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1. Introduction 

 
Structural Identification (St-Id) of a number of bridges through ambient or controlled vibration 

tests have been investigated in the literature (ASCE 2012, Samali et al. 2010, Fukuda et al. 2010, 
Pakzad and Fenves 2011, Loh and Liu 2013). These case studies significantly improve the St-Id 
technology for bridge safety monitoring. However, uncertainty involved in field test data still 
poses major challenges to automated St-Id, and hinder a more routine adoption of St-Id approaches 
in support of infrastructure maintenance and management.  
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Abstract.  Vibration-based structural identification has become an important tool for structural health 
monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved 
in the field test data obstruct automation system identification for accurate and fast structural safety 
evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive 
(VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure 
serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The 
VBAR method provides a determinative way to automatically distinguish structural modes from extraneous 
modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how 
the proposed method automatically interprets vibration data for structural modal estimation. Especially, 
structural identification of a truss bridge using field test data is also performed to study the effectiveness of 
the proposed method for real bridge identification. 
 

Keywords:  structural identification; ambient vibration; automate; uncertainty; signal processing 

Various unavoidable uncertainties come from every aspect of ambient or controlled vibration 
tests. For instance, environmental conditions (humidity and temperature) affect the sensitivity of 
deployed experimental hardware, and structural components like bearing may enter into nonlinear 
range thus bring uncertainty into the St-Id process (Moon and Aktan 2006, Zhang et al. 2009, Yang 
et al. 2012). These uncertainties with epistemic and aleatory mechanism not only affect the 
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accuracy of St-Id results, but produce extraneous modes in structural modal analyses (Magalhaes 
et al. 2009, Ali and Okabayashi 2011). Structural modes and spurious modes are simultaneously 
produced in the data interpretation stage, associating with structural property and uncertainty, 
respectively. They are difficult to distinguish thus they are manually separated in most traditional 
methods, such as the peak picking, autoregressive with moving average (ARMA), and complex 
mode indicator function (CMIF). A few methods have been developed in the literature for 
automated structure mode selection. Three indicators: extended modal amplitude coherence, modal 
phase collinearity, and consistent mode indicator (CMI), were proposed to select structure modes 
specifically for use with the eigensystem realization algorithm. Pappa et al. (1998) proposed a 
recursive procedure using a threshold concept to filter out unfeasible modal identification results, 
in which the threshold was CMI < 50%, damping ratio >10%, or the frequency within 1% of edges 
of analysis bandwidth. Pakzad and Fenves (2009) used the ARMA method to perform statistical 
analysis of the vibration modes of the Golden Gate Bridge, and the threshold similar to that of 
Pappa et al. (1998) was employed to delete extra, nonphysical modes. Heylen et al. (1997) used 
the stabilization diagram to eliminate spurious numerical poles from the ARMA model. Magalhaes 
et al. (2009) proposed a hierarchical clustering algorithm used together with the SSI method for 
automatic mode identification.  

This article focuses on the following questions to cope with uncertainty from the data 
interpretation aspect for practical structural identification: (a) how to mitigate the uncertainty and 
improve the data quality for accurate St-Id; (b) how to automatically identify structure modes with 
little or no human intervention for efficient St-Id. To deal with the first problem, a multi-level data 
pre-processing procedure is developed for uncertainty mitigating and data quality improving. 
Visual inspection, time window selection, digital filtering, data averaging, cross-correlation 
function or random decrement signature construction, exponential windowing, and data reliability 
evaluation are effectively integrated for uncertainty mitigation. To deal with the second problem, a 
vector backward autoregressive (VBAR) method is applied for automated structural mode 
selection. Its uniqueness lies on that it provides a determined way to automatically separate 
structural models from spurious ones. Theoretic analyses will be presented to explain how the 
VBAR method automatically separate structural modes from extraneous ones. System 
identification of a laboratory cantilever beam and a long-span truss bridge using the proposed 
method will be presented to illustrate its effectiveness for practical bridge identification. 
 
 
2. Automated data interpration method 
 

2.1 Data pre-processing strategy for uncertainty mitigation 
 

Ambient vibration testing provides a convenient way for structural dynamic characterizing 
because it utilizes service live loads (wind, traffic, etc.) already acting on the structure as 
excitations. However, special attentions are required to reduce the noise level for subsequent St-Id. 
Without raw data cleaning, the accuracy and reliability of identified structural parameters may be 
greatly affected. A multi-level data pre-processing procedure including the following steps is 
developed to improve the data quality (Fig. 1): First, acceleration records are inspected to identify 
any malfunctioning sensors. If an acceleration time series contained large spikes or bias, the 
channel is tagged and disregarded from further processing and analysis. Second, a time window 
selection algorithm is executed to remove windows with pronounced noise. This involves 
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Fig. 1 Data pre-processing flowchart 
 
 
segmenting the entire data record into a series of time windows, and computing the mean and 
standard deviation of the acceleration amplitude for each time window. If the standard deviation of 
a given window is found to be much larger, that section of data is tagged and removed. After the 
time window selection analysis is completed for the entire data record, a digital Butterworth band 
pass filter with certain cut-off frequencies is designed to reduce the low and high frequency 
components. Following that, data averaging is performed to reduce random noise. Data averaging 
in the time domain is executed by dividing the total data time history into a number of windows 
having the same length and averaging these segments. It is a simple but very effective way to 
improve the accuracy of the St-Id results. Data averaging can also be performed in the frequency 
domain.  

After the initial data cleaning presented above, the Random Decrement (RD) technique or the 
Cross-Correlation analysis is employed to transform ambient vibration data into a free decay 
response of the structure that is measured (Brownjohn et al. 2009, Ku et al. 2007). After free-
decay data are estimated from the RD technique or the Cross-Correlation analysis, exponential 
window is used to artificially force the response data to decay to zero at the end of measurement 
thus minimizing leakage. As the last step of the data pre-processing, a data relevance and 
reliability evaluation procedure is necessary to check whether the cleaned data have adequate 
quality for subsequent data post-processing. For instance, two acceleration segments from the 
same location but at different time window may be processed by using the presented procedure for 
uncertainty mitigation then to check whether they produce similar spectra curves.   
 

2.2 Vector backward AR nodel for automatic data interpretation 
 
The vector backward AR (VBAR) method is applied to interpret the pre-processed data for 

structural modal identification. Equations below illustrate the theoretical basis how this method 
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automatically distinguishes structural modes from spurious modes. Structural responses of an n 
degrees of freedom system with random excitations can be presented by a complex exponential 
model 

Nj,tsbjy n
k kjk  ..., 1,2,   )Δexp()(

1
==∑ =

                     (1) 

sk = αk + 2π fki                                (2) 

where, y(j) = a sequence of structural response, bk = amplitude coefficient, N = sample number, n = 
term of the model, sk = the complex frequency, fk = frequency in Hz, αk

1−=i
 = damping factor, 

and ∆t = sample interval in seconds. To solve unknown parameters bk and sk, the Prony 
method was developed to transform the nonlinear problem to a set of linear constant-coefficient 
difference equations. It utilizes a polynomial P(z) having the zk = exp(sk

)()( 1 k
n
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It is seen that Eq. (5) is same to the traditional forward Auto-Regressive (AR) model. It 
demonstrates that the polynomial coefficients ak, k = 1, …, n, form a linear predictive relationship 
among the time samples. Therefore, it can be solved from Eq. (5) by using the least square method. 
Subsequently, roots zk of the polynomial in Eq. (3) are solved, and structural frequency and 
damping factor can be extracted from the polynomial root. The ith mode shape, φ i, can be derived 
from the following equation 

P(zi) φ i = 0                                 (6) 

P(zi) in Eq. (6) is calculated by substituting the solved zi

q

 into Eq. (3). In Eq. (6) the Due to 
uncertainty involved in the test data, the identified frequency and damping factors from the above 
equations are generally inaccurate. Several ways have been developed to improve the accuracy of 
the least square Prony method. Using high prediction order is one of those methods. Eq. (5) is 
rewritten as the following equation by defining the high prediction order as  
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The identification results using high order AR model as shown in Eq. (7) are more accurate, but 
the arising problem is how to distinguish the extraneous roots due to the uncertainty from all 
numerical roots of the Prony character polynomial. To solve this problem, a backward predictor by 
rearranging the sequence in a backward manner can be derived from Eq (7) 
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It is seen that Eqs. (7) and (8) are the forward and backward AR models with high orders. The 

characteristic polynomials Pf ∑ =
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Af and Ab have q polynomial roots. n of the q roots consisting of structural modal information are 
called system roots. The other (q – n) roots arising due to the uncertainties involved in the 
experiment and St-Id processes are called extraneous roots. Then the question arises that how to 
separate the system roots from the extraneous roots for structural identification. The location of the 
polynomial roots for both the forward and backward linear predictors are summarized below in 
order to find a way for system and extraneous root separation: 

 
(a) System roots of the forward predictor, Eq. (7). It is proved (Chu 2003) that if the coefficient 

matrix vector A satisfies Yf Af = 0, and if q satisfies the inequality n ≤ q ≤ (N – n), then Pf(z) with 
polynomial matrix Af f

kz has n of its q roots at = exp( f
ks ), k = 1, 2, …, q. Chu (2003) proved that 

these n system roots f
kz  from the forward predictor fall inside the unit circle of the z-plane. 

(b) System roots of the backward predictor, Eq. (8). If the coefficient matrix vector A satisfies 
Yb Ab = 0, and if q satisfies the inequality n ≤ q ≤ (N – n), then Pb(z) with polynomial matrix Ab

b
kz

 has 
n of  its q roots at = exp(( f

ks− )*), k = 1, 2, …, q, where symbol ( )* denotes complex 

conjugate. It is obvious that |exp( f
ks )| = 1/| exp(( f

ks− )*)|. Therefore, the n system roots b
kz  from 

the backward predictor fall outside the unit circle. 
(c) Extraneous roots of both the forward and backward predictors. Chu (2003) proved that the 

q order (n ≤ q ≤ (N – n)) polynomials Pf(z) and Pb(z), have the same (q – n) extraneous roots, 
because the statistics of a stationary random process do not change whether process is time 
reversed. These extraneous roots locate inside of the unit circle. 

 
In brief, both the system and extraneous roots for the forward linear predictor, Eq. (7), fall 

inside of the unit circle. For the backward predictor, the signal roots locate outside of the unit 
circle, while the extraneous roots locate inside of the unit circle. Therefore, the results from the 
backward predictor provide a determinative way to automatically distinguish the n system roots 
from the (q – n) extraneous roots. This feature of the backward AR model awards an automated 
modal identification way, which is much more efficient than the traditional forward AR method. 
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Fig. 2 Cantilever beam ambient test layout 

 
 
3. Cantilever beam ambient test for modal identification 
 
   Vibration test data of a cantilever beam are investigated to illustrate how the developed method 
for automatic data interpretation. The test specimen is a steel beam with a thin-walled rectangular 
tube section 76 × 38 × 0.32mm (Fig. 2). The length of the beam between the tip and support 
location is 2.98 m. The test specimen is oriented on a steel pedestal so that it would bend about its 
weak axis under vertical loads (Pan 2007). The physical structure is excited by manual tapping 
input distributing over the superstructure, which can be seen as a narrow band random excitation. 
Six accelerometers labeled from acc1 to acc6 are installed on the cantilever beam with equal 
intervals to observe structural responses. The first accelerometer was put on the fix end of the 
beam, whose measurement is only be used to check the boundary condition. Therefore, the beam is 
seen as a 5-DOF structure and the responses observed from the other five sensors are processed for 
structural identification. The sampling of the ambient test data is 0.00125 second, and the total 
duration of the observed time series is 10 minutes. The measured acceleration at the support of the 
beam (acc1) is very weak due to the approximating ideally fixed boundary. Therefore, the tested 
beam is assumed to be an ideally cantilever beam, and the observed data at the boundary is not 
used in structural modal identification. 
   The developed data pre-processing techniques are performed to clean the raw data, among 
which the RD technique is utilized to transform the test data to free decay time series. Fig. 3(a) 
plots observed acceleration time series at the 3rd channel, and Fig. 3(b) illustrates the 
corresponding free-decay data estimated by the RD technique by taking the 5th channel 
measurement as the reference. In the RD technique, the trigger level is selected as the 1.5 times the 
standard deviation of the signal. The block size, namely the number of samples consisted in an 
averaged time segment, is selected as 8192 in this study.  
   After data pre-processing, the vector backward AR (VBAR) model is applied to identify the 
cantilever beam modal parameters. Here the AR(p, q) model with p = 5 and q = 6 is selected to 
simulate structural dynamic responses, where p is the measurement channel number, and q is the 
AR order. Full measurement case is first studied, where p equals the number of structural DOF. 
The least squares method is used to identify AR coefficient matrix in Eq. (7), then p × q numerical 
roots are calculated from Eq. (3). As presented in Section 2, the system roots of the backward AR 
model fall outside of the unit circle, while the extraneous roots locate inside of the unit circle. This 
is proved in Fig. 4(a) that 10 structure roots and 20 extraneous roots fell outside and inside of the 
unite cycle, respectively. These 10 structure root are complex conjugate, thus structural  
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Fig. 3 Data pre-processing by the RD technique 
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(a) Full measurement (b) Incomplete measurement 

Fig. 4 Locations of the system and extraneous roots from the backward AR models 
 
 
frequencies, damping ratio, and mode shapes in 5 modes are extracted from them. This case 
clearly illustrates that the n system roots consisting of structural modal parameters are 
automatically separated from the extraneous modes by using the backward AR model, unlike that 
the selection has to be manually performed in the common forward AR model.   
   Structural identification using incomplete measurements of this cantilever beam is also studied 
because generally only a few measurements are available from the ambient test of large scale civil 
infrastructures due to limited sensors. Instead of full measurements used above, only three channel 
measurements at the 1st, 3rd, and 5th nodes are used to check whether the developed method can 
produce accurate St-Id results when the measurements are incomplete. The same data pre-
processing and identifying procedure are performed by using a backward AR(3, 6) model, in which  
p = 3 is the measurement channel number, and q = 6 is the AR order the same as that in the full 
measurement case. All p × q = 18 numerical roots are plotted in Fig. 4(b). It is clear that the 10 
structure roots are successfully separated from the others in the incomplete measurement case. Fig. 
5 plots the identified frequencies and damping ratios in all 5 modes from both the full and 
incomplete measurement cases. Identified mode shapes from both cases are also almost same, 
which are not shown here for brevity.    
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Fig. 5 St-Id results from both full and incomplete 

 
  Table 1 Correlation analysis of the St-Id results 

Identified Modes 
CMIF Backward AR (CORR) Backward AR (RD) 

Frequency 
(Hz) 

Damping 
ratio (%) 

Frequency 
(Hz) 

Damping 
ratio (%) 

Frequency 
(Hz) 

Damping 
ratio (%) 

Tower-L1, Span-V1 2.090 4.720 2.105 5.261 2.120 5.934 
Tower-L2, Span-V1 4.033 1.083 4.024 1.365 4.032 1.468 
Tower-L2, Span-V2 5.714 1.617 5.761 1.604 5.774 1.778 
Tower-T2, Span-T1 6.341 0.847 6.361 0.589 6.346 0.493 
Tower-T1, Span-T1 -- -- 6.763 0.328 6.754 0.353 
Tower-T2, Span-T2a 7.948 0.523 7.948 0.446 7.950 0.464 
Tower-L2, Span-V3 8.028 3.491 8.369 1.611 8.381 2.130 
Tower-L2, Span-V4 9.617 1.057 9.680 0.944 9.732 1.198 
Tower-T2, Span-T2b 10.343 0.449 10.320 0.553 10.339 0.589 
Tower-T2, Span-V5 10.712 1.702 10.611 0.752 10.569 1.220 
Tower-T2, Span-V6 -- -- 11.560 0.784 11.506 1.109 
Tower-T2, Span-T3 12.727 1.108 12.889 0.617 12.920 0.463 
Tower-L3, Span-T4 -- -- -- -- 14.101 0.333 
Tower-L2, Span-T5 -- -- -- -- 16.029 0.114 

  -- denotes no identified parameters in that mode 
 
 
4. Auto data interpretation for ST-ID of a truss bridge 
 

Structural identification using field test data of real life bridges faces much more challenges 
than that using numerical or laboratory experiment data. Ambient vibration test data of a long span 
truss bridge is studied to validate the proposed method for real life bridge identification. This truss 
bridge has a total length from abutment to abutment of 701m (Fig. 6(a)). It is 6.1m wide and 
carries two lanes of vehicular traffic across the river. Other than load rating, live load monitoring, 
local impact testing, and truck load test, ambient vibration test has been performed on this aged 
bridge as a part of safety monitoring strategies. Test data of the south tower span with instrument 
setup as shown in Fig. 6(b) are used in this part, in which a total of 24 channels of the measured 
data consisting of the vertical response of the span and the longitudinal response of the tower (Fig. 
6(b)) are included.  
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(a) Sensor layout on the tower span (b) Photo 

Fig. 6 The investigated bridge 
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Fig. 7 RD estimate and cross-correlation function of an acceleration time series 

 
 

The developed data pre-processing procedure (Fig. 1) is first executed for raw data cleaning. A 
digital Butterworth band pass filter with cut-off frequencies at 0.1 and 20 Hz is designed to reduce 
the low and high frequency components embedded in the data. Both the RD technique and the 
cross-correlation analysis are performed to transform the ambient vibration response to the free-
decay time series (Fig. 7), respectively. The free decay data from the RD technique and the cross 
correlation analysis are post-processed by the backward AR model, respectively (referenced as 
backward AR (RD) and backward AR (CORR) methods in the following part). The backward 
AR(24, 20) model, with 24 measurement channels and the order of 20, is used to simulate structure 
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responses, thereby a total of 20 × 24 numerical roots are calculated. In the backward AR(RD) 
process, 36 system roots are outside the unit circle, while 184 extraneous ones fall inside the unit 
circle (Fig. 8(a)). Similarly, 44 system roots and 176 extraneous roots locate outside and inside of 
the unit circle respectively in the backward AR(CORR) process (Fig. 8(b)), respectively. Even 
though the selected structural roots from the backward AR (RD) and backward AR (CORR) 
methods are not exactly same, a number of extraneous modes have been automatically selected out 
in both methods by using the backward AR model. Following this automatic data interpretation 
procedure, structure frequencies, damping ratios, and mode shapes are easily calculated from the 
separated system roots. Table 1 shows the identified frequencies and damping ratios in the first 14 
modes from these two methods, and Fig. 9 plots the corresponding mode shapes identified by the 
backward AR (RD) method. The symbols in the figure denote the tower and span mode type and 
mode number. For instance, “L1, V1” in the first figure denotes the tower has a first mode in the 
longitudinal direction and the span has a first mode in the vertical direction. To verify the 
reliability of the St-Id results, correlation analysis is performed by comparing the identified 
parameters from the backward AR (CORR) and backward AR (RD) methods. Identified 
frequencies and damping ratio from the Complex Mode Indicator Function (CMIF) method are 
also provided in Table 1 for comparison. The modal assurance criterion (MAC) plot comparing the 
identified mode shapes from the backward AR (RD) and backward AR (CORR) methods is shown 
in Fig. 10(a). Similarly Fig. 10(b) illustrates the MAC values from the backward AR (RD) and the  
CMIF identification. It is seen that the frequencies, damping ratios and modal shapes from the 
backward AR (CORR) and backward AR (RD) methods are comparable, and both of them 
identified more structural modes than the CMIF method. This real life bridge identification 
example illustrates that the data processed by the proposed pre-processing procedure has good 
quality and the VBAR method automatically distinguish system roots from spurious ones thus 
carry out automated data interpretation for structural identification. The following additional 
findings are also made during the St-Id of this real bridge: (a) Data pre-processing is a critical step 
in the proposed St-Id procedure. If the raw data are not well cleaned, some structure roots may be 
wrongly classified as extraneous ones in the backward AR method. (b) Using more reference data 
in the RD method and the Cross-Correlation analysis improves the quality of the pre-processed  
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Fig. 8 Numerical modes from the backward AR (RD) and the backward AR (CORR) methods 
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Fig. 9 Identified Mode shapes from the backward AR (RD) methods  
 

  

(a) backward AR (RD) and backward AR (CORR) method (b) backward AR (RD) and CMIF method 
Fig. 10 Mode shape comparison 
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data. Both the RD and the Cross-Correlation methods can be performed by using a single or 
multiple time series as the reference. System identification based on single-reference data may 
produce bad results, especially when sensors are located on uncoupled components and the 
observed acceleration responses have no much relevance. 
 
 
5. Conclusions 
 

An automatic data interpretation way integrating a multi-level pre-processing procedure and a 
VBAR based post-processing method has been proposed for practical bridge identification. Based 
on the results of this study the following conclusions are drawn: 

• A multi-level data preprocessing procedure has been proposed for raw data quality improving. 
The quality of the cleaned data from the pre-processing procedure greatly influenced the efficiency 
of the proposed data post-processing method for modal identification, and the way to 
automatically perform the pre-processing strategies is challenging. 

• A vector backward AR (VBAR) model has been applied for automatic bridge identification. 
Its uniqueness is that it provides a determinate way to separate structure modes from extraneous 
modes arising from uncertainty.  

• Ambient vibration test data of a cantilever beam test has been used to demonstrate how the 
proposed method automatically separate structure modes from extraneous modes. Both full 
measurement and incomplete measurement cases were investigated.  

• The proposed method has been performed for modal identification of a long span truss bridge 
through ambient vibration test. The identified results show that the proposed method was able to 
automatically distinguish structural modes from spurious even for real structure identification. A 
total of 14 modes of the tower span of the studied bridge were identified from the developed 
method, and they are comparable with the identified results from the traditional CMIF method. 
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