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Abstract.   A new dynamic reliability analysis of structure under repeated random loads is proposed in this 
paper. The proposed method is developed based on the idea that the probability density of several times 
random loads can be derived from the probability density of single-time random load. The reliability 
prediction models of structure based on time responses under several times random loads with and without 
strength degradation are obtained by using the stress-strength interference theory and probability density 
evolution method. The resulting differential equations in the prediction models can be solved by using the 
forward finite difference method. Then, the probability density functions of strength redundancy of the 
structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. 
The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results 
have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction. 
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1. Introduction 
 

The structural reliability is an important indicator to evaluate the structural performance. 
Classic reliability of civil and structure have been described in many papers, such as the first order 
reliability method (FORM) (Dilip and Tanmoy 2001, Au et al. 2007, Katafygiotis and Zuev 2008, 
Kmet et al. 2011, Knut and Gunner 2000) and Monte Carlo simulation (MCS) (Chen 1994, 
Schueller 2009, Paik et al. 2009, Basage et al. 2012, Chen et al. 2001). In addition, dynamic 
reliability of structures has been studied as well (Basaga et al. 2012, Gao et al. 2003, Benfratello et 
al. 2006, Moustafa and Mahadevan 2011, Song and Lv 2009). In these methods, structures under 
single load were analyzed without considering the relationship between strength, load and time, 
and thus the estimated reliability of the structures were not accurate. From time to time, research 
has explored new methods to precisely compute structural reliability. A fully probabilistic analysis 
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method provides a new way to solve this problem and accurately determine the structural 
reliability. The fully probabilistic analysis has been developed based on the integral method in 
reliability analysis when the complete information of random responses can be obtained using the 
distribution of the simulated random variables and the transfer function of the relationship between 
the load and response. In recent years, static and dynamic random responses of the structures have 
been studied using the probability density evolution method (PDEM) (Chen and Li 2004, Li and 
Chen 2004, Chen and Li 2004, Li and Chen 2008). The probability density functions of the 
structures under different static loading levels have been obtained by PDEM with the complete 
information of random variables. In fact, in the service period of a structure, not only it has been 
subjected to the random loads over time but also its strength has been degraded with time due to 
corrosion, vibration, and other factors. Therefore, the dynamic probabilistic reliability of structures 
and systems using the first order second moment (FORM) method was studied (Fang et al. 2013, 
Wang et al. 2010). Structural reliability from the time response prediction models under common 
loads using the FORM method has also been considered (Fang and Chen 2012) but the FORM 
method is not accurate when it is used to calculate structural reliability. 

From time to time, new methods have been proposed to precisely compute structural reliability. 
A fully probabilistic analysis method provides a new way to solve this problem and accurately 
determine the structural reliability. The fully probabilistic analysis has been developed based on 
the integral method in reliability analysis when the complete information of random responses is 
obtained by using the distribution of the simulated random variables and the transfer function of 
the relationship between the load and response. In this paper, the fully probabilistic structural 
reliability from time response prediction model under several times random loads are established 
by using the PDEM. The proposed method is developed accordance to the stress-strength 
interference theory when the probability distribution of random loads and the structural strength 
are known. Two cases with and without strength degradation over time are considered. The 
structural reliability from time responses is estimated by solving the resulting differential 
equations of the reliability prediction model. Finally, it is demonstrated that the proposed method 
is feasible, accurate and practicable by two worked examples. 
 
 
2. The probability density evolution equation (PDEE) of the structural reliability from 
time response 

 
2.1 The PDEE of the structural reliability from time response without strength degeneration 

 
The structure has been beard several times random loads but its strength is not degraded in its 

service period. The structural a load S is a random variable, its stress s is a random variable too 
where its cumulative distribution function and the probability density function are G(S) and g(S), 
respectively. During the structural service period, the structure is not subjected to single 
continuous load, but several times random loads. If the structure does not fail under the maximum 
load of several time random loads, the structure will also not fail under the several times random 
loads. Let the maximum value of n times of random loads is Smax and it is assumed that the 
structural reliability under n times random loads is equivalent to the reliability under the maximum 
random load. For this reason, from a conservative point of view, the structural reliability under n 
times the maximum load Smax can be used the structural reliability under n times random loads. 
That is to say, Smax be used the equivalent load to predict the structural reliability. 
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The cumulative distribution of the stress smax of Smax under n times random loads which is 
equivalent to the maximum load can be written as follows 

max max( ) [ ( )]nF s G s                             (1) 

The arising random loads are considered to obey a Poisson distribution with mean parameter λ 
(Fang et al. 2013). Thus, the probability distribution of the stress at time t is given as follows 
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Here N(0) is the number of the loads at time 0, N(t) is the number of the loads at time t. 

Its probability density function of the stress at time t is 

max[ ( ) 1]
max( ( )) ( )t G sf s t te g s                          (3) 

The probability density of the structure strength redundancy ( ) -r t 
max ( )s t  under n times 

random loads can be obtained as follows 
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                        (4) 

where the strength of the structure is δ and its probability density function is f(δ). 

Let smax 
is substituted by s(t), Eq. (4) can be rewritten as follows 
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The probability density of the structure strength redundancy under several times random loads 
can be denoted as follows 

0 0[ ( ) 1] [ (0) 1]
0( , ) ( )( )t G t Gp t f e e                            (6) 

Based on the stress-strength interference theory, strength and stress are the only random 
variables and it is assumed that there are no other random variables in the whole service period of 
the structure. In other words, other variables are deterministic. Hence, the probability conservation 
principle is conformed as follows 

( , ) ( , )
( ) 0

p t p t
a t

t

 


 
 

 
                                                        (7) 

where a(t) is a Dirac function. 
Eq. (7) is a classical Liouville differential equation and its initial condition is given as 
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0

[ ( ) 1] [ (0) 1]( , ) | ( )( )t G t G
t tp t f e e     
                                             (8) 

The probability density function p(δ, τ) of the structure strength redundancy r(t) can be 
obtained by solving Eq. (8). The structural reliability from time response R(t) under several times 
random loads for the case without strength degeneration can be calculated as follows 

( ) ( , )
S

R t p t d


 


                                                                (9) 

 
2.2 The PDEE of the structural reliability from time response with strength degeneration 

 
In fact, the structural strength is degraded over time due to vibration and corrosion etc in its 

service period. The remaining strength δ(τ) of the structure at time τ is assumed to obey a Weibull 
probability distribution (Schaff and Davidson 1997). 

Its cumulative distribution function can be calculated as follows 

( )( ) ( )
[ ( )] 1 exp[ ( ) ]

( )
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                                               (10) 

where β(τ), η(τ), and γ(τ) are the Weibull distribution parameters over time, τ is the structural 
service time in its service period Τ, β(τ), η(τ), and γ(τ) are the shape parameter, the scale parameter 
and the position parameter of the functions of the parameters of Weibull distribution in the time τ, 
respectively. 

The probability density function h[δ(τ)] of the δ(τ) can be obtained by Eq. (10) as follows 

( ) 1 ( )( ) ( ) ( ) ( ) ( )
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                        (11) 

The probability density of the structural strength redundancy r(t) = δ(t) - smax(t) under several 
times random loads with the strength degeneration is obtained as follows 

[ ( ( )) 1] [ (0) 1]
( ) ( ( ))( )t G t G

r tq f e e                                                (12) 

The probability density of the structural strength redundancy under several times random loads 
with the strength degeneration can be denoted as follows 

0 0[ ( (0)) 1] [ (0) 1]
0( (0), ) ( (0))( )t G t Gq t f e e                                         (13) 

The differential equation can be obtained by using the probability conservation principle as 
follows 
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Eq. (14) is a classical Liouville differential equation and its initial condition is given 
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0
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The probability density function q(δ(τ),t) of the structural strength redundancy r(t) can be 
obtained by solving Eq. (14). By integrating the probability density function, the reliability R(t) of 
the structural reliability from time response under several times random loads for the case with 
structural strength degeneration can be obtained as follows 

( )

( ) ( ( ), ) ( )
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R t q t d
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3. Solving the PDEE 
 

Eqs. (7) and (14) are the probability density evolution differential equations for the cases 
without and with strength degeneration, respectively. These differential equations have analytical 
solutions (Chen et al. 2001). Nevertheless, in practice, the probability density evolution 
differential equation is normally solved using numerical approaches. In this study, Eqs. (7) and (14) 
are solved using the forward finite difference (FFD) method (Li and Chen 2004). This is because 
not only compatibility of the algorithm can be ensured, but also nonnegative, completeness of the 
probability density and accurateness of the reliability can be obtained. 

The main steps of the algorithm are given as follows:  
Step 1. The initial conditions shown in Eqs. (8) and (15) can be dispersed as follows 

0 0[ ( ) 1] [ (0) 1]
0( , ) ( )( )it G t G

i ip t f e e                                             (17) 
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where δi = i· Δδ, δ is divided into Δδ for Eq. (17) and δi(t) = i· Δδ(t), δ(t) is divided into Δδ(t) for 
Eq. (18), i = 0,1,2, …. Similarly, t is discretized, Δt is a dividing in direction of the t, tj = j· Δt , j = 
0,1,2, …. 

Then, λ1 = Δt/Δδ and λ2 = Δt/Δδ(τ). The limit 0 < λ1a(t), λ2a(t) ≤ 1 is to ensure convergence and 
stable of the algorithm. 

Step 2. Eqs. (7) and (14) can be computed using Eqs. (19) and (20), respectively 
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The parameters β(τ), η(τ) and γ(τ) of the Weibull distribution in )k(
jq can be computed from )k(

1jq  . 

The probability density functions of Eqs. (7) and (14) can be obtained by the proposed 
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algorithm. Once the probability density functions have been obtained, the structural reliability 
from time response can be calculated as given in Eq. (9) for the case without strength degeneration 
or Eq. (16) for the case with strength degeneration. 
 
 
4. Worked Examples 

 
4.1 Example 1. PDEM without strength degradation 
 
Fig. 1 shows an axial speed reducer (ASR) which is made of A3 steel. The reliability of the 

most dangerous cross section will be predicted. It is investigated to test the performance of the 
proposed probability density evolution method. The axial strength of the speed reducer obeys the 
normal distribution with the mean value of 110MPa and standard deviation of 15MPa. The 
strength is not degraded over time. Similarly, the stresses on the ASR also obey the normal 
distribution with the mean value of 50MPa and standard deviation of 15MPa.  

For the case without strength degeneration, the probability density function of the speed 
reducer axial strength redundancy is calculated using Eq. (7) under repeated loads with λ = 1 and 
λ1a(t) = 0.5. The results are shown in Fig. 2 different time steps, t = 0, 25 and 100. Next, the 
reliability of the axial speed reducer is computed using 3 different approaches i.e., PDEM, FORM 
and MCS and the results are shown in Table 1. 

 
 
 

 

Fig. 1 An axial speed reducer Fig. 2 The curves of the probability density at t = 0,
     25, 100 without strength degeneration 

 
 

  Table1 Reliability of the speed reducer obtained from 3 different approaches without strength degeneration 

time PDEM FORM MCS( 610n  ) 
0 0.9978 0.9978 0.9978 

25 0.9960 0.9952 0.9960 
100 0.9785 0.9602 0.9786 
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4.2 Example 2. PDEM with strength degeneration 
 
The similar axial speed reducer with the same initial strength and stresses where both obey the 

normal distribution is also used to validate the proposed approach for the case of strength 
degeneration. The probability density function of the speed reducer axial strength redundancy is 
computed using Eq. (14) with λ = 1 and λ1a(t) = 0.5. The curves are shown in Fig. 3 at t = 0, 25, 
100 unit time. Its reliability from time response is obtained using the PDEM, FORM, MCS and the 
results at t = 0, 25, 100 unit time are shown in Table 2. 

 
 

Fig. 3 The curves of the probability density at t = 0, 25, 100 with strength degeneration 
 
 
 Table 2 Reliability of the speed reducer obtained from 3 different approaches with strength degeneration 

time PDEM FORM MCS( n = 106) 
0 0.9978 0.9978 0.9978 

25 0.9665 0.9543 0.9665 
100 0.9050 0.8987 0.9051 

 
 
4.3 Discussions 
 
As shown in Figs. 2 and 3, the identified probability density function is a normal distribution 

when t = 0, but this is not the case when t = 25 and 100. Thus, the probability density curves are 
becoming more and more complex over time. The width and peak of the probability density curves 
are increased, and the fluctuation are significantly enhanced. From Tables 1 and 2, the reliability at 
t = 0 from the 3 different approaches are the same because the random strength and stresses obey 
the normal distribution. However, when the random strength and stresses do not obey the normal 
distribution at t = 25 and 100, the reliability from time response values obtained from the proposed 
PDEM method are more accurate compared to the FORM and are almost the same with the values 
from numerical approach (MCS). In the evolutionary process, when the probability density curves 
of the structural strength redundancy under repeated random loads do not obey the normal 
distribution, the dynamic reliability obtained from the FORM is not accurate and occasionally 
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produce an obvious error.  
 Table 1 shows that even if strength does not degenerate, the structural reliability gradually 

decreases over time due to the random loads acting on the structure. When strength degenerates, 
the reliability decreases over time more rapidly as shown in Table 2. This makes sense due to the 
combination effects of random loads and strength degeneration. The probability density curves of 
the structural strength redundancy under repeated random loads and the real-time changing 
reliability with and without the structural strength degeneration can be accurately obtained from 
the proposed PDEM method. 

 
 
5. Conclusions 
 

A new probability density evolution method has been developed for modeling the structural 
reliability from time responses under several times random loads. Two cases with and without 
strength degeneration are considered. The differential equation in the model is solved using the 
forward finite difference method. The probability density curves of the structural strength 
redundancy can be obtained at any time during the service period. The results have shown that the 
proposed method is simple, practicable, efficient, easy to implement and gives reasonable accurate 
prediction. The proposed approach can be applied to determine the reliable operation of service 
life and the maintenance schedule. Thus, it is very useful in the structural life cycle management 
and dynamic design. 
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