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Abstract.  This paper describes new optimization strategy that offers significant improvements in 
performance over existing methods for geometry design of frame structures. In this study, an imperialist 
competitive algorithm (ICA) and ant colony optimization (ACO) are combined to reach to an efficient 
algorithm, called Imperialist Competitive Ant Colony Optimization (ICACO). The ICACO applies the ICA 
for global optimization and the ACO for local search. The results of optimal geometry for three benchmark 
examples of frame structures, demonstrate the effectiveness and robustness of the new method presented in 
this work. The results indicate that the new technique has a powerful search strategies due to the 
modifications made in search module of ICACO. Higher rate of convergence is the superiority of the 
presented algorithm in comparison with the conventional mathematical methods and non hybrid heuristic 
methods such as ICA and particle swarm optimization (PSO). 
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1. Introduction 

 
Looking for the geometry of a structure that minimizes an objective function, like mass or 

compliance, subject to mechanical constraints is called the geometry optimization. It is a 
traditional field in structural design, and there are many books and papers dealing with it and 
related fields (Sokolowski and Zolesio 1992, Bendsoe 1995, Choi and Kim 2004, Van Keulen et al. 
2005, Pedersen 2000). 

In recent years, heuristic algorithms (HAs) such as genetic algorithm (Rahami et al. 2008, Tang 
et al. 2005), simulated annealing (Hasancebi and Erbatur 2002), particle swarm optimization 
(Guan and Chun 2011, Ghoddosian and Sheikhi 2011), ant colony optimization (Luh and Lin 
2008), imperialist competitive algorithm (Kaveh and Talatahari 2010, Sheikhi et al. 2012), charged 
system search (Kaveh and Talatahari 2010), water cycle algorithm (Eskandar et al. 2012), Mine 
blast algorithm (Sadollah et al. 2012) and hybrid method (Ferhat et al. 2011, Kaveh and Talatahari 
2009, Eskandar et al. 2011, Kaveh and Talatahari 2012) have attracted much attention for 
structural optimization problems due to their superior advantages. HAs do not require the objective 
function to be derivable or even continuous, and in many cases HAs perform as global 
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optimization techniques due to the appropriate balance between the exploration and exploitation of 
the whole search space. 

Compared to other evolutionary algorithms, the advantages of ICA is its easy implementation, 
smaller number of parameters to be adjusted, high ability to deal with nonlinear optimization 
problems and fast convergence speed (Eskandar et al. 2011). However, it is known that the original 
ICA had difficulties in controlling the balance between exploration (global investigation of the 
search place) and exploitation (the fine search around a local optimum) (Sheikhi et al. 2012). In 
order to improve this character of ICA, it is hybridized with ACO. Imperialist competitive ant 
colony optimization is based on the standard imperialist competitive algorithm that is one of the 
newest algorithms in optimization field (Atashpaz-Gargari and Lucas 2007) and the Ant Colony 
Optimization scheme. To show the robustness of the ICACO method, it is employed for three 
benchmark examples of frame structural geometry optimization and the results are presented.  
 
 
2. Imperialist Competitive Algorithm (ICA) 
 

ICA was proposed by Atashpaz-Gargari and Locus (Atashpaz-Gargari and Lucas 2007) which 
develops a strong optimization strategy using socio-political evolution of human as a source of 
inspiration. Like other heuristic optimization algorithms, this algorithm starts with an initial 
population. Each individual of the population is called a ‘country’. Countries are divided into two 
groups: the imperialists and colonies of these imperialists. Colonies are under the possession of an 
imperialist. In fact, each imperialist represents the local or global optimization minimum. In this 
algorithm, first N countries are chosen randomly. Then, the countries with much power (the more 
optimized ones) are chosen as imperialists and the rest are considered as colonies. 

Based on the power of imperialists, all the colonies of initial population are divided among 
them. Each imperialist together with its colonies form an Empire. When all colonies are divided 
among imperialists, they begin to approach their associated imperialist country. In this process, if a 
colony in an empire has a lower cost than that of imperialist, the position of the colony and its 
relevant imperialist is exchanged. To model the total power of an empire in the proposed algorithm, 
the power of an imperialist is summed with the percentage of the mean power of its colonies. The 
empires which are unable to increase their total power in the imperialistic competition, will 
gradually become weaker and will finally collapse. Accordingly, their colonies will join other 
empires and make those empires stronger. As the empires collapse in the competition among them, 
there remains just one empire in the world. Eventually, all the colonies in this empire will reach to 
the same position and power as the imperialist. Fig. 1 shows a typical example of the movement of 
a colony toward the imperialist. θ and x are random numbers which are considered to define the 
movement of the colony toward the imperialist.  

 
2.1 The implementation of ICA  
 
The ICA is implemented as follows: 
1-Selection of some random points to create initial empires 

Initial country locations are defined as 

(0)
, .( )i i ii jx Ubx r Ubx Lbx                         (1) 
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Fig. 1 The movement of the colony toward the imperialist (Sheikhi et al. 2012) 
 
 

Where (0)
,i jx  determines the initial value of the ith variable for the jth country; Lbxi and Ubxi are 

the lower and upper bound values for the ith variable; r is a random number in the interval [0, 1]. 
When the cost values for initial countries are calculated, some of the countries with the lower costs 
will be chosen as the imperialist states while the other countries will form the colonies. According 
to power, all the colonies of initial countries are divided among the imperialists. 

2-Movement of the colonies toward their associated imperialists 
The movement of the colony towards the imperialist is described as followed 

                 1(0, )new oldx x U d V   
        

                   (2) 

Where U defines a random value which is distributed evenly between 0 and β × d (Atashpaz-
Gargari et al. 2008); β is a parameter with a value greater than one, and d is the distance between 
colony and imperialist. {V1}is a vector which starts from the previous location of the colony and 
directs toward the imperialist location. The vector’s length is considered equal to unity. 
To extend the searching domain around the imperialist, an amount of deviation (θ) is randomly 
added to the direction of movement where θ is defined as 

( , )U                                     (3) 

Where γ is a parameter that adjusts the deviation from the original direction. 
3- Exchange of the position of the colony and its relevant imperialist, if a colony exists with 

lower cost than that of the imperialist in its empire. Based on both powers of the imperialist and its 
colonies the total power of an empire is calculated. A mathematical model for this fact is defined 
by the total cost as: 

( , )
cos

( , ) 1
cos .

jNC
col j

t
imp j i

j t
j

f

TC f
NC

  


                                 (4) 

Where TCj 
is the total cost of the jth Empire and ξ is positive number which is considered to be 

less than 1. The value of 0.1 for ξ is found to be a suitable value in most of the implementations 
(Atashpaz-Gargari et al. 2008). 

4-Imperialistic Competition: choosing the weakest colony in the weakest empire and giving it 
to the most powerful empire. 
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Fig. 2 Flowchart of the ICA (Eskandar et al. 2011) 
 
 
5- Elimination of the empires with no colonies. 
6- Stopping the algorithm if the number of iterations reaches to a pre-defined value, or there is 

just one unique empire and the amount of improvement in the best result reduces to a pre-defined 
value (Kaveh and Talatahari 2010), otherwise going back to step 2. 
The flowchart of Imperialist Competitive Algorithm is illustrated in Fig. 2 (Eskandar et al. 2011). 
 
 
3. Ant colony optimization 
 

Ant colony optimization was first proposed by Dorigo (1992) and population-based 
methodology applied to numerous NP-hard combinatorial optimization problems. They have been 
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inspired by the behaviour of real ant colonies especially by their foraging behaviour. Ants can find 
the shortest path to food by laying a pheromone (chemical) trail as they walk. Other ants follow 
the pheromone trail to food. Ants that happen to pick the shorter path will create a strong trail of 
pheromone faster than the ones choosing a longer path. Since stronger pheromone attracts ants 
better, more and more ants choose the shorter path until eventually all ants have found the shortest 
path. Consider the case of three possible paths to the food source with one longer than the others. 
Ants choose each path with equal probability. Ants that went and returned on the shortest path will 
cause it to have the most pheromone soonest. Consequently new ants will select that path first and 
further reinforce the pheromone level on that path. Eventually all the ants will follow the shortest 
path to the food. One problem is premature convergence to a less than optimal solution because 
too much virtual pheromone was laid quickly. To avoid this stagnation, the pheromone associated 
with a solution disappears after a period of time. The ACO procedure is illustrated in Fig. 3 (Kaveh 
and Talatahari 2009). 
 
 

Fig. 3 The flow chart for ACO (Kaveh and Talatahari 2009) 
 
 
4. Imperialist competitive ant colony optimization 
 

The Imperialist Competitive Ant Colony Optimization (ICACO) algorithm applies the ICA for 
searching global optimization, while ACO works as a local search, wherein ants apply a 
pheromone-guided mechanism to refine the positions found by countries in the ICA. 
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In ACO stage, first of all, initial ants of size NCol are produced. These ants generate solutions 
around their relevant imperialist country which can be expressed as 

 , ( , ) , 1,2, , . , 1,2, ,k
j n n n impAnt N imperialist j N C n N                  (5) 

In the Eq. (5), N.Cn is the number of colonies of the nth empire so 
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             (6) 

Therefore, ,
kAnt j n is the solution constructed by ant jth in empire nth in the stage k; 

N(imperialistn, σ) denotes a random number normally distributed with mean value imperialist nth 
and variance σ, where 

 ( )Ub Lb                                     (7) 

In the Eq. (7), Ub and Lb are the upper and lower bound respectively. Also, η is used to control the 
step size which in first trial is equal to 1 and by approaching to optimal point, reduces gradually 
and at the end tends to zero. The ACO stage in the ICACO algorithm works as a helping factor to 
guide the exploration and to increase the control in the exploitation. 

After generating Ants, the value of the objective function for each ant ( ( ),
kf Ant j n ) is computed 

and the current position of ant jth in empire nth ( ,
kAnt j n ) is replaced with the position 

,
kColony j n (the current position of colony jth in empire nth), if ( ),

kf Colony j n is bigger than ( ),
kf Ant j n  

and current ant is in the feasible space. The flowchart of Imperialist Competitive Ant Colony 
Optimization (ICACO) algorithm is illustrated in Fig. 4. 
 
 
5. Geometry structural optimization  
 

Since in frame structures developed maximum bending moment is one of the main criterions to 
evaluate the efficiency of the design, the goal of the optimization in the following examples is to 
minimize the absolute value of maximum bending moment. For generality structures are subjected 
to multi load cases. Thus, the objective function can be stated mathematically as Eq. (8). 

1
{ }

L
l

Minimize Max M
                                (8) 

Where |M| and L are the maximum absolute value of the bending moment and the total number of 
load cases respectively. In many cases, constraints on design variables, which directly specify the 

408



 
 
 
 
 
 

A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures 

bounds of the nodal position, are often imposed in a geometry optimization process. Also due to 
retain the structural symmetry or to decrease the number of design variables, some nodal 
coordinates are linked to each other by defining additional constraints. In Eqs. (9) and (10) the 
constraints of optimization problem are presented. 

, ( 1, , )Li i UiS S S i n                                  (9) 

( ), ( 1, , )j iS f S j m                                (10) 

Where Si and Sj are the coordinates of independent and dependent nodal coordinates; SLi and SUi are 
the lower and upper bounds on the independent coordinates respectively. n and m are the number 

 
 

 
Fig. 4 Flowchart of the ICACO 
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of independent and dependent nodal coordinates. 
The maximum and absolute bending moment in Eq. (8) does not refer to the response measured 

at a single point; the maximum bending moment may frequently transfer from one point to another 
in the solution process. Consequently, abrupt changes may often occur in the objective function as 
well as in its derivative while the optimization is progressing, which then brings a practical 
obstacle into first or higher order optimization algorithm and deteriorates the convergence of the 
solution.  
 
 
6. Design examples 
 

To illustrate the efficacy, validity and capability of the presented method, the geometry of three 
typical frame structures as benchmark problems are optimized. In the design process, the layout of 
the structure is initially determined and remains invariable. The algorithms are coded in MATLAB 
and structures are analyzed using the finite element method. In Table 1, the parameters that are 
used in each of the optimization algorithms (ICA, ICACO and PSO Clerc and Kennedy 2002) are 
presented.  
 

6.1 Two-member planar frame structure 
 

A two-member frame structure, initially designed as shown in Fig. 5, is loaded at Node 2 with 
two load cases of 20 kN downwards and horizontally, respectively (Wang 2007). The cross 
sectional area and Young’s modulus of all members are A = 7.26 cm2 and E = 210 GPa 
respectively. 

In this example, it is assumed that the position of node 2 is fixed and the other two nodal 
coordinates can be relocated symmetrically (y1 = y3 = y) for minimizing the absolute value of 
maximum bending moment (|M|). It is evident that the individual optimal configurations for each 
load case is when the both members are vertical or horizontal (y = ∞ or y = 0). But when both load 
cases are considered together, the optimum configuration seems not so evident.  

 
 

Table 1 The parameters of optimization algorithms 

 C1 C2 χ Ψ 
PSO (Clerc and Kennedy 2002) 1.0 1.0 0.729 1.0 

 β γ ξ 
ICA 2.0 0.3 0.1 

ICACO 2.0 0.3 0.1 

 

Fig. 5 A two-member planar frame structure (Wang 2007) 
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Fig. 6 Comparison of the convergence rates of the three algorithms for the two-element planar 
Frame structure 

 
Table 2 Best optimal design comparison for the two-member planner frame structure 

 Optimal nodal coordinates (m) 
 (Wang 2007) PSO ICA ICACO 

y (m) 0.794 0.79404 0.79404 0.79404 
|M| (Nm) 35.24 35.2417 35.2417 35.2417 

 
Table 3 Statistical results of different methods for the optimal geometry of two-member planner frame  
structure 

 PSO (Nm) ICA (Nm) ICACO (Nm) 
Best  35.2417 35.2417 35.2417 

Mean  40.2246 40.7928 35.2418 
Worst  102.8435 109.2610 35.2444 

Standard deviation 12.5136 11.4538 3.7936e-4 
 
 
In order to demonstrate the ability of the proposed algorithm, this example is run with the other 

methods such as PSO algorithm with 20 particles, ICA and ICACO algorithms with 20 countries 
where 5 of them are selected as the imperialists. Fig. 6 provides a comparison of the convergence 
rates of the three algorithms. The PSO and ICA algorithms achieve the best solutions after 20 and 
17 iterations respectively. However, the ICACO algorithm finds the best solution after about 13 
iterations. Table 2 compares the best obtained results by different methods. 

The statistical simulation results are summarized in Table 3. From Table 3, it can be seen that 
the standard deviation of the results by ICACO in 100 independent runs is very small. 
 

6.2 Thirteen-member planar frame structure 
 

A thirteen-member frame structure (Michell type structure) shown in Fig. 7, is a standard 
problem for evaluating the efficiency and validity of the structural optimization methods. Recently, 
geometry optimization of this structure is performed while minimizing the weight (Wang et al. 
2002, Isenberg et al. 2002) and also the maximum bending moment is minimized in the work of 
Wang (2007). 
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Fig. 7 Thirteen-member frame structure 
 

 
Fig. 8 Convergence rate comparison for the three algorithms for thirteen-member frame structure 

 
 

Suppose the cross sectional area and Young’s modulus of all members are A = 4.9 cm2 and E = 
210 GPa. Assume the coordinates of nodes 1, 2 and 8 are fixed while the coordinates of nodes 3, 4, 
5, 6 and 7 can shift in both horizontal and vertical directions. During the optimization process, the 
symmetry of the structure is maintained. Therefore, only five nodal coordinates need to be 
redesigned independently for minimizing of maximal bending moment (|M|). 

In this example, the size population of PSO, ICA and ICACO algorithms are 50 particles (50 
countries), which in ICA and ICACO, 8 countries of them are selected as the imperialists. 
In Fig. 8 the convergence rate of the three algorithms are compared. In Table 4 the best optimal 
values of the nodal coordinates obtained by PSO, ICA and ICACO are listed. 

It can be seen that the ICACO method reaches to optimal point with higher convergence rate in 
comparison with other optimization methods. In Table 5, the reduction percentage of the maximum 
bending moment of the best optimal design of three algorithms respect to evolutionary shift 
method (Wang 2007) for the thirteen member frame structure is illustrated. 

The statistical simulation results are summarized in Table 6. It can be seen from Table 6 that the 
best, mean, worst and standard deviation of solutions found by ICACO are better than the 
solutions of other algorithms. 
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Table 4 Best optimal design comparison for the thirteen-member frame structure  

Optimal nodal coordinates (m) 
 (Wang 2007) PSO ICA ICACO 

X3 -0.7925 -0.6011 -0.7473 -0.9062 
Y3 0.3703 0.7790 0.6512 0.1920 
X4 -0.5314 -0.4225 -0.5071 -0.4457 
Y4 0.6071 0.9620 0.9607 0.8159 
Y5 0.6959 1.1044 1.1095 1.0218 
X6 0.5314 0.4225 0.5071 0.4457 
Y6 0.6071 0.9620 0.9607 0.8159 
X7 0.7925 0.6011 0.7473 0.9062 
Y7 0.3703 0.7790 0.6512 0.1920 

|M| (Nm) 807.0 679.89 650.50 638.75 
 

Table 5 The reduction percentage of the maximum bending moment of the best optimal design of three  
algorithms respect to the result of evolutionary shift method (Wang 2007) 

 PSO ICA ICACO 
 Percent of reduction (%) 15.8 19.4 20.8 

 

Table 6 Statistical results of different methods for the optimal geometry of Thirteen-member frame structure 

 PSO (Nm) ICA (Nm) ICACO (Nm) 
Best  679.89 650.50 638.75 

Mean  864.38 665.06 662.02 
Worst  1316.79 751.95 681.87 

Standard deviation 162.15 19.82 13.45 
 

Fig.9 The topology of Seventeen-member frame structure 
 
 

6.3 Seventeen-member planar frame structure 
 

Fig. 9 shows the topology of a seventeen-member planar frame. It loaded by five concentrated 
forces together. Young’s modulus is E = 210 GPa. The members are categorized into three groups, 
as follows: The cross sectional area on the upper chord is Au = 27.49 cm2, the lower chord is Al = 
150 cm2 and the five columns are Ac = 19.63 cm2. An external force is applied downward at each 
node on the lower chord. During the optimization process, the positions of nodes at the lower 
chord (1, 2, 4, 6, 8, 10, and 12) remain fixed while the positions of nodes at the upper chord (3, 5, 

413



 
 
 
 
 
 

Mojtaba Sheikhi and Ali Ghoddosian 

7, 9, and 11) are allowed to move vertically. To maintain symmetry of the structure, only three 
independent coordinate variables need to be redesigned. In this example, population size is similar 
to the pervious example. 

In Fig. 10, the convergence rate for the seventeen-member frame structure is shown. In Table 7 
the best optimal design variables of this structure are listed. In this example, the convergence rate 
of ICA and ICACO are approximately equal but the convergence rate of these methods is better 
than PSO method. In Table 8, the percent of reduction of the objective functions for optimum 
designs of three algorithms respect to the result of evolutionary shift method (Wang 2007) for the 
seventeen member frame structure are illustrated. 

The statistical simulation results of this example are shown in Table 9. From Table 9, it can be 
seen that the best, mean and worst solutions found by ICACO are better than the best, mean and 
worst solutions found by other techniques respectively. In addition, it can be found from Table 9 
that the worst solution found by ICACO is better than the best solution found with PSO. 
 
 

 
Fig. 10 Convergence rate comparison for the three algorithms for the seventeen-member 
frame structure 

 
 

Table 7 Best optimal design comparison for the seventeen-member frame structure 

Optimal nodal coordinates (m) 
 (Wang 2007) PSO ICA ICACO 

Y3 1.3272 2.8524 1.6422 1.7504 
Y5 2.1252 4.5821 2.6274 2.8000 
Y7 2.3934 5.1334 2.9581 3.1523 
Y9 2.1252 4.5821 2.6274 2.8000 
Y11 1.3272 2.8524 1.6422 1.7504 

|M| (kNm) 4.35 3.713 3.3187 3.1092 
 
 

Table 8 The percent of reduction of the objective functions for optimum designs of three algorithms respect  
to the result of evolutionary shift method (Wang 2007) for the seventeen member frame structure 

 PSO ICA ICACO 
 Percent of reduction (%)  14.6 23.7 28.5 
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Table 9 Statistical results of different methods for the optimal geometry of Seventeen-member planar frame 
structure 

 PSO (kNm) ICA (kNm) ICACO (kNm) 
Best  3.713 3.3187 3.1092 

Mean  6.6895 3.4236 3.2693 
Worst  11.4913 3.6545 3.7042 

Standard deviation 1.9537 0.0954 0.1585 
 
 
7. Conclusions 
 

In this paper ICACO a hybrid method, based on ICA and ACO, is employed for optimizing 
geometry of the frame structures. In this method, ACO helps ICA process not only to efficiently 
perform the global exploration for rapidly attaining the feasible solution space but also effectively 
helps to reach optimal or near optimal solution. The comparisons based on several well-studied 
benchmark frame structures demonstrate the effectiveness, efficiency and robustness of the 
proposed method. The results show that not only the optimal geometry design is achieved but also 
this goal is attained faster. In other words the convergence rate of the proposed method is higher 
than PSO and ICA. 
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