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Abstract.   The optimum design of base isolation system considering model parameter uncertainty is usually 
performed by using the unconditional response of structure obtained by the total probability theory, as the 
performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum 
possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such 
cases, the interval analysis method is a viable alternative. The present study focuses on the bounded 
optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by 
bounded type system parameters. With this intention in view, the conditional stochastic response quantities 
are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of 
matrix perturbation theory using first order Taylor series expansion of dynamic response function and its 
interval extension, the vibration control problem is transformed to appropriate deterministic optimization 
problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating 
a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded 
optimization procedure and the optimum performance of the isolation system. 
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1. Introduction 
 

During the last decades various seismic protection techniques have been emerged as viable 
alternatives to the traditional aseismic design. The traditional design relies on the energy 
dissipation by inelastic deformations of structural elements for mitigating the damaging effects of 
earthquakes through the introduction of flexibility and/or energy absorption capability within the 
structural system itself. In contrast to such traditional means, the basis of protective technique is 
limiting or eliminating inelastic action and damage to the structures, reduction of forces for design 
of foundation and, under certain conditions, reductions of accelerations and protection of non-
structural components.Extensive research works have been done in the area of vibration control to 
mitigate the vibration effect of structures (Housner et al. 1997, Soong and Dargush 1997, Baratta 
and Corbi 2002, 2003, Spencer and Nagarajaiah 2003).Various control devices include tuned mass 
damper, fluid viscous damper, viscoelastic damper, friction dampers, base isolation (BI) system, 
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metallic yield devices, tuned liquid mass damper etc. Amongst these, the seismic isolation is one 
of the most widely used and successfully utilized design schemes. In fact, it has been found 
widespread implementation and global acceptance by the profession as an effective technology to 
control the vibration effects on structures since late 1970s. The main characteristics of seismic 
isolators consist of horizontal flexibility and energy dissipation. The seismic protection is achieved 
by shifting the structural natural period far from the range of frequencies which are expected to 
have maximum amplification effects due to ground motion. Thereby, the shear forces transmitted 
to the base from the superstructure are reduced considerably. These devices adopt different 
materials and design methodologies in order to disconnect the superstructure motion from the 
ground. Many devices, such as Rubber Bearings, Lead Rubber Bearings (LRB), High Damping 
Rubber Bearings and Friction Pendulum, resilient friction bearing isolator etc. are available 
nowadays for seismic protection of buildings and bridges.  

The effectiveness of BI systems and their performances have been extensively studied in the 
past (Kelly 1986, Buckle and Mayes 1990, Jangid and Datta1995, Symans and Constantinou 1999, 
Karabork 2011). The studies on stochastic response of BI system under random earthquakes 
providing insight into the behaviour of such systems are notable (Constantinou and Tadjbakhsh 
1985, Lin et al. 1990, Jangid 2010). It is well established that the performance of BI system is 
largely dependent on the characteristics of the isolator parameters. Attempts are made in order to 
characterize such optimal parameters to ensure desired performance (Baratta and Corbi 2004, 
Matsagar and Jangid 2004, Jangid 2010).The most commonly used approach of designing BI 
system is to consider the earthquake load as the only source of randomness assuming all other 
system parameters as deterministic in nature.The standard optimization problem is formulated to 
minimize the stochastic response obtained by random vibration theory, referred as stochastic 
structural optimization (SSO). A major limitation of such deterministic approach is that the 
uncertainty in the performance-related decision variables cannot be included in the stochastic 
response analysis and the related optimization procedure. It has been demonstrated that the 
interplay among the parameter uncertainty and loading uncertainty (Jensen 2005) can markedly 
change the response of a system and thereby the safety of structure (Chaudhuri and Chakraborty 
2004). The optimal design is also observed to be changed significantly by system uncertainty 
(Schuëller and Jensen 2008). In case of seismic vibration mitigation, the sources of uncertainty 
include both the structural system and the seismic actions. The frequency of the mechanical model 
representing the stiffness and mass distribution may be afflicted by significant variation during the 
service life of a structure for example in civil buildings or bridges. It is often difficult to predict the 
frequency accurately. In modelling of dynamic system, the proper characterization of energy 
dissipation process during the dynamic motion of a system is very difficult and depends on various 
interacting complex parameters. One would always expect to consider the presence of uncertainty 
in the damping properties of the structure. On the contrary, the stochastic spectra are traditionally 
used to consider the effect of random nature of seismic motion. The load model parameters are 
normally derived from few analyses on specific accelerograms which were subsequently 
generalized to a generic class of soils, such as rigid, medium and soft, simply referred to a single 
studied seismic event. But, in practical applications, the operators usually use lexical and formal 
criteria for their identification. It can be reasonably affirmed that proper evaluation of these 
parameters and the related uncertainty are indeed an essential topic for professional engineers. 
Thus, the seismic vibration mitigation utilizing BI system considering uncertain parameters is 
attracting growing interests in seismic safety study.  

The developments in the field of passive vibration control considering system parameter  
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uncertainty are notable (Papadimitriou and Katafygiotis 1997, Taflanidis et al. 2008a, Debbarma 
and Chakraborty 2010, Jensen and Sepulveda 2011). Juhn and Manolis (1992) have indicated that 
the effect of uncertainty with regard to BI parameters and the ground motion filter parameters 
cannot be ignored for accurate estimation of responses. Kawano et al. (2002) have studied the 
effects of uncertain parameter on the nonlinear dynamic response of BI system in the framework 
of Monte Carlo Simulation (MCS) and observed that the uncertain parameters have significant 
roles on the maximum response of BI system. Nagai and Nishitani (2005) studied the nonlinear 
vibration of BI system considering fluctuations in the parameters involved in such hysteresis 
system. The equivalent linearization technique combined with the perturbation approach is 
adopted for response statistic evaluation to estimate the safety and reliability of isolated buildings. 
Scruggs et al. (2006) proposed a probability based active control synthesis for seismic isolation of 
an eight-storey benchmark structure considering uncertain model parameters. Zhou et al. (2006), 
Zhou and Wen (2008) presented adaptive back stepping control algorithms for active seismic 
protection of building structures considering uncertain hysteretic behaviour, typically observed in 
BI system. Taflanidis et al. (2008) presented a stochastic-simulation-based nonlinear controller 
design for benchmark building with elastomeric and friction pendulum isolators considering 
probabilistic description of the ground-motion model parameters. Bucher (2009) presented a 
computationally efficient method for reliability based design optimisation of friction-based seismic 
isolation device in the framework of MCS and response surface method. In a recent study, 
Taflanidis and Jia (2011) presented a simulation-based framework for risk assessment and 
probabilistic sensitivity analysis of a three-story isolated structure by explicitly incorporating 
uncertainties in the excitation and or structural model.  

The studies on BI system considering model parameter uncertainty as discussed above 
primarily use the total probability theory concept to obtain the unconditional response of the 
system which is subsequently used as the performance measure. Though, the probabilistic methods 
are powerful, the approach cannot be applied in many real life situations when the required 
detailed information about the uncertain parameters is limited. In many real situations, the 
maximum possible ranges of variations expressed in terms of percentage of the corresponding 
nominal values of the parameters are known and can be only modelled as uncertain but bounded 
(UBB) type parameters. In such cases, the convex models and interval analysis methods in which 
the bounds on the magnitude of the uncertain parameters are only required are a viable alternative. 
The interval analysis problems can be approximated to equivalent deterministic one through 
Taylor series expansion about the mean values of the uncertain model parameters to yield 
conservative response bounds (McWilliam 2001, Qiu and Wang 2003). For system possessing 
small degree of parameter uncertainty, the response can be considered to be monotonic and linear 
perturbation analysis will be valid. However, the applications of such interval analysis methods 
deal with response evaluation and optimization under deterministic load (Chen and Zhang 2006, 
Chen et al. 2007) and application to passive vibration control is very limited (Chakraborty and 
Roy 2011).   

The present study focuses on the bounded optimization of BI system to mitigate the seismic 
vibration effect of structures considering UBB type system parameters. With this intention in view, 
the conditional stochastic response quantities are obtained in random vibration framework using 
the state space formulation. Subsequently, with the aid of matrix perturbation theory using first 
order Taylor series expansion of dynamic response function and its interval extension, the 
vibration control problem is transformed to appropriate deterministic optimization problems. This 
requires two separate objective functions correspond to a lower and upper bound optimum 
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solutions. An LRB system isolating a multi-storeyed building frame is considered for numerical 
study to elucidate the proposed optimization procedure and the effect of optimum performance of 
BI system.     

 
 

2. Response of base isolated building frame under random earthquake   
      

For efficient development of the proposed optimization procedure for BI system to mitigate the 
vibration of structure due to stochastic earthquake load considering UBB type system parameters, 
the description of the mechanical model of the BI system and the equivalent linear stochastic 
dynamic analysis by state space formulation in time domain is first briefly introduced in this 
section.  

 
2.1 Description of the BI system 
 
A two dimensional building frame structure, isolated by LRB is considered in the present study. 

It is idealized as a shear building type model with attached isolator as shown in Fig. 1(a). The 
idealized mechanical model of the isolator along with its idealized force-deformation behaviour is 
depicted in Fig. 1(b) and Fig. 1(c). As the BI system substantially reduces the structural response, 
the superstructure under consideration can reasonably be assumed to be linear. However, the 
hysteretic energy dissipation in the LRB occurs through large shear deformation and yielding of 
the lead core. Consequently, the behaviour of LRB is highly non-linear and modelled accordingly. 
The equation of motion of the N-storey superstructure subjected to horizontal component of 

earthquake ground motion ( gx ) can be written as  

            g bx x x x x    M C K M r                                      (1) 

where, [M], [K] and [C] are the matrices of size N representing the mass, stiffness and damping 

matrices of the superstructure,   T
1 2 Nx x x .... x  is the displacement vector containing the 

lateral displacement of  each floor relative to the isolator, as shown in Fig. 1(a). The influence 
coefficient vector {r} represents the pseudo-elastic deformation of the respective floor under a unit 
deformation of ground. bx is the relative acceleration of the isolator with respect to the ground due 
to ground acceleration.  
The governing equation of motion of the isolator mass (Fig. 1(b)) can be expressed as 

 

1 1 1 1b b b b b b gm x c x F c x k x m x                                                  (2) 

where, bm  is the mass of the isolator, bc is the viscous damping of the LRB, 1k  and 1c  are the 

stiffness and damping of the first storey. bF is the restoring force of the isolator modelled by the 
differential Bouc-Wen model (Bouc1967, Wen 1976). The bi-linear force-deformation behaviour 
of the LRB, adopted herein is expressed as 

   , 1b b b b YF x Z k x F Z                           (3) 
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Fig. 1 (a) The idealized building frame with LRB (b) Idealization of the LRB isolator and (c) The bi-linear 
hysteretic model of the isolator 
 

 
where, bk is the initial elastic stiffness, bx is the displacement of the LRB and α is an index 

representing the ratio of the post to pre yield stiffness of the LRB, referred as rigidity ratio. yF  is 

the yield strength of the isolator. Z  is a variable quantifying the hysteretic response of the isolator, 
expressed through Bouc-Wen model 

η 1 η
b b bqZ γ x Z Z βx Z δx

                                                    (4) 

where, q  is the yield displacement of the isolator. The five parameters , , ,     and δ  appears in 

Eq. (4) characterize the shape of the hysteretic loop. Parameter  controls the transition from the 

elastic to plastic phase; with   (infinity) the behaviour becomes bilinear.  controls the 

nature of the model e.g. 0  implies hardening and 0  results softening. The parameters 

adopted in the present study are 1=δ,5.0=γ=β,05.0=α  and 1 , which corresponds to the 

bi-linear force deformation characteristics as shown in Fig.1c. The post-yield stiffness bk  of the 

isolator is selected in order to provide specific isolation time period, b bT 2 M / k   , M is the 

total mass of the isolator-superstructure system, given by the sum of all the floor mass (mi)and the 
mass of the LRB system (mb). The viscous damping of the isolator is given by, b b bc 2 M     in 

which, b is the viscous damping ratio and b is the frequency of the isolator. The yield strength is 
conveniently normalized with respect to the total weight of the structure (W = Mg) and normalized 
yield strength is denoted as, F0 = FY/W, g is the gravitational acceleration.  

The present work is intended to study the bounded stochastic optimization of BI system in 
mitigating the seismic vibration effect of structures considering UBB type system parameters 
characterizing the mechanical model of the BI system and the stochastic earthquake load model. 
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The nonlinear force-deformation characteristic of the LRB as represented by Eq. (4) is too 
complicated to be readily incorporated in the state-space formulation for evaluating the response of 
the BI system accounting for the fluctuation involve due to system parameter uncertainty. The 
statistic response evaluation is conducted by utilizing the techniques of statistical linearization 
(Roberts and Spanos 2003, Hurtado and Barbat 2000). The equivalent linear form of the nonlinear 
Eq. (4) can be obtained as 

e b eqZ C x K Z 0                                                             (5) 

where, Ce and Ke are the equivalent damping and stiffness obtained by the least square error 
minimization between the linear and nonlinear terms of Eqs. (5) and (4). For η = 1, the equivalent 
damping and stiffness of the isolator can be obtained in closed form as  

     b b2 2
e e b

2 2
b

E x Z E x Z2 2
C E Z , K E x

E x E Z

   
                        

 



    

 
            (6) 

where, E[ ] is the expectation operator. In stochastic linearization, the responses  b bx ,x  of the 

system are assumed to be jointly Gaussian.  This does not result in serious error so far the 
stochastic response evaluation is concerned (Roberts and Spanos 2003). It is noted that even 
though the differential Bouc-Wen model equation of the isolator is stochastically linearized (Eq. 
(5)) for easy incorporation in the state space equations, the relevant equivalent damping  (Ce) and 
stiffness (Ke) are still functions of the system response. This implies that the nonlinearity of 
isolator is still present in the response equation. 
   

2.2 Response covariance analysis  
 
In principle, for realistic seismic reliability analysis of structure subjected to random 

earthquake requires the records of the ground motions at a site. In absence of sufficient statistical 
data, available stochastic models for earthquake loading are usually utilized. The well-known 
Kanai-Tajimi stochastic model (Kanai 1957, Tajimi 1960) which characterizes the input frequency 
content for a wide range of practical situations is adopted in the present study. The process of 
excitation at base can be expressed as 

2 22 , 2f f f f f f g f f f f f fx x x w x x w x x                                        (7) 

where, w  is the white noise intensity at the rock bed with PSD 0S , f and f  are the frequency 
and damping of the ground representing the soil strata over the rock bed and underlying the 
building. fx , fx  and fx  are the acceleration, velocity and displacement response of the Kanai-

Tajimi filter.  
The superstructure, isolator and the filter equations are now rearranged to express those in state 

space form suitable for stochastic response evaluation.  Substituting Eq. (3) in Eq. (2) and 
normalizing with respect to bm , the equation of isolator Eq. (2) can be written as 

  yb b 1 1
b b b 1 1 g

b b b b b

1 Fc k c k
x x x Z x x x

m m m m m


         


                          (8) 
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Multiplying both sides of Eq. (1) with [M]−1and substituting the expression of   g bx x   from the 

above, Eq. (1) can be rewritten as 

               1 1 yb b 1 1
b b 1 1

b b b b b

1 Fc k c k
x x x x x Z x x

m m m m m
   

         
 

M C M K r   



(9) 

Substituting the expression of gx  from filter Eq. (7) in Eq. (8), the equation of base mass/isolator 

of Eq. (2) can be finally obtained as  

  y 2b b 1 1
b b b 1 1 f f f f f

b b b b b

1 Fc k c k
x x x Z x x 2 x x

m m m m m


          


                  (10) 

The linearized equation for the hysteretic isolator, obtained through stochastic linearization 
depicted by Eq. (5) can be rewritten as 

e e
b

C K
Z x Z

q q
                                                            (11) 

Eq. (7) can be rewritten as 

2
f f f f f fx 2 x x w                                                       (12) 

Now, Eqs. (9) to (12) are expressed in the state space form. Introducing the state vector containing 

the variables as:       T

b f b fY x x Z x x x x      , the state space equation can be 

obtained as 

      d
Y A Y w

dt
                                                  (13) 

where, [A] is the augmented system matrix and       T
w 0 0 0 0 0 0 w    .

{Y} has 

the length of (2N + 5), N is the number of structural degrees of freedom. The details of the 
augmented [A] matrix and {W} are furnished in the appendix.   

The response of the system can be evaluated by solving Eq. (13) by numerical Runge-Kutta 
integration method. In stochastic analysis, rather than the response, the statistics such as 
covariance of responses are evaluated. Assuming the stochastic response processes to be 
Markovian, the evolution equation for the response covariance matrix [CYY] of the state vector 
{Y} can be readily obtained as (Lutes 1997) 

         T T
YY YY YY ww

d
C A C C A S

dt
                                (14) 

The elements of [CYY], having dimension of (2N + 5, 2N + 5) is given by CYiYj = E[YiYj]. [SWW] is 
the covariance matrix of the rock bed white noise intensity. Following the structure of {W}, the 
matrix [SWW] has all terms zero except the last diagonal, given by 2πS0. It may be noted that the 
equivalent linear stiffness and damping are functions of the responses itself. Thus, for the solution 
of Eq. (14) by Runge-Kutta integration technique, these terms are required to be updated in each 
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iteration following the response statistics of the previous step until convergence. Assuming 
statistical independency of the state variable {Y} and rock bed white noise excitation vector {W}, 
the response statistics of the derivative process can be obtained from 

     T
YY wwYYC A C A S                                                    (15) 

The root mean square (rms) responses are obtained from the covariance of the response as 

Y Y Yi i i
C                                                                (16) 

The absolute floor acceleration  Nu is the summation of the relative floor, base and ground 

acceleration.  Thus, the absolute rms acceleration (rmsa) at the top floor can be obtained as, 

     u u YY YY YYN N
C 2N 3,2N 3 C 2N 4,2N 4 C 2N 5,2N 5                         (17) 

 
 
3. Optimal design of BI system: conventional stochastic structural optimization 
 

The objective function typically considered in the conventional SSO is the rms responses 
(displacement, acceleration, stress etc.) or exceedance of some predefined serviceability or 
strength limit state by the structural performance variables. In the present study, the top floor rmsa 
of the building as defined by Eq. (17) is used as the objective function. From the description of the 
isolator model it is apparent that the isolation time period (Tb), viscous damping coefficient (ξb) 
and the normalized yield strength (F0) are the characteristic design variables of the BI system. 
However, it is seen that the responses monotonically vary with the first two parameters i.e. isolator 
time period (Tb) and damping (ξb); whereas the isolator normalized yield strength (F0) possesses 
optimum value to ensure minimum responses (Baratta and Corbi 2004, Jangid 2010).Thus, F0 is 
taken as the design variable in the optimization study. 

The response of the BI system being a nonlinear function of the design variables, it requires the 
solution of a nonlinear optimization problem. The SSO for optimal design of BI system subjected 
to stochastic ground motion is thus transformed into a standard nonlinear programming problem 
(Nigam 1972) and can be stated as,  

 Find  to minimize  u0 N iF                                                   (18) 

It may be noted from above that the objective function depends on the system parameters. In 
the conventional stochastic optimization as presented above assumes those system parameters ( i ) 
as deterministic. Thus, it is obvious that the optimum BI configuration obtained by solving above 
is conditional.  
 
 
4. Optimal design of BI system under system parameter uncertainty  
 

The system matrix [A] as described by Eq. (A.1) in appendix involves system parameters 
which include the characteristic of the building, isolator and the ground motion model parameters 
describing the stochastic earthquake load. The response statistic evaluated under stochastic 
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earthquake load intuitively assumes that these system parameters are deterministic. But, the 
uncertainties may cause significant deviations of the various system parameters from their 
assumed deterministic values. As a result of which, the commonly used SSO procedures 
disregarding the presence of system parameter uncertainty may lead to an improper design and 
catastrophic consequences in many cases (Zhao et al. 1999, Chaudhuri and Chakraborty 2006). 
Therefore, apart from the stochastic nature of the earthquake load, uncertainty with regard to the 
system parameters are expected to have influences in the optimum design of BI system and should 
be considered properly in the design. Consideration of such parameter uncertainty in the analysis 
procedure will involve sensitivity analysis of stochastic dynamic system (Chaudhuri and 
Chakraborty 2004, Jensen 2005). In the present section the related formulations are briefly 
presented to elucidate the proposed optimal study of BI system considering UBB type system 
parameters.  

 
4.1Stochastic sensitivity analysis  

 
The uncertainty considered in the present study in the parameters of the structure, isolator and 

the stochastic earthquake load model are denoted as 

  T

b b Y g g 0k c k c F S                                           (19) 

where, k  is the stiffness of each storey, c  is the damping in each storey of the superstructure. 

bk is the stiffness, bc is the damping and YF is the yield strength of the LRB. The mass, stiffness 
and damping ratios of each floor of the building are assumed to be identical, for simplicity. 
However, the applicability of the present formulation is not restricted to such simplification and 
can tackle different combination of these parameters. 

The evolution equation for the first order sensitivity of response is obtained by differentiating 
Eq. (14) with respect to the i -th parameter i . On rearranging the terms, the equation can be 
written as 

     
T

TYY YY YY

i i i

C C Cd
A A B

dt

       
                

                              (20a) 

where 

     
T

T ww
YY YY

i i i

SA A
B C C

      
                

                              (20b)   

In the above, ∂CYY/∂θi is the sensitivity of the response covariance (CYY) with respect to the 
parameter θi. It may be noted here that, Eq. (15) has the same form as that of Eq. (14) and the 
sensitivity of the time derivative process (e.g., acceleration) can be obtained similarly i.e. 

     TYY YY
1

C C
A A B

          

 

 
                                      (21a)  

where 
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       
T

T ww
1 YY YY
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B A C C A

      
                

                           (21b) 

The system parameter matrix [A] defined in the Appendix, is explicit function of uncertain model 
parameters {θ}. Thus, the derivatives can be directly obtained by differentiating [A] with respect 
to these uncertain parameters. However, the formulation does not impose any limit to the number 
of elements or degrees of freedom employed in the analysis. But, with increasing number of 
elements, the matrices will be of bigger size resulting increasing computational requirement. For 
more complex super-structural system, involving finite element modelling; the matrix [A] cannot 
be obtained explicitly. In such cases, for implicitly generated element mass, stiffness and damping 
matrix of the system, the differentiation need to be carried out through sequence of calculations or 
alternatively, by finite difference approximation. 

The sensitivity of any response quantity can be obtained by differentiating appropriate 
expression. For example, by differentiation of Eq. (16) with respect to the ith parameter will 
provide the following 

Y Y Ym m m

i iY Ym m

C1 1

2 C


 

 


 
                                            (22) 

where, σYm is the rms of the response Ym. ∂σYm/∂θi is the first order sensitivity of response σYm 
with respect to the parameters θi.  
 

4.2 Bounded optimization of BI system 
 
In many cases, even though some experimental data are available about the system parameters, 

it is not enough to construct the probability density function reliably. The available data can be 
used, particularly in combination with engineering experience, to set some tolerances or bounds on 

the uncertain. If i  is the nominal value of the ith UBB parameter viewed as the mean value and 

i  represents the maximum deviation from the nominal value, then the UBB parameter value 
deviates from the nominal value can be expressed as (McWilliam 2001) 

[ , ] [ , ] [ 1,1]

here , [ 1, 1]
2

I l u
i i i i i i i i i i i

l u
i i

i

e

w e





                  

 
   

                          (23) 

Thus, the ith interval variable can be written as: ,where, , 1,2,..,i i i i i i m          

The performance function i.e., the rmsa as defined by Eq. (17) is also a function of the 
uncertain parameters. The unconditional rmsa can be expanded in first order Taylor series as the 
mean and the fluctuating part as following 

  nv uN
u u iN N

i 1 i


  




 


   


                                               (24) 
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Now, by making use of the interval extension in interval mathematics assuming monotonic 
responses, the interval extension of the above expression can be obtained as 

  nv uI N
u u i iN N

i 1 i

e



  




  


   


                                              (25) 

The interval region of the function involving the UBB variables can be then separated out to the 
upper and lower bound as below 

  nv uU N
u u i iN N
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

 


   


                                              (26a) 

  nv uL N
u u i iN N

i 1 i
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


 


   


                                             (26b) 

The optimization problem now involves two separate objective functions correspond to the lower 
and upper bound solutions. The formulation presented here involves linear perturbation based 
approximation of the responses around the mean values of the UBB parameters. The acceptability 
of the approximation approach for engineering problems has been justified (Chen and Zhang 
2006). The study of accuracy of perturbation based approach and interval extension for evaluation 
of nominal response and its dispersion in this regard may be found in Chen et al. (2007) where it is 
numerically shown that the error in estimation goes up as the relative uncertainties of the interval 
variables increases.For larger level of uncertainty, alternative approach to linear perturbation 
analysis e.g., stochastic simulation should be applied. However, stochastic simulation will require 
the assumption of probability distribution. One may choose conservative uniform distribution for 
this purpose. 
 
 
5. Numerical study 
 

A five storied shear building model is taken up to illustrate the proposed bounded optimization 
procedure for BI system in seismic vibration mitigation of structures characterized by UBB type 
parameters. The stiffness and mass parameters for each storey are selected for desired value of 
time period of the superstructure intended to study. Unless specifically mentioned, the mean value 
of the damping ratio and the time period of the building frame are assumed as 2% and 0.5 sec, 
respectively. The mass ratio (mb/mi) of the isolator is taken as 1. The time period and the viscous 
damping of the LRB are taken as 2 sec and 5%, respectively. The yield strength (q) of the isolator 
is considered to be 0.025m. The mean values of the parameters characterizing the stochastic 
earthquake load are taken as: ωf = 5π rad/sec, ξf = 0.6 and S0 = 0.05m2/s3. With these numerical data, 
the top floor rmsa of the building without BI is 22.6502 m/sec2 and rms displacement (rmsd) is 
0.1408 m. The uncertain parameters considered in the study are mentioned in the vector {θ} of Eq. 
(19). The uncertainty of any such parameter (θi) is represented by the maximum possible 
dispersion (δθi) expressed in terms of the percentage of corresponding nominal value ( )i .  

Using the proposed optimization procedure considering the upper and lower bound 
performance functions represented by Eqs. (26a) and (26b), the optimum isolator yield strengths 
and the associated responses are obtained. The variation of the optimum yield strengths with 
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increasing level of uncertainty of all the parameters is shown in Fig. 2. The associated top floor 
rmsa of the building frame is shown in Fig. 3. For comparison, the results obtained by the 
conventional SSO procedure as described by Eq. (18) are also shown in the same plot. Though the 
results follow the general trend of the SSO case, there is a definite change in the lower and the 
upper bound optimum solutions with the results of the deterministic case. It may be noted that 
upper bound solution obtained by solving Eq. (26a) gives higher rmsa i.e., the performance is 
sacrificed. The improved performance from the lower bound solution as obtained by solving Eq. 
(26b) with respect to the SSO case is obvious as it needs higher values of yield strength. As 
expected, the width of the bounded solution increases as the level of uncertainty increases. 

To study the sensitivity of various parameters involved in the proposed bounded stochastic 
optimization procedure, further results are developed. The optimum yield strength of the isolator 
with varying building time period is shown in Fig. 4. The corresponding optimum value of the top 
floor rmsa is shown in Fig. 5. To develop these plots, the structural damping is taken as 2% and 
the uncertainty level of various system parameters as mentioned in Eq. (19) are considered to be 
10% of the respective nominal values i.e., δθi is considered to be 10% of i .It may be noted that 
the effect of uncertainty on the optimum yield strength of the isolator and its performance (top 
floor rmsa as considered herein) is more when superstructure time period is in the range of 0.4 to 
0.6 sec. In this regard it may be pointed out here that the BI systems are applied typically for 
reduction of vibration level of structure (thereby improving the safety level) having the time period 
typically in this range. Thus, neglecting the effect of uncertainty could be a critical issue for 
intended performance of BI system. 

The variations of the optimum yield strength and the corresponding optimum value of the rmsa 
at top floor with varying structural damping are shown in Figs. 6 and 7, respectively. The 
structural time period is taken as 0.5 sec and the uncertainty level of various system parameters are 
considered to be 10% of associated nominal values. Similar results are shown in Figs. 8 and 9, for 
varying intensity of earthquake. The effect of uncertainty on the optimal solution for the BI system 
is more prominent for comparatively higher seismic intensity level. It may be pointed out here that 
BI systems are typically intended for reduction of higher vibration level due to strong motion 
earthquakes and the effect of uncertainty should be properly considered in the optimum design. 
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Fig. 2 The variation of the isolator normalised yield 
strength with varying level uncertainty 

Fig. 3 The variation of the top floor rmsa with
varying level uncertainty 
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Fig. 4 The variation of isolator normalised yield 
strength with time period of the superstructure

Fig. 5 The variation of the top floor rmsa with time 
period of the superstructure
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Fig. 6 The variation of isolator normalised yield 
strength with varying damping ratio of the 
superstructure 

Fig. 7 The variation of the top floor rmsa with 
varying damping ratio of the superstructure  
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Fig. 8 The variation of isolator normalised yield 
strength with varying level of seismic intensity 

Fig. 9 The variation of the top floor rmsa with 
varying level of seismic intensity 
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Fig. 10 The variation of the isolator normalised yield 
strength with varying time period of the isolator 

Fig. 11 The variation of the top floor rmsa with 
varying time period of the isolator   

 

5 6 7 8 9 10
0.045

0.050

0.055

0.060

0.065

0.070

O
pt

im
um

 F
o

Damping Ratio of Isolator(%)

 Upper Bound
 Deterministic
 Lower Bound

 

5 6 7 8 9 10
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

rm
sa

(m
/s

ec
2 )

Damping Ratio of Isolator(%)

 Upper Bound
 Deterministic
 Lower Bound

Fig. 12 The variation of the isolator normalised yield 
strength with varying damping ratio of the isolator 

Fig. 13 The variation of the top floor rmsa with 
varying damping ratio of the isolator   

 
 
The variations of optimum yield strength and the associated rmsa are further studied with respect 
to varying time period of the LRB in Figs. 10 and 11 and with varying damping ratio of the LRBin 
Figs. 12 and 13. It is generally observed that bounded optimum solutions i.e., the nature of 
variations of the optimum yield strength and associated responses remain similar for wider ranges 
of structural and BI parameters that characterize the performance of the BI system in seismic 
vibration mitigation. 
 
 
6. Conclusions 
 

The bounded optimization of BI system in seismic vibration mitigation is studied considering 
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the UBB type system parameters. There is a definite change in the optimum results obtained by the 
bounded optimization procedure compare to that of a deterministic solution. The optimum yield 
strength of the isolator and the controlled response of the primary structure as obtained by the 
conventional SSO procedure are within the bounded solutions. As expected, the optimum yield 
strength of the isolator and the associated controlled response of the superstructure is not a unique 
value, rather provides a bound. It is evident that if the uncertainty which affects the parameters of 
the system is not considered, the BI system performance is overestimated. The upper bound of the 
response may be used in such cases for a conservative estimate of the optimum yield strength of 
the isolator. To address the problem in more formal way, it is possible to formulate the problem as 
a bi-objective optimization where the mean value of the response and its dispersion will be the two 
objectives (i.e. the robust optimization approach) and one can achieve desired optimum BI system 
from a set of pareto solution by ensuring desired level of robustness in the design to minimize the 
response of the structure. The issue is not studied in the present work and needs further 
considerations. The degree of parameter uncertainty is assumed to be small in the present 
formulation so that the linear perturbation analysis is valid. The present study is based on 
earthquake load modelled as stationary stochastic process and extension to non-stationary 
earthquake model will be straight forward. However, this will involve time dependent response 
statistics evaluation and subsequently to deal with time dependent performance function in the 
optimization procedure.  
 
 
References 
 
Baratta, A. and Corbi, O. (2002), “On the dynamic behaviour of elastic-plastic structures equipped with 

pseudoelastic SMA reinforcements”, International Journalof Computational Materials Science, 25(1-2), 
1-13. 

Baratta, A. and Corbi, O. (2003), “Dynamic response and control of hysteretic structures”, International 
Journal of Simulation Modelling Practice and Theory, 11(5), 371-385.  

Baratta, A. and Corbi, I. (2004), “Optimal design of base-isolators in multi-storey buildings”, Computers 
and Structures, 82(23-26), 2199-2209. 

Bouc, R. (1967), “Forced vibration of mechanical systems with hysteresis”, Proceedings of the 4th 
Conference on Nonlinear Oscillation, Czechoslovakia, Prague, September. 

Bucher, C. (2009), “Probability-based optimal design of friction-based seismic isolation devices”, Structural 
Safety, 31(6), 500-507. 

Buckle, I.G. and Mayes, R.L. (1990), “Seismic isolation: history, application, and performance–a world 
view”, Earthquake Spectra, 6(2), 161-201.   

Chakraborty, S. and Roy, B.K. (2011), “Reliability based optimum design of tuned mass damper in seismic 
vibration control of structures with bounded uncertain parameters”, Probabilistic Engineering Mechanics, 
26(2), 215-221. 

Chaudhuri, A. and Chakraborty, S. (2004), “Sensitivity evaluation in seismic reliability analysis of 
structures”, Computer Methods in Applied Mechanics and Engineering, 193(1-2), 59-68. 

Chaudhuri, A. and Chakraborty, S. (2006), “Reliability of  linear structures with parameter uncertainty under 
non-stationary earthquake”, Structural Safety, 28(3), 231-246. 

Chen, S.H. and Zhang, X.M. (2006), “Dynamic response of closed-loop system with uncertain parameters 
using interval finite-element method”, ASCE Journal of Engineering Mechanics, 132(8), 830-840. 

Chen, S.H., Song, M. and Chen, Y.D. (2007), “Robustness analysis of responses of vibration control 
structures with uncertain parameters using interval algorithm”, Structural Safety, 29(2), 94-111. 

Constantinou, M.C. and Tadjbakhsh, I.G. (1985), “Hysteretic dampers in base isolation: random approach”,  

33



 
 
 
 
 
 

Bijan Kumar Roy and Subrata Chakraborty 

ASCE Journal of Structural Engineering, 111(4), 705-721. 
Debbarma, R., Chakraborty, S. and Ghosh, S. (2010), “Unconditional reliability based design of tuned liquid 

column dampers under stochastic earthquake load considering system parameter uncertainties”, Journal of 
Earthquake Engineering, 14(7), 970-988. 

Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F.,  Skelton, R.E., 
Soong, T.T., Spencer, Jr., B.F. and Yao, J.T.P. (1997), “Structural  control: past, present and future”,  
ASCE Journal of  Engineering Mechanics, 123(9), 897-971. 

Hurtado, J.E. and Barbat, A.H. (2000), “Equivalent linearization of the Bouc-Wen hysteretic model”, 
Engineering Structures, 22(9), 1121-1132. 

Jangid, R.S. and Datta, T.K. (1995), “Seismic behaviour of base-isolated buildings: a state-of-the-art 
review”, Proceedings of the ICE - Structures and Buildings, 110(2), 186-203. 

Jangid, R.S. (2010), “Stochastic response of building frames isolated by lead-rubber bearings”, Structural 
Control and Health Monitoring, 17(1), 1-22. 

Jensen, H.A. (2005), “Design and Sensitivity analysis of dynamical systems subjected to stochastic loading”, 
Computers and Structures, 83(14), 1062-1075. 

Jensen, H.A. and Sepulveda, J.G. (2011), “On the reliability-based design of structures including passive 
energy dissipation systems”, Structural Safety, 34(1), 390-400. 

Juhn, G. and Manolis, G.D. (1992), “Stochastic sensitivity and uncertainty of secondary systems in base-
isolated structures”, Journal of Sound and Vibration, 159(2), 207-222.   

Karabork, T. (2011), “Performance of multi-storey structures with high damping rubber bearing Base 
Isolation systems”, Structural Engineering and Mechanics, 39(3), 399-410. 

Kanai, K. (1957), “Semi-empirical formula for the seismic characteristics of the ground”, Bulletin of 
Earthquake Research Institute, University of Tokyo, 35, 309-325. 

Kelly, J.M. (1986), “A seismic base isolation: review and bibliography”, Soil Dynamics and Earthquake 
Engineering, 5(3), 202-216. 

Kawano, K., Arakawa, K., Thwe, M. and Venkastaramana, K. (2002), “Seismic response evaluations of 
base-isolated structures with uncertainties”, Proceedings of the Second International Conference on 
Structural Stability and Dynamics, Singapore, December. 

Lin, S., Ahmadi, G. and Tadjbakhsh, I.G. (1990), “Responses of base-isolated shear beam structures to 
random excitations”, Probabilistic Engineering Mechanics, 5(1), 35-46. 

Lutes, L.D. and Sarkani, S. (1997), Stochastic analysis of structural and mechanical vibrations, Prentice 
Hall, NJ. 

Matsagar, V.A. and Jangid, R.S. (2004), “Influence of isolator characteristics on the response of base-
isolated structures”, Engineering Structures, 26(12), 1735-1749. 

McWilliam, S. (2001), “Anti-optimisation of structures using interval analysis”, Computers and Structures, 
79(4), 421-430. 

Nagai, T. and Nishitani, A. (2005), “Equivalent linearization approachto probabilistic response evaluation 
for base-isolated buildings,” Proceedings of  the 9th International Conference on Structural Safety and 
Reliability ICOSSAR, Eds. G. Augusti, G.I. Schuëller, M. Ciampoli, Millpress, Rome, June. 

Nigam, N.C. (1972), “Structural optimization in random vibration environment”, AIAA Journal, 10(4), 551-
553. 

Papadimitriou, C., Katafygiotis, L.S. and Au, S.K. (1997), “Effects of structural uncertainties on TMD 
design: A reliability based approach”, Journal  of Structural Control, 4(1), 65-88.   

Qiu, Z. and Wang, X. (2003), “Comparison of dynamic response of structures with uncertain-but-bounded 
parameters using non probabilistic interval analysis method and probabilistic approach”, Int. Journal of 
Solids and Structures, 40(20), 5423-5439. 

Roberts, J.B. and Spanos, P.D. (2003), Random Vibration and Statistical Linearization, John Wiley and 
Sons, New York.  

Schuëller, G.I. and Jensen, H.A. (2008), “Computational methods in optimization considering uncertainties- 
an overview”, Computer Method in Applied Mechanics and Engineering, 198(1), 2-13. 

34



 
 
 
 
 
 

Optimal design of Base Isolation System considering uncertain bounded system parameters 

Scruggs, J.T., Taflanidis, A.A. and Beck, J.L. (2006), “Reliability-based control optimization for active base 
isolation systems”, Structural Control and Health Monitoring, 13(2-3), 705-723. 

Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, John 
Wiley and Sons, New York. 

Spencer, Jr., B.F. and Nagarajaiah, S. (2003), “State of the art of structural control”, ASCE Journal of 
Structural Engineering, 129(7), 845-856. 

Symans, M.D. and Constantinou, M.C. (1999), “Semi-Active Control Systems for Seismic Protection of 
Structures: A State-of-the-Art Review”, Engineering Structures, 21(6), 469-487. 

Taflanidis, A.A., Scruggs, J.T. and Beck, J.L. (2008a), “Reliability-based performance objectives and 
probabilistic robustness in structural control applications”, ASCE Journal of Engineering Mechanics, 
134(4), 291-301. 

Taflanidis, A.A., Jeffrey, T.S. and Beck, J.L. (2008b), “Probabilistically robust nonlinear design of control 
systems for base-isolated structures”, Structural Control and Health Monitoring, 15(5), 697-719. 

Taflanidis, A.A. and Jia, G. (2011), “A simulation-based framework for risk assessment and probabilistic 
sensitivity analysis of base-isolated structures”, Earthquake Engineering and Structure Dynamics, 40(14), 
1629-1651. 

Tajimi, H.A. (1960), “Statistical method of determining the maximum response of a building structure 
during an earthquake”, Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, 
July.  

Wen, Y.K. (1976), “Method of random vibration of hysteretic systems”, ASCE Journal of Engineering 
Mechanics, 102(2), 249-263. 

Zhao, Y.G., Ono, T. and Idota, H. (1999), “Response uncertainty and time-variant reliability analysis for 
hysteretic MDF structures”, Earthquake Engineering and Structure Dynamics, 28(10), 1187-1213. 

Zhou, J., Wen, C. and Cai, W. (2006), “Adaptive Control of a base isolated System for protection of 
building Structures”, Journal of Vibration and Acoustics, 128(2), 261-268.  

Zhou, J. and Wen, C. (2008), “Control of a Hysteretic Structural System in Base Isolation Scheme, Adaptive 
back stepping Control of Uncertain Systems”,  Lecture Notes in Control & Information Sciences, 372, 
199-213.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

35



 
 
 
 
 
 

Bijan Kumar Roy and Subrata Chakraborty 

Appendix: system matrix 
 

The augmented system matrix [A] has the dimension equal to the number of structural degrees 
of freedom (N) and {Y} has the length of (2N + 5). The system matrix [A] for a N -storied shear 
building is given as  
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               (A.1) 

All the parameters in the matrices have already been defined in the main text. δij is the 
Kronecker’s delta. The matrices (shown in the last two blocks) are functions of the system 
matrices of N storied shear building. The augmented stiffness (M−1K) and damping (M−1C) 
matrices are shown by indicating them in the respective block of dimension NxN .  The mass 
matrix is diagonal containing the storey mass in each diagonal term. The stiffness and damping 
matrices for the shear building model have the following form   
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where, ki and ci are the stiffness and damping of the i-th storey of the building. The damping for 
the i-th storey can be expressed as, i s i ic 2 k m  , s  is the viscous damping ratio of the 

superstructure.      
The power spectral density (PSD) matrix for the rock bed seismic motion, characterized by the 

white noise of intensity of s0 is expressed as 
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                                            (A.4) 

where, [Sww] is a square matrix of dimension  (2N + 5).   

37




