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Abstract.  In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of 
a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium 
conditions can be easily written and the global stiffness matrix can be easily updated with respect to the 
deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very 
simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a 
complicated reduced-order technique. Two short computer programs have been developed for the 
geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well 
as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with 
a predictor-corrector technique. These two short, fully documented computer programs are applied on the 
geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through. 
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snap-back 

 
 
1. Introduction 
 

Thin shallow arches are often met in civil, mechanical and aeronautical engineering structures. 
When the ratios of arch span to its height as well as to its thickness are high, strong geometric 
nonlinearities due to large displacements appear. For a critical high value of the loading, the arch 
may be subject to snap-through. By unloading the arch snaps-back, following a different loading 
path. So, the generalized load-displacement curve exhibits a hysteresis loop (Bradford 2002, Pi 
2002, 2008a, b, Chen 2009, Chandra 2009). 

Because of the above strong geometric nonlinearities in the structural behavior of a thin 
shallow arch, its static analysis should be performed by incremental displacement control and its 
dynamic analysis by step-by-step time integration. Within each step of static or dynamic analysis, 
the equilibrium equations should be written and the global stiffness matrix should be updated with 
respect to the deformed structure. 
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The usual finite elements used for the spatial discretization of a structure, present difficulties in 
describing geometric nonlinearities (Argyris 1978, Taylor 2008, Felippa 2009). Here a truss model 
is proposed as an alternative to the usual finite elements (Papadopoulos et al. 2008a, Papadopoulos 
et al. 2008b, Papadopoulos et al. 2011, Papadopoulos et al. 2012). Thanks to the very simple 
geometry of a truss, the equilibrium equations can be easily written and the global stiffness matrix 
can be easily updated with respect to the deformed truss within each step of static or dynamic 
analysis, so that to take into account the strong geometric nonlinearities. 

Usually, a refined spatial discretization is applied to a structure by a large number of finite 
elements. As a consequence, in dynamic analysis very high frequencies appear which dictate a 
very small time steplength of the algorithm and we have to follow a lot of complicated very small 
vibrations, which are useless to the engineer. For this reason often some rather complicated 
techniques are developed, the so-called reduced-order techniques, in order to suppress the high 
vibration modes (Armero and Romero 2001a,b, Przekop and Rizzi 2006, 2007, Bathe 2007, 
Hollkamp and Gordon 2008, Spottswood et al. 2010). 

In the present study as an alternative to the above reduced-order techniques, a very coarse 
spatial discretization of the structure is applied. So, the high frequency modes are suppressed in a 
very simple way from the beginning. In this way there is no more need to develop afterwards 
complicated reduced-order techniques to suppress them. 

For the geometrically nonlinear static analysis of a thin shallow arch, an algorithm of 
incremental displacement control is used. Whereas for the dynamic analysis, the step-by-step time 
integration algorithm of trapezoidal rule is proposed, combined with a predictor-corrector 
technique with two corrections per step. So, there is no need for solving an algebraic system within 
each time step of the algorithm. 

Based on the above proposed algorithms, two short special purpose computer programs have 
been developed for the geometrically nonlinear static and dynamic analysis of a plane truss model 
of a structure, with only approximately 150 and 100 Fortran90 instructions, respectively. These 
two short, fully documented computer programs, compared to the often used very large general 
purpose computer programs, exhibit the advantages of more transparency, simplicity and clarity of 
assumptions. The proposed computer programs for the geometrically nonlinear static and dynamic 
analysis of a plane truss model of a structure are applied on a specific thin shallow arch subject to 
snap-through. 
 
 
2. Presentation of the problem 
 

2.1 Structural system 
 
A thin shallow arch is considered as shown in Fig. 1(a), with fixed both ends, with span L, 

height H and thickness d, subject to a concentrated vertical load P at its midpoint. In Fig. 1(b) is 
shown the rectangular thin plate cross-section with width b and depth d. The Young modulus E, as 
well as, the density ρ of the structural material are given. Linear elastic stress-strain behavior is 
assumed and only the geometric nonlinearity is taken into account. 
 

2.2 Geometric nonlinearity 
 

When the ratios of the span L of the arch to its height H and to its thickness d are high, large 
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displacements result which imply geometric nonlinearities. So, the static analysis should be 
performed by incremental loading and the dynamic analysis by a step-by-step time integration 
algorithm. Within each step of static or dynamic analysis, the equilibrium equations should be 
written and the global stiffness matrix should be updated with respect to the deformed arch, so that 
to take into account the geometric nonlinearities. 
 

2.3 Static analysis by displacement control 
 

In Fig. 1(c) is shown a deformed state of the arch, where the ordinate of arch midpoint is noted 
as ym. The geometrically nonlinear function ym(P) is multi-valued, that is to one value of the load 
P, one up to three values of the midpoint ordinate ym correspond. 

On the contrary, the inverse function P(ym) is single-valued. Namely, to one value of midpoint 
ordinate ym, only one value of the load P corresponds. That is the reason that we prefer to perform 
the static analysis by displacement control. Then we impose an additional constraint preventing 
vertical displacement of the midpoint as shown in Fig. 1(d) and we perform the geometrically 
nonlinear static analysis of the arch, by incremental forced vertical displacement of this support. 
Where the vertical reaction at this imposed support gives each time the value of the external load P. 
 

2.4 Snap-through 
 

For a specific high value of the load P = Pcr, called critical load, the arch is subject to snap-
through. Then by unloading, the arch following a different loading path may snap-back for a 
different critical load P = P'cr. So, a hysteretic loop is formed on the load -displacement curve P-
ym, as shown in Fig. 1(e). 
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Fig. 1(a) Thin shallow arch with fixed ends and vertical load at midpoint (b), Thin rectangular plate  

     cross-section, (c) Definition of ordinate ym of midpoint of arch, (d) Imposed constraint at midpoint for 
     vertical displacement control, (e) Geometrically nonlinear load-displacement curve P-ym showing loading
     -unloading/snap-through, snap-back and corresponding critical loads 
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3. Modeling procedure 
 
3.1 The proposed truss model 
 
The whole arch is spatially discretized to only six plane quadrilateral truss elements as shown 

in Fig. 2(a). Each element results from a plane quadrilateral where all 4 sides and 2 diagonals are 
bars. Because the arch is very shallow all the six elements can be approximately considered as 
rectangular, horizontal and equal to each other. 
 
 

 
 

Fig. 2(a) Truss model of an arch, (b) an element of the arch under simulation,  
                                  (c) a rectangular truss model element 
 
 

In order to determine the cross-section areas of the bars, we have to compare the stress-strain 
behavior of an element of the arch as shown in Fig. 2(b), with the stress-strain behavior of the 
corresponding rectangular truss model as shown in Fig. 2(c). By considering the bending behavior 
of the element we find the cross-section areas of the longitudinal bars. 

So for the arch element (Fig. 3(a)) is valid 
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Whereas, by additionally taking into account the axial behavior in longitudinal direction, we 
find the cross-section areas of the diagonal bars. For the arch element (Fig. 3(c)) is valid 
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Respectively for the truss element (Fig. 3(d)) is valid 
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Therefore 
A3 = (b·d)/3                                                               (2) 

By considering the axial behavior in the transverse direction, we find a theoretical value for the 
cross-section areas of the transverse bars. So, for the arch element (Fig. 3(e)) is valid 
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A2 = (b·ℓ)/2                                                             (3) 

This value of A2 implies a very high axial stiffness K = E·2A2/d of the transverse bars, which 
creates in dynamic analysis, very high frequency vibration modes. However, numerical 
experiments show that, by drastically reducing the above theoretical value of A2, the resulting error 
is very small whereas the attained simplification is significant by suppression of the high 
frequency modes. 
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Fig. 3 Relating deformations between arch element and truss element 

525



 
 
 
 
 
 

H. Xenidis, K. Morfidis and P.G. Papadopoulos 

3.2 Algorithm for static analysis 
 
An additional support, preventing vertical displacement is imposed at a node of truss model at 

the midpoint of the arch, at the application point of external load P, as shown in Fig. 4(a). An 
increment of forced vertical displacement Δυ of this support is performed, within each step of 
static analysis algorithm. By using the accurate geometrically nonlinear equations of the truss 
model, we find the out-of-balance forces Δf on the neighboring free nodes around the midpoint, 
due to the displacement increment Δυ. We form the global tangential stiffness matrix K with 
respect to the deformed truss. We solve the algebraic system KΔu = Δf and find the nodal 
displacements Δu within the present step of the algorithm. We update the coordinates x of the 
nodes. Next we find by the nonlinear equations, the nodal forces f due to the above updated nodal 
coordinates x. These f in the supports, give the reactions and in the additional imposed support 
give the external load P. Whereas in the free nodal DOFs, they had to be zero, however because of 
truncation error, they exhibit small nonzero values, which are taken as loads in the next step of the 
algorithm. 

 
3.3 Algorithm for dynamic analysis 
 
To each free node of the truss model as shown in Fig. 4(b), a lumped mass is assigned with 

value 

m = (ρ·ℓ·b·d)/2                                                                 (4) 

The time-history of the external load P(t) is given in input, as shown in Fig. 4(c). Zero damping 
is assumed. 

 
 

 

Fig. 4(a) Imposed constraint at midpoint of truss model for displacement control in static analysis, 
                (b) masses m at the free nodes for dynamic analysis, (c) given time-history of external load, 
                (d) vibration mode in longitudinal direction of arch, giving an upper bound for eigenfrequencies, 
                (e) vibration mode in transverse direction of arch, giving an upper bound for eigenfrequencies. 
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The step-by-step time integration algorithm of trapezoidal rule is used, combined with a 
predictor-corrector technique with two corrections per step. So, there is no need to solve an 
algebraic system within each time step of the algorithm. The accuracy criterion of the proposed 
algorithm is (Papadopoulos et al. 2012) 

ωmax∆t < 0.5rad, that is ∆t/Tmin < 1/4 π = 1/12.57                                   (5) 

From this criterion, the time steplength of the algorithm is determined. 
An upper bound ω0 for the normal frequencies can be found from the norm of matrix M-1K, 

where M the mass matrix and K the stiffness matrix of the structure 
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where n = 2nf is the number of DOFs and nf the number of free nodes. 
The above upper bound ω0 for the normal frequencies, corresponds to one of the two vibration 

modes shown in Figs. 4(d), (e). In the longitudinal direction of the arch we have according to Fig. 
4(d) 
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This value of A2 is drastically reduced, compared with the theoretical value of A2 given by Eq. 
(3). However, as mentioned previously in section 3.1 this causes a very small error, whereas the 
attained simplification is significant by suppression of high vibration modes. 

 
3.4 The two short computer programs 
 
Based on the two algorithms proposed in the above sections 3.2, 3.3, for the geometrically 

nonlinear static and dynamic analysis of a truss model of a structure, two short computer programs 
have been developed, with only about 150 and 100 Fortran90 instructions respectively. The 
listings of these programs are presented in Appendices A and B. 
 
 
4. Numerical example 

 
4.1 Given data 
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The above mentioned computer programs are applied to the geometrically nonlinear static and 
dynamic analysis of a specific thin shallow arch as shown in Fig. 5(a) with fixed both ends and a 
vertical concentrated load P at the midpoint. The span of the arch is L = 300mm and its height H = 
9mm. The arch axis has a 2nd order parabolic shape described by the equation 

y = H[1 – (4x2/L2)] = 9mm [1-(4x2/3002mm2)]                                   (10) 

as shown in Fig. 5(b), where the ordinates y of the axis are exaggerated with a scale five times 
larger than horizontal scale, because by the uniform scale of Fig. 5(a) they were hardly visible, as 
they are very small. In the following, the distorted scale with exaggerated five times larger 
ordinates y of arch axis will be used. 

The thickness of the arch is d = 5mm as shown in Fig. 5(a), whereas the cross-section is a thin 
rectangular plate with width b = 120mm and depth d = 5mm (Fig. 5(c)). The Young modulus of 
the structural material (steel) is: E = σy/εy = (40 kN/cm2)/0.002 = 2·104 kN/cm2, whereas the density 
of structural material is: ρ = 7.85 t/m3. A linear elastic stress-strain behavior is assumed and only 
the geometric nonlinearity is taken into account. 
 
 

300mm

5mm
P

9mm

(a)

9mm

(b)

Y

X

120mm
5mm

(c)

300mm

 

Fig. 5 Given data of the application (a) geometry and loading, (b) parabolic axis of arch  
                         with exaggerated ordinates, (c) cross-section 
 

 
4.2 Cross-section areas of bars 
 
The arch is spatially discretized to only six plane truss elements (Fig. 6(a)). Each element 

results from a 2D quadrilateral with all its 4 sides and 2 diagonals as bars. As the arch is very 
shallow, all the six elements can be approximately considered rectangular, horizontal and equal to 
each other. So, we have to simulate a 3D rectangular solid continuum element (Fig. 6(b)) by a 
plane rectangular truss (Fig. 6(c)). As mentioned in section 3.1, the cross-section areas are for the 
longitudinal bars: A1 = (bd)/6 = (120mm·5mm)/6 = 100mm2, for the diagonal bars: A3 = (bd)/3 = 
(120mm·5mm)/3 = 200mm2 and for the transverse bars: A2 = (bd2)/2ℓ = (120mm·52mm2)/ 
(2·50mm) = 30mm2, which means equal stiffness in the longitudinal and transverse direction of a 
truss element. 

 
4.3 Static analysis by forced displacement increment 
 
An additional support, preventing the vertical displacement, is imposed at the midpoint of truss 

model of arch at the application point of the external load P as shown in Fig. 4(a). An incremental 
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forced vertical displacement of this support is performed. Numerical trials show that, starting from 
ym = H = +9mm and reaching gradually to ym ≈ –7mm is enough to give a general picture of the 
nonlinear S-shaped, load-displacement curve P-ym and a constant displacement increment 
(steplength) Δυ = 0.04mm is satisfactory to accurately describe this nonlinear P-ym curve. That is, 
a total number of steps ns = [+9mm – (–7mm)]/Δυ = 16mm/0.04mm = 400 are required. 

 
4.4 Static nonlinear load-displacement curve 
 
Based on the output of static analysis, the nonlinear load-displacement curve P-ym is drawn in 

Fig. 7, where we can observe the loading procedure, the snap-through and its critical load Pcr ≈ 
14kN, the unloading following a different loading path, the snap-back with its critical load P'cr ≈ 
13kN and the resulting hysteric loop in the loading-unloading procedure.  
We also observe, in the nonlinear static load-displacement curve P-ym of Fig. 7, that the function 
P(ym) is single valued, that is to one value of ym only one value of P corresponds. Whereas, the 
inverse function ym(P) is multi-valued, that is to one value of P, one up to three values of ym may 
correspond. 
 
 

 

Fig. 6(a) Discretization of the arch by truss model, (b) element of the arch under simulation, 
                     (c) cross-section areas of bars of a truss element 
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4.5 Characteristic states of static analysis 
 
On the nonlinear static load-displacement curve P-ym of Fig. 7, six characteristic states of the 

loading-unloading procedure are noted by the letters (a) up to (f). The deformed configuration, as 
well as the free body diagram of the arch for the above six characteristic states are drawn in Fig. 8. 
 

4.6 Dynamic analysis. Time steplength 
 
In the dynamic analysis, a lumped mass is assigned to every free node of the truss model as 

shown in Fig. 4(b) with value: 
m = (ρℓbd)/2 = 7.85(t/m3) ·0.05m·0.12m·0.005m/2 = 0.00011775t 

From the vibration modes described in section 3.3 and in Figs. 4(d), (e) the same upper bound 
for eigenfrequencies, in longitudinal and transverse direction of the arch is obtained because of the 
deliberate choose of a reduced transverse bars section with a value 
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Thus, ω0 = 2.019·105rad/sec and the lower bound of eigenperiods results: 
T0 = 2π/ω0 = 0.03112msec. 

The accuracy criterion of the algorithm is 
ω0 ∆t < 0.5rad that is ∆t < T0/4π = 0.03112msec/12.57 = 0.002476msec 

Finally, a time steplength Δt = 0.0025msec is chosen. By taking into account the critical load of 
forward snap-through found previously in static analysis, we design an appropriate time-history P-
t of external load which is given in the input of dynamic analysis as shown in Fig. 9(a). In this 
time-history the load linearly increases up to 15kN, that is a value slightly larger than the critical 
load for t = 0.5msec and then a linear unloading is performed up to zero load for t = 1.0msec. So, a 
total number of time steps ns = 1.0msec/Δt = 1.0msec/0.0025msec = 400 are required. 
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Fig. 8 Characteristic states of static analysis, through the loading-unloading procedure 
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4.7 Time-gistory of mid-point ordinate ym-t 
 
Based on the output of dynamic analysis, the time-history of arch midpoint ordinate ym-t is 

obtained as shown in Fig. 9(b). We observe in this diagram, after unloading an particularly after 
snap-back, continuous small vibrations. We also observe a minimum eigenperiod Tmin ≈ 
0.035msec, which is close to the predicted value by its lower bound T0 = 0.03112msec, in previous 
section 4.6. 

 
4.8 Dynamic load-displacement curve 

 
By combining the diagrams P-t and ym-t of Figs. 9(a), (b) respectively, we obtain the dynamic 

load-displacement diagram P-ym as shown in Fig. 9(c) which is different from the static P-ym 
diagram of Fig. 7. In this dynamic P-ym diagram of Fig. 9(c) we observe again, as in previous 
diagram ym-t of Fig. 9(b), continuous small vibrations after unloading and particularly after snap-
back. 
 
 

t (msec)

P (kN)

0 0.5 1.0

15
(a)

 
Fig. 9(a) Given time-history of external load, (b) time-history of arch midpoint ordinate ym-t as 

                       a result of dynamic analysis, (c) dynamic load-displacement diagram P-ym obtained from 
                       combination of diagrams P-t, ym-t 
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4.9 Characteristic states in successive time Instants 
 

For five characteristic states of the arch, corresponding to successive time instants of dynamic 
analysis noted in the diagrams ym-t, P-ym of Figs. 9(b), (c) by the letters (a) up to (e), the deformed 
configurations of the arch have been drawn in Fig. 10 along with the corresponding time instants t 
and the values of the external load P. 

By comparing the results of static analysis in Figs. 7 and 8 with the corresponding results of 
dynamic analysis in Figs. 9 and 10, we observe a reasonable and satisfactory approximation 
between them. 

 
 

t=0.51  P=14.8

t=0  P=0

t=0.58  P=12.6

t=0.45  P=13.6

t=0.54  P=13.7
a

b

c

d

e

 

Fig. 10 Deformed configurations of the arch for characteristic states corresponding to 
                             successive time instants of dynamic analysis 

 
 

5. Conclusions 
 

Based on the assumptions and results of this study, the following conclusions can be drawn: 
A truss model is used for the spatial discretization of a thin shallow arch subject to snap-

through. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily 
written and the global stiffness matrix can be easily updated with respect to the deformed truss 
within each step of static or dynamic analysis, so that to take into account the strong geometric 
nonlinearities. 

A very coarse discretization is applied. So, the high frequency modes are suppressed in a very 
simple way from the beginning and there is no more need to develop afterwards a complicated 
reduced-order technique to suppress them. 

One more technique has been devised to suppress high frequency modes. The theoretical cross-
sections of the transverse bars of truss model (across the thickness of the arch) result very large, 
which means very high transverse stiffness and thus the appearance of very high frequency modes. 
However, numerical experiments show that by drastically reducing the cross-sections of transverse 
bars the resulting error is very small, whereas a great simplification is achieved by suppression of 
high frequency modes. 

In static analysis an additional constraint is imposed at the application point of external load 
and an incremental prescribed displacement of this constraint is performed (displacement control), 
so that to obtain the nonlinear single-valued load-displacement curve. 

Whereas in dynamic analysis, the step-by-step time integration algorithm of trapezoidal rule is 
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used combined with a predictor-corrector technique with two corrections per step. So, no solution 
of algebraic system is needed within each time step. 

Based on the proposed algorithms, two short, special purpose computer programs have been 
developed for the geometrically nonlinear static and dynamic analysis of a plane truss model of a 
structure with only approximately 150 and 100 Fortran90 instructions respectively. These two 
short fully documented computer programs compared to the often used very large general purpose 
computer programs exhibit the advantages of more transparency, simplicity and clarity of 
assumptions. 

The proposed computer programs for the geometrically nonlinear static and dynamic analysis 
of a plane truss model of a structure are applied on a specific thin shallow arch with fixed ends and 
a concentrated load at midpoint subject to snap-through. 

The static analysis gives as results, the nonlinear S-shaped generalized load displacement 
curve, which shows the snap-through, snap-back and their corresponding critical loads as well as 
the deformed configuration and the free body diagram of the arch for some characteristic states 
through the loading-unloading procedure. 

Whereas, the dynamic analysis gives as results the time-history of the generalized displacement 
and the dynamic load-displacement curve different from the static one, where vibrations after 
unloading and snap-back can be observed as well as the deformed configuration of the arch for 
some characteristic states corresponding to successive time instants. 

The results of the static analysis exhibit a reasonable and satisfactory approximation with the 
corresponding ones of dynamic analysis. So, the proposed method seems to prove useful in the 
geometrically nonlinear static and dynamic analysis of thin shallow arches subject to snap-
through. 
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Appendix Α: Listing of the static analysis program 
 

TABLE A.1 Main program 

Program STATIC_SNAP_THROUGH ! MAIN PROGRAM 
    use DATA_MODULE 
    implicit none 
    Integer(4) K, I, K1, K2, K3, STEP, L, R 
    Real(8) U0, SUXP, SUYP, YM, PM, STIF(30,30), P(30), U(30), PX(15), PY(15), FX(15), 
FY(15)   
    OPEN(100,FILE="G:\INPUT_STATIC.txt")  ! Open input data file for static analysis 
    OPEN(200,FILE="G:\OUTPUT_STATIC.txt") ! Open output data file for static analysis 
    ! READING INPUT 
    READ(100, '(1x,I2,1x,I2,1x,F8.1,1x,I3,1x,I2)') NN,NB,ELAST0,NSTEP,NK 
    Do K=1,NN 
        READ(100, '(1x,I1,1x,I1,1x,F8.1,1x,F8.2,1x,F8.2,1x,F8.2,1x,F8.2,1x,F8.2)' ) & 
        KX(K), KY(K), X0(K), Y0(K), PX(K), PY(K), UX0(K), UY0(K) 
    END Do    
    Do I=1,NB ; READ(100, '(1x,I2,1x,I2,1x,F6.2)') KL(I),KR(I),A(I) ; End Do 
    Do I=1,NB 
        L=KL(I) ; R=KR(I) ; LX=X0(R)-X0(L) ; LY=Y0(R)-Y0(L) 
        L0(I)=SQRT((LX**(2.))+(LY**(2.))) ; ELAST(I) = ELAST0 
    End Do 
    Do K=1,NK ; READ(100, '(1x,I5,1x,F6.2)') STEPK(K), UK(K) ; End Do 
    ! INITIAL CONTITIONS 
    NN2=2*NN ; STEP = 0 
    DO K=1,NN ; X(K)=X0(K) ; Y(K)=Y0(K) ; SUX(K)=0.0 ; SUY(K)=0.0 ; End Do  
    Call NONL(PX,PY,FX,FY) 
    ! ITERATION PROCEDURE 
    WRITE (200,'(2x,A,7x,A,9x,A,A/)') "Step","PM","YM" 
    Do STEP=1,NSTEP 
        call UHIST(STEP, U0) 
        Do K=1,NN 
            If(KX(K).EQ.2) then 
                SUXP=SUX(K) ; SUX(K)=UX0(K)*U0 ; UX(K)=SUX(K)-SUXP ; 
X(K)=X0(K)+SUX(K) 
            End If 
            If(KY(K).EQ.2) then 
                SUYP=SUY(K) ; SUY(K)=UY0(K)*U0 ; UY(K)=SUY(K)-SUYP ; 
Y(K)=Y0(K)+SUY(K) 
            End If 
        End Do 
        Call STIFF(STIF) 
        Call NONL(PX,PY,FX,FY) 
        Do K1=1,NN ; P(2*K1-1)=FX(K1) ; P(2*K1)=FY(K1) ; End Do 
            Call GAUS(STIF,P,U) 
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            Do K2=1,NN 
                If(KX(K2).EQ.0) then 
                    UX(K2)=U(2*K2-1) ; SUX(K2)=SUX(K2)+UX(K2) ; X(K2)=X(K2)+UX(K2) 
                End If 
                If(KY(K2).EQ.0) then 
                    UY(K2)=U(2*K2) ; SUY(K2)=SUY(K2)+UY(K2) ; Y(K2)=Y(K2)+UY(K2) 
                End If 
            End Do 
            Do K3=1,NN ; FX(K3)=PX(K3) ; FY(K3)=PY(K3) ; End Do        
            Call NONL(PX,PY,FX,FY) 
            YM=(Y(7)+Y(8))/2.0 ; PM=FY(7)+FY(8) 
            ! PRINTING RESULTS 
            WRITE (200, '(1x,I4,1x,F10.2,1x,F10.2)') STEP, PM, YM 
    End Do 
    CLOSE(100) ; CLOSE(200) 
End Program 

 
TABLE A.2 Data Module 
Module DATA_MODULE 
implicit none 
Integer(4) NK,NB,NSTEP,NN,NN2,KX(15),KY(15),KL(30),KR(30),STEPK(3) 
Real(8) A(30),L0(30),X0(15),Y0(15),UX0(15),UY0(15),E(30),S(30),LE(30),UK(3), ELAST0, 
LX, LY  
Real(8) ELAST(30),X(15),Y(15),CX(30),CY(30),N(30),UX(15),UY(15),SUX(15),SUY(15) 
End module 
TABLE A.3 Subroutine NONL 
Subroutine NONL(PX,PY,FX,FY) ! SUBROUTINE FOR NONLINEAR EQUATIONS OF 
PROBLEM 
    use DATA_MODULE 
    implicit none 
    Integer(4) K, I, L, R 
    Real(8) DL, PX(15), PY(15), FX(15), FY(15) 
    Do K=1,NN ; FX(K)=PX(K) ; FY(K)=PY(K) ; End Do 
    Do I=1,NB 
        L=KL(I) ; R=KR(I) ; LX=X(R)-X(L) ; LY=Y(R)-Y(L) ; LE(I)=SQRT(LX**2+LY**2) 
        CX(I)=LX/LE(I) ; CY(I)=LY/LE(I) ; DL=LE(I)-L0(I) 
        E(I)=DL/L0(I) ; S(I)=ELAST0*E(I) 
        ELAST(I)=ELAST0 ; N(I)=S(I)*A(I) ; FX(L)=FX(L)+N(I)*CX(I) 
        FY(L)=FY(L)+N(I)*CY(I) ; FX(R)=FX(R)-N(I)*CX(I) ; FY(R)=FY(R)-N(I)*CY(I) 
    End Do 
End Subroutine 

 
TABLE A.4 Subroutine STIFF 
Subroutine STIFF(STIF) ! SUBROUTINE FOR THE FORMATION OF THE STIFFNESS 
MATRIX 
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    use DATA_MODULE 
    implicit none   
    Integer(4) I, K, L, R 
    Real(8) STEL0, STELX, STELY, STELXY, STGE0, STGEX, STGEY, STGEXY, 
STIF(30,30)  
    Do I=1,NN2 
        Do K=1,NN2 ; STIF(I,K)=0.0 ; End Do 
    End Do 
    Do I=1,NB 
        STEL0=ELAST(I)*A(I)/L0(I) ; STELX=STEL0*CX(I)**(2.) ; 
STELY=STEL0*CY(I)**(2.) 
        STELXY=STEL0*CX(I)*CY(I) ; STGE0=N(I)/LE(I) ; STGEX=STGE0*CY(I)**(2.) 
        STGEY=STGE0*CX(I)**(2.) ; STGEXY=-STGE0*CX(I)*CY(I) ; L=KL(I) ; R=KR(I) 
        STIF(2*L-1,2*L-1)=STIF(2*L-1,2*L-1)+STELX  + STGEX 
        STIF(2*L-1,2*L  )=STIF(2*L-1,2*L  )+STELXY + STGEXY 
        STIF(2*L  ,2*L-1)=STIF(2*L  ,2*L-1)+STELXY + STGEXY 
        STIF(2*L  ,2*L  )=STIF(2*L  ,2*L  )+STELY  + STGEY 
        STIF(2*L-1,2*R-1)=STIF(2*L-1,2*R-1)-STELX  - STGEX 
        STIF(2*L-1,2*R  )=STIF(2*L-1,2*R  )-STELXY - STGEXY 
        STIF(2*L  ,2*R-1)=STIF(2*L  ,2*R-1)-STELXY - STGEXY 
        STIF(2*L  ,2*R  )=STIF(2*L  ,2*R  )-STELY  - STGEY 
        STIF(2*R-1,2*L-1)=STIF(2*R-1,2*L-1)-STELX  - STGEX 
        STIF(2*R-1,2*L  )=STIF(2*R-1,2*L  )-STELXY - STGEXY 
        STIF(2*R  ,2*L-1)=STIF(2*R  ,2*L-1)-STELXY - STGEXY 
        STIF(2*R  ,2*L  )=STIF(2*R  ,2*L  )-STELY  - STGEY 
        STIF(2*R-1,2*R-1)=STIF(2*R-1,2*R-1)+STELX  + STGEX 
        STIF(2*R-1,2*R  )=STIF(2*R-1,2*R  )+STELXY + STGEXY 
        STIF(2*R  ,2*R-1)=STIF(2*R  ,2*R-1)+STELXY + STGEXY 
        STIF(2*R  ,2*R  )=STIF(2*R  ,2*R  )+STELY  + STGEY 
    End Do 
    Do K=1,NN 
        IF(KX(K).NE.0) STIF(2*K-1,2*K-1)=1.E+10 
        IF(KY(K).NE.0) STIF(2*K ,2*K )=1.E+10 
    End Do 
End Subroutine 

 
TABLE A.5 Subroutine UHIST 
Subroutine UHIST(STEP, U0)  ! SUBROUTINE FOR HISTORY OF PRESCRIBED 
DISPLACEMENTS 
    use DATA_MODULE   
    implicit none  
    Integer(4) K, STEP 
    Real(8) U0 
    Do K=1, NK-1 
        IF((STEP - STEPK(K))*(STEP-STEPK(K+1)).GT.0) EXIT 
        U0=UK(K)+(UK(K+1)-UK(K))/(STEPK(K+1)-STEPK(K))*(STEP-STEPK(K)) 
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    End Do   
End Subroutine 

 
TABLE A.6 Subroutine GAUS 
Subroutine GAUS(A1,B1,X1) ! SUBROUTINE TO SOLVE THE ALGEBRAIC SYSTEM 
    use DATA_MODULE 
    implicit none 
    Integer(4) NM1, I, I1, J1, K, IL, J, N1 
    Real(8) COEF, A1(30,30), B1(30), X1(30) 
    N1=NN2 ; NM1=N1-1 
    Do I=1,NM1 
        I1=I+1 
        Do J=I1,N1 
            COEF=-A1(J,I)/A1(I,I) ; B1(J)=B1(J)+B1(I)*COEF 
            Do K=1,N1 ; A1(J,K)=A1(J,K)+A1(I,K)*COEF ; End Do 
        End Do 
    End Do 
    X1(N1)=B1(N1)/A1(N1,N1) 
    Do I=1, NM1 
        IL=N1-I ; I1=IL+1 ; X1(IL)=B1(IL) 
        Do J=I1,N1 ; X1(IL)=X1(IL)-A1(IL,J)*X1(J) ; End Do 
        X1(IL)=X1(IL)/A1(IL,IL) 
    End Do 
End Subroutine 

  
Description of the basic parameters 
 
Input parameters 
NN = The number of nodes of the arch. 
NB = The number of bar elements of the arch. 
NK = The number of points of static Load-Displacement curve. 
ELAST0 = Initial Modulus of Elasticity 
NSTEP = The number of steps of the iteration procedure. 
[KX(NN)], [KY(NN)] = Matrices with elements which indicate the type of restraint of nodes along 
X and Y axes: KX(or KY)=0 for unrestrained nodes, KX(or KY)=1 for restrained nodes, KX(or 
KY)=2 for nodes with forced displacement. 
[X0(NN)], [Y0(NN)] = Initial coordinates of the nodes. 
[PX(NN)], [PY(NN)] = External forces of nodes. 
[UX0(NN)], [UY0(NN)] = Matrices which include the factors of the forced displacements: UX0 
(or UY0)=1.00 for nodes with forces displacement. UX0 (or UY0)=0.00 for the other nodes. 
[KL(NB)] = The index number of the node of the left edge of each bar. 
[KR(NB)] = The index number of the node of the right edge of each bar. 
[A(NB)] = Cross-section area of each bar. 
[STEPK(NK)] = The number of the step which corresponds to each point of Load-Displacement 
curve. 
[UK(NK)] = The value of forced displacement which corresponds to each point of Load-
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Displacement curve. 
 
Output parameters 
PM= The value of the concentrated force in the middle of the arch. 
YM= The value of the forced displacement in the middle of the arch. 
 
 
Appendix B: Listing of the dynamic analysis program 
 
TABLE Β.1 Main program 
Program DYNAMIC_SNAP_THROUGH ! MAIN PROGRAM 
    use DATA_MODULE 
    implicit none 
    Integer(4) K,I,K1,K2,K3,K4 
    Real(8) 
GX(15),GY(15),X(15),Y(15),T,P0,XP(15),YP(15),GXP(15),GYP(15),X1(15),Y1(15),GX1(15),
GY1(15) 
    Real(8) YM,PM,VX(15),VY(15),VXP(15),VYP(15),VX1(15),VY1(15) 
    OPEN(100,FILE="G:\INPUT_DYNAMIC.txt")  ! Open input data file for dynamic analysis 
    OPEN(200,FILE="G:\OUTPUT_DYNAMIC.txt") ! Open output data file for dynamic 
analysis 
    ! READING INPUT 
    READ(100, '(1x,I2,1x,I2,1x,F8.1,1x,F6.3,1x,F6.1,1x,I2)') NN,NB,ELAST0,DT,TMAX,NK 
    Do K=1,NN 
        READ(100, '(1x,I1,1x,I1,1x,F8.1,1x,F8.2,1x,F8.2,1x,F8.2,1x,F8.2,1x,F8.2,1x,F8.2)' ) & 
        KX(K),KY(K),X(K),Y(K),PX(K),PY(K),PX0(K),PY0(K),M(K) 
    END Do  
    Do I=1,NB ; READ(100, '(1x,I2,1x,I2,1x,F6.2)') KL(I),KR(I),A(I) ; End Do 
    Do K1=1,NK ; READ(100, '(1x,F6.2,1x,F8.2)') TK(K1),PK(K1) ; End Do 
    ! INITIAL CONTITIONS 
    STEP=0 ; T=0.0 
    Do I=1,NB ; L=KL(I) ; R=KR(I) ; LX=X(R)-X(L) ; LY=Y(R)-Y(L) ; 
L0(I)=SQRT(LX**2+LY**2) ; End Do  
    Do K=1,NN ; VX(K)=0.0 ; VY(K)=0.0 ; End Do 
    CALL EVAL(X,Y,GX,GY) 
    ! ITERATION PROCEDURE 
    WRITE (200,'(4x,A,14x,A,10x,A,A/)') "T","PT","YM" 
    Do T=0.002,TMAX,DT 
        CALL PHIST(T,P0) 
        Do K=1,NN 
            If(KX(K).EQ.2) then ; PX(K)=PX0(K)*P0 ; End If 
            If(KY(K).EQ.2) then ; PY(K)=PY0(K)*P0 ; End If 
        End Do     
            Do K2=1,NN ! PREDICTION 
                XP(K2)=X(K2) ; YP(K2)=Y(K2) ; VXP(K2)=0.0 ; VYP(K2)=0.0 
                If(KX(K2).NE.1) then ; XP(K2)=X(K2)+VX(K2)*DT ; 
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VXP(K2)=VX(K2)+GX(K2)*DT ; End If 
                If(KY(K2).NE.1) then ; YP(K2)=Y(K2)+VY(K2)*DT ; 
VYP(K2)=VY(K2)+GY(K2)*DT ; End If 
            End Do 
            CALL EVAL(XP,YP,GXP,GYP) 
        Do K3=1,NN ! FIRST CORRECTION 
            X1(K3)=X(K3) ; Y1(K3)=Y(K3) ; VX1(K3)=0.0 ; VY1(K3)=0.0 
            If(KX(K3).NE.1) then 
                X1(K3)=X(K3)+(VX(K3)+VXP(K3))/2.*DT ; 
VX1(K3)=VX(K3)+(GX(K3)+GXP(K3))/2.*DT 
            End If 
            If(KY(K3).NE.1) then 
                Y1(K3)=Y(K3)+(VY(K3)+VYP(K3))/2.*DT ; 
VY1(K3)=VY(K3)+(GY(K3)+GYP(K3))/2.*DT 
            End If 
        End Do 
        CALL EVAL(X1,Y1,GX1,GY1)    
        Do K4=1,NN ! SECOND AND LAST CORRECTION 
            If(KX(K4).NE.1) then 
                X(K4)=X(K4)+(VX(K4)+VX1(K4))/2.*DT ; 
VX(K4)=VX(K4)+(GX(K4)+GX1(K4))/2.*DT 
            End If 
            IF(KY(K4).NE.1) then  
                Y(K4)=Y(K4)+(VY(K4)+VY1(K4))/2.*DT ; 
VY(K4)=VY(K4)+(GY(K4)+GY1(K4))/2.*DT 
            End If 
        End Do 
        CALL EVAL(X,Y,GX,GY) 
        YM=(Y(7)+Y(8))/2.0 ; PT=PY(7)+PY(8) 
        ! PRINTING RESULTS 
        WRITE (200, '(1x,F6.3,1x,F15.5,1x,F10.4)') T, PT, YM 
        STEP = STEP + 1 
    End Do 
        CLOSE(100) ; CLOSE(200) 
End Program 

 
TABLE B.2 Data Module 
Module DATA_MODULE 
implicit none 
Integer(4) NK,NN,NB,STEP,L,R,KL(30),KR(30),KX(15),KY(15) 
Real(8) ELAST0,DT,TMAX,LX,LY,L0(30),FX(15),FY(15),E(30),ELAST(30),S(30),N(30),PT 
Real(8) A(30),PX(15),PY(15),PX0(15),PY0(15),M(15),TK(5),PK(5) 
End module 

 
TABLE B.3 Subroutine PHIST 
Subroutine PHIST(T,P0) ! SUBROUTINE FOR LOADING HISTORY 
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    use DATA_MODULE 
    implicit none 
    Integer(4) I 
    Real(8) T, P0 
    Do I=1,NK-1 
        If((T-TK(I))*(T-TK(I+1)).GT.0.) CYCLE 
        P0=PK(I)+(PK(I+1)-PK(I))/(TK(I+1)-TK(I))*(T-TK(I)) 
    End Do  
End Subroutine 

 
TABLE B.4 Subroutine EVAL 
Subroutine EVAL(X,Y,GX,GY) ! SUBROUTINE TO EVALUATE THE PRESENT STATE 
OF THE STRUCTURE 
    use DATA_MODULE 
    implicit none 
    Integer(4) K, I 
    Real(8) GX(15),GY(15),X(15),Y(15),LE,CX,CY,DL 
    Do K=1,NN 
        FX(K)=PX(K) ; FY(K)=PY(K) 
    End Do 
    Do I=1,NB 
      L=KL(I) ; R=KR(I) ; LX=X(R)-X(L) ; LY=Y(R)-Y(L) 
      LE=SQRT(LX**2+LY**2) ; DL=LE-L0(I) ; E(I)=DL/L0(I) 
      ELAST(I)=ELAST0 ; S(I)=ELAST(I)*E(I) ; N(I)=S(I)*A(I) 
      CX=LX/LE ; CY=LY/LE 
      FX(L)=FX(L)+N(I)*CX ; FY(L)=FY(L)+N(I)*CY 
      FX(R)=FX(R)-N(I)*CX ; FY(R)=FY(R)-N(I)*CY 
    End Do 
    DO K=1,NN 
        GX(K)=0.0 ; GY(K)=0.0 
        If(KX(K).NE.1) then 
            GX(K)=FX(K)/M(K) 
        End If 
        If(KY(K).NE.1) then 
            GY(K)=FY(K)/M(K) 
        End If 
    End Do 
End Subroutine 

 
Description of the basic parameters 
 
Input parameters 
NN, NB, NK, ELAST0, [KX(NN)], [KY(NN)], [X0(NN)], [Y0(NN)], [PX(NN)], [PY(NN)], 
[KL(NB)], [KR(NB)], [A(NB)], see the description of parameters of the program of static analysis. 
[PX0(NN)], [PY0(NN)] = Matrices which include the factors of the external forces: PX0 (or 
PY0)=1.00 for nodes with external forces. PX0 (or PY0)=0.00 for the other nodes. 
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DT= The time step. 
TMAX= Total time of dynamic analysis. 
[M(NN)]= Matrix of masses of nodes. 
[TK(NK)]= Time which corresponds to each point of Load-Displacement curve. 
[PK(NK)]= The value of force which corresponds to each point of dynamic Load-Displacement 
curve. 
 
Output parameters 
PT= The value of the concentrated force in the middle of the arch. 
YM= The value of the displacement in the middle of the arch. 
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