features are first extracted from a baseline system to be monitored and 
subsequent data are then compared to see if the new features are outliers which significantly depart 
from the rest of the population. In fact, many statistical procedures can be used for the problem of 
novelty detection and a literature review was presented by Markou and Singh (2003). Sun and 
Chang (2004) developed a statistical pattern classification method based on the WPT for structural 
health monitoring. The dominant component energies are defined as a novel condition index. Two 
damage indicators based on the sum of absolute difference and square sum of difference are 
proposed. These two indicators basically quantify the deviations of the wavelet packet signatures 
from the baseline reference. The statistical process control method is used to determine the 
threshold value for the damage indicators. Any indicator that exceeds the threshold would cause a 
damage alarm. Xu et al. (2008) presented a damage index based on the statistical moments of 
dynamic responses of a structure under the random excitation. The sensitivity of statistical moment 
to structural damage was discussed. Gul and Catbas (2009) investigated statistical pattern 
recognition methods in the context of structural health monitoring using two different laboratory 
structures. The advantages and drawbacks of the outlier analysis were discussed.  

Similarity test is a simple statistical technique for novelty detection to determine whether the 
test sample comes from the same distribution as the reference data or not. Ruotolo and Surace 
(1997) using the t-test to detect damage in beam structures. Sohn and Farrar (2001) used the 
residual errors of the time series model as the damage-sensitive feature and F-test is used to check 
if the new signal has significantly changed from the closest signal selected from the reference 
database. Iwasaki et al. (2004, 2005) proposed a new automatic damage detection method using 
response surface methodology and statistical similarity test of the identified systems using an F-
test. The method successfully detects the damage without the use of the modeling and learning 
data for the damaged structures. The response surface method was used for damage detection of 
structures by Fang and Perera (2009) and the significance of each parameter was evaluated 
through the statistical F-test analysis. 

A structural damage can cause shifts in the vibration energy across the frequency spectrum of 
interest. Therefore, the energy of structural vibration response at different frequency bandwidth 
contains information of the structural damage, and the energy variation in one or several frequency 
components can indicate the damage status of the structure. 
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This above-mentioned property of vibration energy shifts across the frequency spectrum with 
damage is employed in a novel damage classification method based on wavelet packet transform 
and statistical analysis as shown below for structural health monitoring. The response signal of a 
reinforced concrete structure under an impact load is normalized and then decomposed into 
wavelet packet components. Energies of these wavelet packet components are then calculated, and 
statistical similarity test based on an F-test is used to identify damage in the reinforced concrete 
structures with these wavelet packet component energy distributions. A statistical indicator is 
developed to describe the damage extent of the structure. The validity of this approach is discussed 
with respect to the assumptions made for the F-statistic. Experimental study is carried out on 
simply supported reinforced concrete beams. Different damage cases are created using static 
loading. Accelerations of the structure under impact loads are analysed. Results show that the 
method can be used with no reference baseline measurement and model for damage monitoring 
and assessment of the structure with alarm for a specified significance level. 
 
 
2. Wavelet packet component energy analysis 
 

The continuous wavelet transform of a square-integrable signal f(t) is defined as (Mallat 1999) 
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where t is time, and  denotes the convolution of two functions. Ψs (t) is the dilation of Ψ (t) by 
the scale factor s. u is the translation indicating the locality. ψ* (t) is the complex conjugate of ψ (t)  
which is a mother wavelet satisfying the following admissibility condition 
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where Ψ (ω) is the Fourier transform of ψ (t). The existence of the integral in (2) requires that 
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The reconstruction of the original signal can be expressed as  
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Various forms of wavelet basis function ψ (t) have been developed. One of the most useful 
practical methods for signal decomposition is the wavelet packet analysis. A wavelet orthonormal 
basis decomposes the frequency axis in dyadic intervals whose sizes have an exponential growth. 
Coifman et al. (1992) generalized this fixed dyadic construction by decomposing the frequency in 
intervals whose bandwidths may vary. Each frequency interval is covered by the time-frequency 
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boxes of wavelet packet functions that are uniformly translated in time in order to cover the whole 
plane. 

In the present study, the vibration responses are standardized prior to wavelet transform as 
follow (Sohn and Farrar 2001)  

x
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 (5) 

where )(ˆ tx  is the original signal and xu ˆ  and x̂  are the mean and standard deviation of )(ˆ tx , 

respectively. The standardization procedure is applied to all measured responses. The measured 
response is represented by Haar wavelet basis function through the dyadic wavelet transformation. 
The bandwidths of each level of the dyadic wavelet transform are octaves, and this enables a direct 
comparison of the energy content of the wavelet packets as shown below. The WPT component 

function of the standardized measured response x (t), i.e., )(txi
j , can be reconstructed as 
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where i denotes the ith WPT and j denotes the jth level of decomposition, and 
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A non-dimensional vector at the jth level of decomposition can be written as follows 
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xjEE  is the total energy of the vibration response. p(i) is the non-dimensional energy 

of the ith wavelet packet component. This vector is in fact the non-dimensional energy distribution 
in the different wavelet packets. 
 
 

463



 
 
 
 
 
 

S.S. Law, X.Q. Zhu, Y.J. Tian, X.Y. Li and S.Q. Wu 

 

3. Statistical damage assessment procedure 
 

3.1 Damage indicators based on wavelet packet analysis 
 
The energy distribution of the response within the frequency bandwidth is represented by the 

different statistical moments of the distribution, and its mean, variance, skewness and kurtosis, i.e., 
, 2, S and K, are taken as damage indicators in the damage classification study. 
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where nk is the number of the kth wavelet packet, and p(nk) is its probability density function. 
 

3.2 Statistical damage assessment 
 
 We perform an analysis of variance on two groups of samples of the above damage features as 
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where v0, v1 are the damage feature vectors obtained from experimental sets 0 and 1, respectively. 
The damage feature vector may consist of any one of the four types of damage indicators from the 
energy distribution of the response in Eq. (9). These indicators are random in nature and are 
assumed to follow the normal distribution. N0 and N1 are the numbers of test in experimental sets 0 
and 1, respectively. 

 The test statistic is the F-statistic based on the F-distribution. The test is to check how large the 
variability is between the groups as compared to the size of the variability within each group. The 
assumptions behind the test are similar to the t-test in that the underlying population distribution 
should be normal and the population variances of the groups should be approximately equal. These 
two assumptions will be discussed later in this Section. In fact the F-statistic is equal to the square 
of the t-statistic for the analysis of variance of two groups of data (Glantz 2002), i.e., the 
comparison of the means of two groups in the t-test is simply a special case of analysis of variance 
by applying the F-statistic to the two groups. Therefore we take the experimental set 0 as the 
reference. The damage assessment is based on the similarity test of experimental sets 0 and 1. The 
null hypothesis is  

10
0H  :                                                             (11) 

where μ0, μ1 are the true means of the two populations 0 and 1.. The F-statistic value is defined as  

MSE

MSA
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groups from population 0 and 1 respectively. 
Under the null hypothesis, this F-statistic follows an F-distribution of (p – 1, n – p) degrees of 

freedom, with (p - 1) the between groups degrees of freedom and (n - p) the within groups degrees 
of freedom, where p is the number of the groups studied and n is the total number of the data with 
n = N0 + Nj. When the energy distributions of the responses over the frequency bandwidth from 
these two experimental sets exhibit similarity, the F-statistic assumes a small value. The critical 
value of the hypothesis H0 is determined from a significance level α together with p and n. The 
critical region hypothesis H0 is represented by the following formula 

),1( pnpFF                                                         (13) 

Similarity of the features from these two experimental sets is rejected when F is larger than Fα (p – 
1, n – p) indicating damage in the structure. 

When two populations A and B are compared directly, only one F-Statistic could be obtained 
without a distribution. This is the disadvantage of the general homogeneity test between two 
populations. The statistical analysis described above is conducted as follows: 

1. Ten samples were obtained separately from two populations (states) to form two DFVs as in 
Eq. (10). Each sample in the feature vector is obtained by the bootstrap method (Davison and 
Hinkley 1997) with replacement. 

2. The similarity test with F-Statistic is conducted between the DFVs as in Eqs. (11) to (13). 
3. Repeat Steps (1) and (2) for 200 times and 1000 times to form groups of F-statistic between 

two states with its own statistical distribution. 
 

3.3 Validity of the statistical approach 
 
The validity of the proposed approach depends on whether the population of statistical 

moments in Eq. (9) follow a normal distribution and the variance of the populations derived from 
different damage stages are approximately equal. These assumptions are justified with the proofs 
on the following statement on the statistical moments of the energy distribution over the frequency 
bandwidth calculated from the measured responses. 

 
Statement No. 1: The response sample of a structure in each dynamic hammer test is drawn from 

the same population with a specific mean and variance. 
Proof:  

Considering a beam subjected to a hammer hitting at location xF with an impact load denoted as 
F(t), and the vibration response is measured at location xs from the right end of the beam. The 
beam undergoes a free decay vibration with a zero initial displacement xs,0 and an initial velocity 

0,sx calculated as (Li and Law 2008) 
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)(0, tCFxs 
                                                           

 (14) 

where C is a matrix of coefficient which is function of the beam mass. The dynamic response at 
location xs due to the impact load can be expressed as the summation of the modal responses as 
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where m is the number of mode which equals to infinity for a continuous system. φi(xs) is the value 
of the mode shape function at location xs. ρi is the amplitude of each mode considering the initial 
condition. θi is the initial phase within [-π, π]. ωi, ξi, ωDi are the modal frequency, modal damping 
and natural frequency of the ith mode respectively which can be obtained as 
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Since the initial displacement xs,0 
is equal to zero, according to Eqs. (14), (17) and (18), we 

have 
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and θi = 0 or π.  
According to the linear relationship between xs (t) and xs,i (t), the mean value of xs (t) in Eq. (15) 

can be expressed in terms of the mean values of xs,i (t) 
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and the standard derivation of xs (t) can be expressed as 

 

 

  



 

 







m

i

m

j
sjsisjsisms

m

i

m

j
sjsisms

smsssxs

ExExxxExVarxVar

xxCovxVarxVar

xxxVarxVar

1 1
1

1 1
1

21

)()(

,)()(

)(







, ji     (21) 

It is noted that xs (t) is a response sample from one hammer hitting test and similar response 
samples from different hammer hitting test under the “same” testing condition after normalization 
may form a population with a mean and a standard deviation given by Eqs. (20) and (21), 
respectively. 
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Considering the responses at the same measured location with the “same” testing condition 
from two hammer tests with different amplitudes of the impact loads denoted as F1 and F2, 
respectively. Assuming the two amplitudes have the following relationship 

12 FF                                                               (22) 

where γ is a constant. Since the distribution of the energy over the frequency range of interest due 
to the impact hammer has been guaranteed by the manufacturer of the hammer, if the response 
samples collected at xs on the same structure from these two tests come from two different 
populations denoted as x(1) and x(2), it can be proved that the responses and their statistical 
moments are linearly related as 
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where Θ is a function of γ.  
According to Eq. (23) and the standardization procedure defined in Eq. (5), the response 

samples from two hammer tests can be finally normalized to the same x* with zero mean and unit 
standard deviation as 
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It has been stated (Miller and Miller 2004) that, if the samples N

s

2
s

1

s
x,,x,x  are independent 

and identically distributed, they will constitute a random sample from the infinite population given 
by their common distribution. The impact hammer tests were conducted in an independent manner, 
and the measured responses in each test at the same location xs are independent to each other. The 
normalized response signals in Eq. (24) are shown to have the same distribution in the common 

population x*. These individual samples N

s

2
s

1

s
x,,x,x  are samples from the infinite population x

*. 

 
Statement No. 2: The mean value μE of the energy spectrum over the frequency of interest obtained 

from impact hammer test follows a normal distribution as N(μE, σE). 
Proof:  

Statement No. 1 shows that each response from the impact hammer test has the same 
expression after the standardization procedure. Thus the energy of the response from each test has 
the same distribution over the frequency bandwidth of interest. Due to the independent way of 
performing each test, it can be inferred that the vector of energy distribution calculated from the 
wavelet transform of responses is drawn from the same population. Also we know that “even if the 
distribution in the original population is far from normal, the distribution of the sample means μ 
tends to become normal under random sampling as the size of sample increases” according to the 
Central Limited Theorem (Snedecor and Cochran 1989). We then draw the conclusion that the 
mean value of the energy spectrum from a hammer test follows a normal distribution N(μE, σE). 
 
Statement No. 3: All the damage indicators in Eq. (9) follow a normal distribution. 
Proof: 

For the standardized response studied above, the distribution of energy follows a fixed pattern 
and it can be stated that the energy over a wavelet packet frequency bandwidth is linearly related 
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to the total energy of the standardized response. The mean value of the energy spectrum has been 
proved to follow a normal distribution above, and therefore the total energy of the distribution also 
follows a normal distribution. Because of the linear relation mentioned before, a conclusion can be 
inferred that the energy contained in each wavelet packet bandwidth follows a normal distribution. 
Since the statistical theorem (Berry and Lindgren 1996) states that “the linear combination of 
multiple normal distributed variables is still following a normal distribution”, we can draw the 
conclusion that any of the damage indicators in Eq. (9) follows a normal distribution. 
 
The Bootstrap Method of Sampling 

Traditional parametric approach to make statistical inference needs (a) to assume that the 
sampling distribution has a shape with known probability properties and (b) to estimate 
analytically the parameters of that sampling distribution. But for the present case where the energy 
distribution over the frequency bandwidth of the standardized response is unknown, the 
distributions of the statistical moments are also not available.  

The bootstrap procedure is applied in this study which makes probability-based inferences 
about a population characteristic based on an estimator using a sample drawn from that population. 
The sampling technique does not require the parent population distributional assumptions and 
without the need for analytic formulas for the sampling distribution parameters. It empirically 
estimates the entire sampling distribution by examining the variation of the statistic within the 
sample. The basic bootstrap approach is to treat the sample as if it is the population, and apply 
Monte Carlo sampling to generate an empirical estimate of the statistic’s sampling distribution. 
This is done by randomly drawing a large number of “resamples” of size n from the original 
sample with unknown but identical distribution with replacement. The bootstrap approach retains 
the statistical characteristics of the mother structure. 
 
Variance of the Populations 

The F-statistic requires that the populations from which the samples are drawn to follow a 
normal distribution and the samples are independently drawn. These have been proved in the 
discussions above. It also requires that the variance of the populations from which the samples are 
drawn to be approximately equal. Another F-test on the homosecdasticity of the two groups will 
be conducted with the null hypothesis H0: 1 = 2, where 1and 2 are the variance of the two 

populations. The F-statistic is defined as F= 2
2

2
1 / ss  where 2

1s is the larger group variance of the 

two, and 2
2s is the smaller group variance. When the two samples come from the same population, 

F is equal to 1.0. The two-tailed critical region for hypothesis H0 is represented by F0.025(n1 −1, n2 
− 1) > F > F0.0975 (n1−1, n2 – 1) with 5% level of significance. Hypothesis H0 is rejected when F is 
outside this range. 
 
 
4. Experimental setup 

 
Two four-metre long uniform rectangular reinforced concrete beams with 3.8m simply 

supported span as shown in Fig. 1, were tested in the laboratory. The beam cross-section is 300mm 
high and 200mm wide. There are three 20mm diameter mild steel bars at the bottom of the beam, 
and two 6mm diameter steel bars at the top of the beam section. 6mm diameter mild steel links are 
provided at 195mm spacing over the whole beam length. The beam end rests on top of 50mm  
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Fig. 1  Reinforced concrete beam and sensor locations 

 
 

diameter steel bar at each end which in turn rests on top of a solid steel support fixed to a large 
concrete block on the strong floor of the laboratory. A piece of thin rubber pad is placed between 
the steel bar and the bottom of the concrete beam for level adjustment. The reinforcement in the 
two beams, namely, Beam 1 and Beam 2 corresponds to a steel percentage of 1.57%. The 
compression strength of concrete is 54.4MPa, and the density, tensile strength, Young’s modulus, 
and Poisson Ratio of concrete are respectively 2351.4kg/m3, 3.77MPa, 30.2GPa and 0.16. The 
Young’s Modulus and yield stress of the mild steel bars are respectively 181.53GPa and 
300.07MPa.  
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Table 1 Scheme of Static load test, fundamental frequency and crack conditions 

Damage States 01 02 1 2 3 4 5 6 7 8 9 10 

B
ea

m
1 

P (kN) 0 2 10 17 25 35 45 50 55 60 67 75 

Frequency (Hz) 30.43 30.69 30.02 29.66 29.34 28.76 29.20 28.91 28.73 28.30 28.10 26.96

Length of Crack 
Zone (m) 

0.00 0.00 - - 1.213 1.801 1.801 - - - 2.399 2.399

Max. height of 
crack (mm) 

0.00 0.00 - 92 (1) 132 
(7)

166(11) 181(11) - - - 192(14) 300(14)

B
ea

m
2 

P (kN) 0 - 20 (R) 50 (R) 80 (R) 110 (R) 20 (L) 50 (L) 80 (L) 110 (L) 150 (L) 150 (R)

Frequency (Hz) 32.61 - 32.57 32.11 31.98 31.87 31.41 30.64 30.77 30.90 30.04 29.67
Length of Crack 

Zone (m) 
0.00 - - 0.309 0.798 0.998 - 0.415 1.038 1.165 1.165 0.998

Max. height of 
crack (mm) 

0.00 - - 113 
(2)

134 
(6)

164 (7) - 124 
(3)

144 
(6)

173 (8) 200 (9) 240 (8)

Note: 1) R denotes loading location at 3/4L; 2) L denotes loading location at 1/4L; 3) Others at 1/2L; 4) () 
denotes number of cracks; 5) –denotes no measurement is recorded. 

 
 

5. Damage detection of beams with single damage zone 
 

5.1 Test procedure 
 
Beam 1 was incrementally loaded at mid-span to different static load levels creating a single 

damage zone using three-point loading as shown in Fig. 1(a). The load levels were from zero up to 
the failure load of the beam. The crack locations and lengths were monitored in addition to the 
displacement measurements. Details of the loading steps and the crack damage conditions are 
listed in Table 1. At each load level, twenty impact hammer tests were conducted after the beam 
had been unloaded for twenty minutes. Seven accelerometers evenly distributed at the bottom and 
along the beam as shown in Fig. 1(c) measured the responses. Impact force excitation was applied 
at 3/8L from the left support using a Dytran Instruments model 5803A 12 lbs instrumented 
impulse hammer. INV300 data acquisition system was used to collect the data from all the 8 
channels. Sampling frequency is 2000Hz, and 8192 data were recorded for each hammer test. The 
fundamental frequency of the beam at each load level is also shown in Table 1. The fundamental 
frequency is noted to reduce with increase of damage at each load level.  

 
5.2 Analysis on the damage indicators  
 
The first 1000 data of the response from 5/8L were decomposed into six levels of wavelet 

packets. The frequency bandwidth of each decomposed wavelet packet is 15.625Hz. Fig. 2 shows 
the measured responses, their Fourier spectrum and wavelet packet components at 5/8L for 
different damage states. Only the first 32 WP are shown in the figure because the remaining WP 
contains very small vibration energy. Table 2 shows the average values of the four damage 
indicators from Eq. (9) for all states. Fig. 3 shows the range and average of the damage indicator 
(mean) for all states. Fig. 4 shows the average damage indicator (mean) for all states from different 
measuring locations. The following observations are obtained from these results: 
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Table 2 Average damage indicators for Beam1 from responses at 5/8L 

Damage States 01 02 1 2 3 4 5 6 7 8 9 10 

Mean 7.65 7.43 5.86 6.16 5.76 4.50 5.32 5.38 5.47 4.56 4.25 5.11
Variance 9.44 9.23 6.54 7.28 6.80 4.72 6.00 5.99 6.08 4.94 4.34 6.08
Skewness 3.09 3.15 3.93 3.82 4.08 5.33 4.55 4.15 4.09 4.67 4.87 4.58
Kurtosis 14.01 14.28 23.07 21.54 24.80 44.25 31.27 27.18 26.25 34.64 38.71 32.37

 

Fig. 2 Impact responses and their spectrum at 5/8L for Beam 1 
 
 
1) The wavelet packet component energy changes with the different damage states as shown in 

Fig. 2. The energy ratio of the second wavelet packet component increases with the damage state 
number while that in the fourth component reduces. This shows that the energy change of the 
wavelet packet components is clearly related with damage in the reinforced concrete beam. 

2) Observations in Fig. 3 and Table 2 show that all the states can be classified into six groups 
according to their damage indicator (mean): States 01 and 02 form the first group. States 1, 2 and 3 
are in the second group. State 4 is the third group. States 5, 6 and 7 form the fourth group. States 8 
and 9 are in the fifth group and State 10 is the sixth group. The average values of the damage  
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Fig. 3 Damage indicator (mean) at 5/8L of all states for Beam 1 

 

 
Fig. 4 Damage indicator (mean)from responses at different measuring locations 

 
 

indicators are close to each other in each group. The fundamental frequency in Table 1 also show 
similar pattern. Therefore the damage process of Beam 1 can be represented by these groups, 
which are renamed as six configurations with distinctly different behaviour and damage pattern. 
The average variance, skewness and kurtosis in Table 2 also exhibit similar pattern as the average 
mean. 

3) Fig. 4 shows that the average damage indicator (mean) is different at different measuring 
locations. Since the damage in beam is symmetrical about mid-span, the indicators at 1/8L and 
7/8L, 1/4L and 3/4L, 3/8L and 5/8L are close to each other and are in pairs. It is noted that this 
damage indicator is a measure of the central frequency of the energy distribution in the frequency 
spectrum. Different measured location corresponds to a different combination of the modal 
responses. Fig. 4 shows that the first five configurations exhibit similar behaviour throughout the 
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damage process, while the final damage configuration which corresponds to a failure state, has 
significantly different composition of response components as measured at mid-span. This means 
that any sensor could give an indication of the damage process as seen in Fig. 4 but sensor when 
located at the damage could detect drastic change in the indicator associated with failure of the 
cross-section. 

 
5.3 Similarity test of wavelet packet energy ratios using F-test 
 
The probability distribution of the F-statistical value in a similarity test for two sets of data 

follows F(p-1,n-p) distribution if they come from the same state. In this study, p = 2 and n = 20, 
and the probability distribution of the F-statistical value may follow F(1,18) distribution. Two 
significance levels α for the F-similarity test are selected as 1% and 5% corresponding to critical 
values of F1 = F0.05 (1, 18) = 4.41 and F2 = F0.01 (1, 18) = 8.29. When F exceeds one of these 
values, similarity between groups of data from two different states is rejected. If one state is the 
intact state, the structure is diagnosed as being damaged.  

Feature vectors v0 and v1are formed from the twenty test results for each state with ten 
randomly selected components each, and the F-statistical value is calculated by Eq. (12). 200 
different combinations of the test results are used in the calculation. (The use of 1000 
combinations of test results has been checked yielding similar results). Fig. 5 shows the 
distribution of the experimental F-statistical values for the undamaged case from responses at 5/8L 
and the F(1,18) distribution. Both sets of data for comparison are taken from the intact specimen.  

 

Fig. 5 Distribution of F-statistical values for different damage indicators for the intact beam  (___ 
F(1,18) distribution, … F-statistical values (mean))
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   Table 3 The average F-statistical values of the damage indicators from responses at 5/8L (Beam 1) 

Damage 
States 

01 02 1 2 3 4 5 6 7 8 9 10 

M
ea

n i~i 1.00 1.07 1.19 1.11 1.15 1.12 1.03 1.17 1.09 1.19 1.11 1.05 
i~0 - 1.44 42.12 32.18 51.32 152.46 87.32 83.48 75.05 150.77 179.35 106.26

i~i-1 - 1.49 49.75 3.44 7.56 69.51 44.26 0.70 1.40 54.88 7.22 58.34 

V
ar

ia
nc

e i~i 1.00 1.07 1.17 1.10 1.15 1.11 1.00 1.23 1.08 1.20 1.10 1.03 
i~0 - 1.16 39.64 22.48 31.36 95.75 56.98 53.95 54.38 90.30 104.70 60.09 

i~i-1 - 1.20 50.83 4.96 2.98 33.64 19.16 0.60 0.75 17.61 7.40 64.39 

S
ke

w
ne

ss
 

i~i 1.00 1.05 1.08 1.18 1.07 1.15 1.10 1.16 1.16 1.11 1.08 1.04 
i~0 - 1.09 22.92 38.48 61.12 115.58 113.26 75.36 74.15 69.00 63.35 141.78

i~i-1 - 1.13 23.20 1.11 9.97 44.32 18.15 16.23 0.97 17.92 1.23 2.27 

K
ur

to
si

s i~i 1.00 1.04 1.13 1.07 1.18 1.09 1.08 1.09 1.18 1.08 1.06 1.02 
i~0 - 1.01 23.22 35.42 60.81 106.65 96.71 113.83 123.34 63.78 52.70 208.07

i~i-1 - 1.06 25.85 1.14 8.36 45.84 20.01 9.28 1.48 18.03 1.46 3.35 

   Note: 0 denotes the intact State 01;i denotes the ith damage state 
 

 
Fig. 6 Distribution of F-statistical values (mean) for Beam 1 (State i versus State 01) 

 
 
The vertical dash lines show the critical values at the significance levels 1% and 5%, respectively.  

Table 3 shows the average F-statistical values for the four damage indicators from the 
responses at 5/8L. Fig. 6 shows the distribution of F-statistical values (mean) for different 
configurations of the reinforced concrete beam compared to the intact State 01. Fig. 7 shows the  
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Fig. 7 Distribution of F-statistical values (mean) for Beam 1 (State i versus State i-1) 
 
 

distribution of F-statistical values (mean) from comparison between two successive states. The 
following observations are obtained from these results: 

1) The distribution of the F-statistical values for the four damage indicators in Fig. 5 is close to 
the theoretical F(1,18) distribution. This comparison confirms the feasibility of the F-test in the 
acceptance of the null hypothesis with a specified significance level when comparison is made 
within the intact state. 

2) From Table 3, the average of the F-statistical value (mean) is close to 1.0 when the similarity 
test is performed on data from the same state. Fig. 6 shows that the probability for the F-statistical 
value for State 02 which is larger than the critical value F2 is very small. The critical values F1 and 
F2 may be taken as the threshold of acceptance for the null hypothesis. The average F-statistical 
value (mean) for States 1 to 10 compared with State 01 are all larger than F2 as shown in Table 3 
and Fig. 6. This indicates that there is an obvious change from the initial state. The F-statistical 
value increases basically with the damage state number, except for State 4 which has a high surge 
in the values. These results show that the F-statistical value could be used as an indicator of the 
damage state.  

3) The F-statistical values from two adjacent states are also shown in Table 3. The values are 
large for State 1 versus State 0, 4 versus 3, 5 versus 4, 8 versus 7 and 10 versus 9 indicating large 
changes between these two states. This confirms observation in Table 2 and Fig. 4 leading to the 
grouping of the different damage states into six damage configurations. The F-statistical value of 
two adjacent states is an effective indicator for structural health monitoring when the baseline 
information is not available. Fig. 7 shows the distribution of the F-statistical values for States 1 
versus 0, 5 versus 4 and 10 versus 9. The distributions are very close to each other. It shows the  
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Fig. 8 Wavelet packet energy ratio at 1/2L for beam 2 

 

Fig. 9 Damage indicator (mean) at 1/2L of all states for Beam 2 
 
 

relative changes between two adjacent states in the three sets of comparison are similar.   
It is noted that the measurement location governs the basic energy distribution of the response. 

The damage pattern in Beam 1 is basically at mid-span affecting mainly the fundamental mode 
with little changes for the second and higher modes. Measurement from 5/8L basically picks up all 
these changes. Another study with Beam 2 is made below with the damage not at mid-span but 
with the measurement from mid-span to check on the performance of the different damage 
indicators for a comparison. 

 
 

6. Damage detection of two damage zones 
 

6.1 Test procedure 
 
The experimental set-up is the same as above. Beam 2 was also incrementally loaded but firstly 
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at 3/4L and then at 1/4L position as shown in Table 1. An extra support was placed in the middle 
of the beam for both loading positions to create two zones of crack damages as shown in Fig. 1(b). 
Details of the loading steps and the crack conditions are listed in Table 1. At each load level, 
twenty impact hammer tests were conducted after the beam was unloaded for twenty minutes and 
with the support at mid-span removed. The fundamental frequency of the beams at each load level 
is also shown in Table 1. The frequency again reduces with increasing damage as in Beam 1. 

 
6.2 Similarity test of wavelet packet energy ratios using F-test 
 
Similar to the study for Beam 1, 200 different damage feature vectors, each with ten 

components, formed from the twenty impact tests were analysed. Fig. 8 shows the wavelet packet 
component energy from responses at 1/2L. Fig. 9 shows the range and the average damage 
indicators of all damage states for Beam 2. Fig. 10 shows the F-statistical values (mean) compared 
to the intact state. Table 4 shows the averages of the four damage indicators. Fig. 11 shows the 
distribution of the F-statistical values (mean) from comparison between two adjacent states. The 
following observations are obtained from these results: 

1) The energy ratio in Fig. 8 exhibit a different shift of energy in the frequency spectrum 
compared with that in Beam 1. The second wavelet packet component reduces with damage while 
those in the fourth component increases. This corresponds to a shift of vibration energy from the 
fundamental mode to the second and higher modes associated with the damages at quarter-span. 

2) The damage indicator (mean) in Fig. 9 has a sudden drop in State 2 and a sudden jump in 
State 6. It has a gradual increase from States 2 to 5 and from States 7 to 9. This observation is 
slightly different in the higher order statistics as given in Table 4 indicating different behaviours of 
the four damage indicators. 

3) According to the damage indicators in Tables 4 and 5 and Fig. 9, the damage states can also 
be grouped into four damage configurations. States 0 and 1, States 2 to 5, States 6 to 9, and State 
10 correspond to the four configurations in sequence. The damage indicators are close to each 
other in each configuration, and the F-statistical values from two adjacent states are smaller than 
the critical value at significance level of 1%.These indicate that there is no obvious difference 
between two adjacent states in each configuration. 

4) The distributions of the F-statistical values for the small damage State 1 is close to the F 
(1,18) distribution as shown in Fig. 10(a), and the probability for F > F1 is very small. There is 
strong indication of local damage in States 2 and 3 with most of the F-statistical values larger than 
F1. But this indication decreases with a gradual growth of the crack zone from 0.309m to 0.998m 
in State 2 to State 4. Further loading at 1/4L in States 5 and 6 erodes this indication still further 
until State 7 where the energy distribution of the response is similar to a uniform beam. This can 
be explained that a longer crack zone at mid-span has little effect on the higher modes while an  

 
 

Table 4 Average damage indicators for Beam 2 from responses at 1/2L 

Damage States 0 1 2 3 4 5 6 7 8 9 10 

Mean 4.27 4.27 3.91 3.81 3.91 3.97 4.49 4.35 4.48 4.71 4.49
Variance 6.8 6.72 5.82 5.62 5.5 5.61 5.36 5.27 5.25 5.81 5.82
Skewness 4.72 4.78 5.57 5.7 5.65 5.93 5.96 6.07 5.69 5.01 5.34
Kurtosis 29.6 30.28 42.71 44.41 44.17 47.25 47.95 49.64 44.21 34.15 38.3

 

477



 
 
 
 
 
 

S.S. Law, X.Q. Zhu, Y.J. Tian, X.Y. Li and S.Q. Wu 

 

Table 5 The average F-statistical values of the damage indicators from responses at 1/2L (Beam 2) 

Damage States 0 1 2 3 4 5 6 7 8 9 10 

M
ea

n i~i 1.00 1.06 1.06 1.05 1.11 1.13 1.17 1.19 1.02 1.14 1.15
i~0 - 0.74 8.92 19.51 8.99 6.86 3.08 0.97 3.55 12.21 3.88

i~i-1 - 0.73 13.38 2.14 2.15 1.08 21.93 2.15 2.48 6.03 5.88

V
ar

ia
nc

e 

i~i 1.00 1.05 1.06 1.04 1.11 1.16 1.14 1.19 1.11 1.13 1.16
i~0 - 0.82 8.53 17.8 17.9 14.66 18.4 19.94 24.91 11.31 12.43

i~i-1 - 0.82 9.86 1.51 1.25 0.83 1.36 0.76 0.72 6.04 0.47

S
ke

w
ne

ss
 i~i 1.00 1.11 1.11 1.04 1.07 1.15 1.14 1.21 1.24 1.02 1.19

i~0 - 0.99 18.17 32.2 29.19 30.9 34.95 36.36 22.45 5.07 16.42
i~i-1 - 0.98 25.44 1.53 1.13 4.32 0.61 0.85 4.29 24.71 16.59

K
ur

to
si

s i~i 1.00 1.1 1.1 1.03 1.07 1.16 1.16 1.21 1.22 1.03 1.17
i~0 - 0.96 17.66 33.4 30.71 29.6 29.01 31.39 26.67 6.92 17.63

i~i-1 - 0.95 22.48 1.21 0.97 2.26 0.67 0.78 3.55 25.94 11.85

Note: 0 denotes the intact State 01; i denotes the ith damage state 
 

 
Fig. 10 Distribution of F-statistical values (mean) for Beam 2 (State i versus State 0) 
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Fig. 11 Distribution of F-statistical values (mean) for Beam 2 (State i versus State i-1) 

 
 
additional damage at 1/4L would remove some of the effect of unsymmetrical damage on the 
vibration mode shape. The two almost equal crack zones in State 7 gives rise to a symmetrical 
fundamental mode shape, and the composition of the response at mid-span is very similar to that of 
the intact beam. Further loading at 1/4L gives rise to the next unsymmetrical damage pattern 
which can be identified in Figs. 10(h) and 10(i). The final symmetrical damage State 10 has the 
vibration mode shapes similar to those of an intact beam. 

5) Fig. 11 indicates that there is distinct difference between two adjacent States of State 2 with 
State 1, State 6 with State 5 and State 10 with State 9 with most of the F-statistical values larger 
than F1. This observation supports the grouping of damage configurations as discussed in Item 3 
above. 

It may be concluded that the F-statistical value (mean) from 5/8L can be used to monitor the 
development of unsymmetrical local damages but it is not sensitive enough to raise alarm with 
most of the F-statistical values smaller than F1. This is because the change in the higher 
frequencies due to the damage is small and has little effect on the energy distribution. The F-
statistical values of higher order statistics are further calculated to check on their performances in 
the damage detection. 

 
6.3 F-statistical values of the higher order statistics 
  
The F-statistical value is computed for the higher order statistics of the WP component energy 

distribution for both beams. Sets of data from each state are compared with the intact state. The  

0

0.05

0.1
(a) State 2

0

2

4
(b) State 5

0

0.05

0.1
(c) State 6

10
-2

10
-1

10
0

10
1

10
2

0

0.2

0.4
(d) State 10

F-statistical Value

P
ro

ba
bi

lit
y 

de
ns

ity

F1 F2 

F(1,18) 

479



 
 
 
 
 
 

S.S. Law, X.Q. Zhu, Y.J. Tian, X.Y. Li and S.Q. Wu 

 

 
Fig. 12  Distribution of F-statistical values (variance) for Beam 1 (State i versus State 01) 
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Fig. 13  Distribution of F-statistical values (variance) for Beam 2 (State i versus State 01) 
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Fig. 14 Distribution of F-statistical values (skewness) for Beam 1 (State i versus State 01) 
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Fig. 15 Distribution of F-statistical values (skewness) for Beam 2 (State i versus State 01) 
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distributions of the F-statistical value of the variance for Beams 1 and 2 are shown in Figs. 12 and 
13, while those for the skewness and kurtosis for each beam are very similar, and the distribution 
of the former for each damage state is shown in Figs. 14 and 15 for Beams 1 and 2 respectively. 

The distribution of variance for both beams show the same trend of changes with damage with 
most the F-statistical values larger than F1 in States 1 to 10. State 8 for Beam 1 however, exhibits a 
distribution closer to but not exactly the same as that of an intact beam. This can be explained 
considering the flexural stiffness value of a cracked section. When a concrete section is cracked 
seriously, the flexural stiffness of the section does not change much with further loading with a 
small change in the neutral axis (Law et al. 1995). A long seriously cracked zone would mean a 
zone with approximately equal flexural stiffness leading to the behaviour of a close-to-intact beam. 
The variance is a good indicator of damage close to mid-span. 

Comparison of Figs. 6 and 14 as well as Figs. 10 and 15 indicates that the skewness is superior 
to the mean in all States with most of the F-statistical values larger than F1 except in the case of 
very small damage in State 2. The final damage State 8 in Beam 1 and State 9 in Beam 2, however, 
exhibit a distribution closer to but not exactly the same as that of an intact beam. The explanation 
is similar to that for State 8 in Beam 1 for the variance distribution with a long and extensive 
cracked zone at mid-span of the beam. 

It may be concluded that with the measurement from mid-span, the mean is not sensitive to 
local damages affecting the higher modes, while the skewness and kurtosis are more robust to 
detect local damages at different locations of the structure. The damage from a long and extensive 
cracked zone in the span may be difficult to identify, but such type of damage would be easily 
noted by visual inspection. The present tool can serve as a magnifying glass in the case with a 
large structure with many structural components. Selected ranges of WP component energy can be 
analysis and monitored which have been studied to associate with damage in certain critical 
member of the structure which is desirable to monitor throughout their life time. 
 
 
7. Conclusions 

 
A novel methodology for structural health monitoring has been developed based on statistical 

similarity using an F-test. A statistical indicator based on F-statistical value is presented to 
describe the damage extent of the structure. Experimental results in the laboratory show that the F-
statistical value of the damage state compared with the initial state is an effective indicator of the 
damage extent of the structure, and the F-statistical value of two adjacent states is also effective to 
monitor any abnormal change in the structure without an intact database. From the energy 
distribution of the response obtained at mid-span of the reinforced concrete beam in the laboratory, 
the F-statistical value (mean) is found robust to detect both local and global damage close to mid-
span, while those of the higher order statistics are more robust to detect local damage at different 
locations of the structure. It is believed that the combine use of all four indicators from energy 
distribution at selected frequency range could monitor the extent and location of local damages in 
a structure. 
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