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Abstract.    The mechanical behavior of rectangular foundation plates with perimetric beams and internal 
stiffening beams of the plate is herein analyzed, taking the foundation design into account. A series of 
dimensionless parameters related to the geometry of the studied elements were defined. In order to 
generalize the problem statement, an initial settlements was considered. A numeric procedure was developed 
for the resolution by means of the Finite Differences Method that takes into account the stiffness of the plate, 
the perimetric and internal plate beams and the soil reaction module. Iterative algorithms were employed 
which, for each of the analyzed cases, made it possible to find displacements and reaction percentages taken 
by the plate and those that discharge directly into the perimetric beams, practically without affecting the 
plate. To enhance its mechanical behavior the internal stiffening beams were prestressed and the results 
obtained with and without prestressing were compared. This analysis was made considering the load 
conditions and the soil reaction module constant. 
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1. Introduction 
 

The evolution of the knowledge associated with the mechanical analysis of foundation plates, 
developed for the last twenty years, as well as in other fields of Engineering, is related to the 
development of proper numerical methods to evaluate such items. 

To determine the bearing capacity of foundation structures, it is necessary to know the 
predictable soil settlement according to the soil type. In previous works about elastic foundation 
plates (Ortega et al. 2005, Paloto and Santos 1999, 2000, Paloto et al. 2001, Paloto et al. 2002), 
the final settlement was determined and the distribution of the soil reaction was evaluated.  

The aim of the work here presented, is the resolution of aspects associated with the Conceptual 
Design of the foundation, considering some parameters linked to the mechanical behavior. 
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Elastic foundation plates with perimetric beams and prestressed and non prestressed internal 
beams will be herein analyzed and the final settlement and soil reaction distribution between what 
it is absorbed by the plate and the loads that are directly applied to boundary elements will be 
determined. The determination of these parameters will be made using the Finite Differences 
Method. Other authors also used this method for the foundations analysis (Jones et al. 2009, Sato 
et al. 2007, Yang et al. 2009, Zhang et al. 2011). Part of the results will be verified by means of 
software using the Finite Elements Method (Zienkiewicz and Taylor 1994). 

It should be noted, that in the case of soil with a non-linear reaction coefficient (Akgöz and 
Civalek 2011, Chen et al. 2011, Orbanich et al. 2003), and in order to solve the problem  to solve 
this problem with a Finite Elements model, the coefficient value should he calculated externally 
for all the points of the mesh. This does not happen when the Finite Differences Method is used. 
The advantage of the latter is then evident. 

Also, the simulation of the initial settlement of the plate is difficult with this Finite Element 
software, whereas the modelling with the Finite Differences Method is very simple (Chen et al. 
2011). On the other hand, results with a good convergence are attained using less dense meshes 
than with MEF. 

In the case of an increase in the load value, and/or if it is necessary to reduce beam height, 
especially the internal stiffening beams of the plate, it will be necessary to construct prestressing 
beams (Lee and Kim 2011, Leonhardt 1977, Paloto and Ortega 2000, Tombesi et al. 1974). The 
use of beams with minimum height is beneficial if the ground water is at a high level, so as not to 
have to reduce this level by pumping for the construction of the foundation, to avoid the contact of 
water with the structure’s concrete, thus increasing material durability. 

Few scientific papers related to the use and analysis of prestressed foundation plates, have been 
found, although its use is widespread in specific applications. In general, prestressed foundation 
plates are used for reasons related to important loads or where concrete cracking may be a problem 
(Ashar 1983, Smitsyn et al. 1975, Tovstik 2009). In this paper a calculation method for a 
foundation plate with prestressed beams, is presented. The developed method allows to evaluate 
the necessary prestressing so as to improve the mechanical performance, thus allowing an 
optimum dimensioning of the load bearing elements. 
 
 
2. Theoretical foundations 

 
2.1 Solution of foundation plates with inner stiffening beams 

 
Elastic Foundation plates with constant soil reaction module (Winkler Foundation Modulus) 

(Guler and Celep 2005, Chen et al. 2011, Ponnusamy and Selvamani 2012, Tanvir 1995, 
Timoshenko and Woinowsky 1959, Yu and Wang 2010) will be examined so that their settlements 
exhibit linear variations. The differential equation that explains the mechanical performance is 

 )ww(kq
D

1
w 0

22                           (1) 

where:  
w(x, y): settlement function 
w0: initial settlement 
q(x, y): applied distributed load 
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k: soil reaction modules 
D: plate bending rigidity 

)1(12

Ed
D

2

3


                                (2) 

where:  
E: Concrete Elasticity Modulus 
d: plate thickness 
μ : concrete Poisson´s ratio 
 

With the aim of solving Eq. (1) numerically a Finite Differences approximation is applied, with 
an “s-side” square mesh (Fig. 1). Settlement function values wj are thus obtained w(x, y). 
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                     Fig. 1 Plate with internal Stiffening beams 

 
 
 Solving Eq. (1) 

 )ww(kqs
D

1
wcwc 0

4
n

1j
jjii

ij

 


                    (3) 

where:  
s: mesh step 
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To solve this equation the definition of two factors has been proposed, making it possible to  
generalize the results.  

Applying a uniform initial settlement value to the whole function, so that the limit value is 
obtained by 

k

q
w0                                   (4) 

being  the initial settlement value at the boundary. On the other hand wo is consider constant over 
the plate, so the total settlement at each point is: w + wo. 

The dimensionless soil relative reaction factor (N’), is expressed by 

N = ks4                                                     (5) 

On the basis of the above definitions, Eq. (3) then becomes 








n

1j

44

jjii

ij
k

aq

D

s
k

D

wN

D

s
qwcwc                     (6) 

Taking into account beam bending rigidity, we have 





n

1j
i

4
jj1ii1

ij
k

q
aNwNqswcDwcD                   (7) 

where: 
D1: beam bending rigidity 
D: plate bending rigidity (Eq. (2)) 

By means of successive mathematical operations, we arrive at the following equation 

  )a1(N
k

q
]wcwNc[d

n

1j
jjii

ij

 


                     (8) 

where: 
N = N´/D  
d = D1/ D 

From this Finite Differences system the wi values which represent displacements at each i-eth 
plate point are obtained.  

Another desired parameter for the analysis of the problem is the percentage of the support 
reaction, admitted by the plate, and the soil reactions that are discharged directly to the boundary 
elements. 

Once the plate wi values are obtained, an evaluation of the support reaction discharging upon 
the plate Rp is evaluated, by means of the following equation 


b 

0 
i

a 

0 
dxdy)k(wRp                             (9) 

It is worth mentioning that in case that k be constant, the integral for Eq. (9) involves 
determining the settlement volumes. 

Once Rp has been obtained the percentages of the total of the applied load can then be  
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expressed by obtaining the difference of the reaction percentage admitted by the boundary beams. 
For this system, Eqs. (8) and (9) must be solved. In this case, the solution of these matrix systems 
was carried out by means of MATLAB software (Matlab 7.0 and Simulink 2004). 

 
2.2 Solution of plates with inner stiffening prestressed beams 

 
An elastic foundation plate of the same geometry as the one presented in Fig. 1, but in this case 

with prestressed inner stiffening beams, was addressed. 
These prestressed beams are analyzed by means of a procedure that we have named Parabola 

Method. This allows us to find different prestressing forces that originate different plate 
displacements, including the forces that correspond to null displacements of the plate, a case in 
which the whole soil reaction is discharged directly upon the boundary elements. This situation is 
advantageous from the viewpoint of the foundation durability, particularly when it is in contact 
with the soil or in the presence of, for example, chlorides that attack metallic reinforcement and 
use this to gain entry into the structure. 

When prestressing the inner stiffening beams of the foundation plate, their displacements are 
opposed to the displacements produced by the load q(x, y) and is partially compensated by the soil 
reaction. 

To determine displacements it is important to remember that only at the central point of the 
plate it is possible to apply superposition, due to the fact that the resulting displacement, is the sum 
of all the displacements generated by prestressing forces in both directions, while outside the 
central zone plate the superposition is not valid due to the effect produced by the perimetric beams. 
Here the sum of the displacements generated by prestressing forces does not represent the actual 
plate displacement. 

The Parabola Method here applied, consists of representing the displacement function 
generated by prestressing, by means of parabolic curves, which was determined by knowing the 
Elastic Modulus value that generates the prestressing at the central point and the actual 
displacements at the two boundaries. Then, the central parabola, is traced through these points. 
The corresponding equation is then found by means of a Regression Analysis, in order to calculate 
displacements w1, w7, w13, w19, w25, w31 . 

The foundation plate with inner stiffening beams here analyzed has a side relation equal to 1, 
and the tracing of the prestressing cable follows a parabolic direction. Under such conditions, for 
every prestressing force the equivalent load has to be calculated. In this case is considered as 
uniformly distributed by means of 

2eq
a

e V8
q                                 (10) 

where:  
V: prestressing force. 
e: eccentricity of the parabolic wire at the center of the plate. 
a: plate side. 

Then the desired central displacement is determined as follows 

EI 384

a q5 4
eq

1                                (11) 

where: 
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I: inertia of the inner stiffening beam, considering the contribution to the plate, according to the 
values allowed by CIRSOC 201 (Standard CIRSOC 201 2005). 

In the normal direction and in a similar way as in the previous case, we have 

 
EI 384

b q5 4
eq

2                                (12) 

Applying the superposition principle and considering a square plate (a = b), the maximum 
displacement at the center of the plate is obtained as 

EI192

aq5 4
eq

21  max                             (13) 

This maximum displacement is located at the central point of the plate, so that these 
displacements exhibit a parabolic variation in direction 1 and 2. With these displacements the 
parabolas whose vertex are points 1, 2, 3, 4, 5 and 6, are traced in normal direction to the central 
parabola, and this enables us to find the remaining displacements. 
 
 
3. Analyzed Cases 

 
3.1 Application of the method to a slab 

 
The method presented in this paper was applied to a square slab supported by its four 

boundaries, 0.20 m high and with an applied load q = 9,8 104 N/m2, mesh density was changed to 
the effect of examining convergence and analyzing displacements at the central point with 6 × 6 
and 12 × 12 and 24 × 24 meshes. 

 
 

Table 1 Slab displacement at the central point ccording to the type of mesh adopted 

Mesh Central Displacement (m) 

6 × 6 0.0512 
12 × 12 0.0513 
24 × 24 0.0513 

 
 

Checking by means of the Finite Element Method and using a 24 × 24 mesh, the observed 
displacement at the central point was 0.0511 m. 

A verification made with Timoshenko and Woinowsky (1959), for the same conditions, 
resulted in a displacement of 0.0513 m. Examining these results, it can be said that the accuracy of 
the results found with the Finite Difference Method attain a high rate of convergence.  

 
3.2 Application of the method to a plate with inner stiffening beams 

 
To study the convergence of the method as applied to elastic foundation plates with inner  
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stiffening beams, a comparison of the results obtained with the Finite Differences Method and 
with a commercial software that uses the Finite Element Method, Algor software (ALGOR 23 
Professional Mech/VE 2008) was carried out. The results obtained are discussed in the following 
paragraphs. 
 

3.2.1 A foundation plate solved by means of the Finite Differences Method 
In this case a foundation plate with two crossing 0.32 × 0.60 m inner stiffening beams was 

studied. Mesh density was varied in order to establish the minimum mesh density that ensure a 
good approximation to the results obtained by the Finite Elements Method. The model thus 
developed has the following characteristics: 
q = 9.8  103 N/m2 
k = 9.8  107 N/m3 
d = D1 / D = 24.57 
 = 0  

By applying the Finite Differences Method for each of the proposed mesh sizes, the 
displacement values at the central point of the plate, as can be seen in Table 2, are: 

 
 

           Table 2 Plate central point displacement values 

Mesh N Central Displacement (m) 

6 × 6 0.9750 0.0048 
8 × 8 0.3085 0.0059 

12 × 12 0.0609 0.0079 
24 × 24 0.0038 0.0078 

 
 

3.2.2 Foundation plate solved by means of the Finite Element Method 
The model of a foundation plate was created by means of PLATE elements, with two crossing 

inner stiffening beams that were simulated by means of BEAM elements, and applying the 
OFFSET function, to displace plate and beam barycentric axes. Soil was modeled by means of 
TRUSS elements, located at each node with the aim of simulating soil reaction, and the following 
analogy was made 

n
s S

F
k                                 (14) 

where: 
k: soil reaction modules 
s: surface displacement. 
F: equivalent force acting on the truss element. 
Sn: node influence surface. 

F = k  δs  Sn                                                 (15) 

where: 
kt: truss element rigidity (EA/L). 
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The equivalent force acting on the truss element is 

F = kt  δn                                                    (16) 

where: 
n: node displacement. 
A: truss element section. 
L: truss element length. 

As s = n and considering that node displacement is equal to truss element displacement 

nntnn L

EA
 kS    k                             (17) 

Solving for L 

nkS

EA
L                                   (18) 

For this investigation four models were made, of the same characteristics as those mentioned in 
3.2.1., and varying the mesh density, with the aim of ensuring convergence. 

The obtained displacements at the plate center point were included in Table 3. 
 
 
            Table 3 Displacements at the plate center point  

Mesh Central Displacement (m) 

6 × 6 0.0067 
12 × 12 0.0070 
24 × 24 0.0078 
50 × 50 0.0078 

 
 

The convergence of the results of the models solved by means of the Finite Difference Method 
(Table 2) and the Finite Element Method (Table 3) shows that with the Finite Element Method a 
mesh of at least 24 × 24 should be used. Table 2 shows that with the Finite Differences Method a 
similar accuracy is obtained by using a 12 × 12 mesh and therefore it may be stated that 
convergence is faster when using the Finite Differences Method. 

 
3.3 Foundation plate with internal stiffening beams at different heights 

 
One of the models discussed in 3.2.1., whose foundation plate with internal stiffening beams 

modeled with a 12 × 12 mesh, varying the height of the internal stiffening beams in each case in 
order to find the soil reaction percentage absorbed by the plate and its boundary elements (Table 4). 
 

3.4 Foundation plates with prestressed internal stiffening beams 
 

In this case prestressed internal stiffening beams were used in a 6 × 6 m foundation plate (Fig. 
2). Beam heights were varied and for each different height value the prestressing force was varied 
until an optimum prestressing stress was obtained. This is the stress that counterbalances 
deformations produced by the loads. 
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        Table 4 Reaction percentage absorbed by the plate 

Beam height (m) 
Percentage absorbed by the plate with internal 

stiffening beams 
0.00 51.67 
0.30 43.66 
0.40 41.42 
0.60 40.27 
0.80 39.96 

 

a

e

k 

h 

Pre-stress cable

 
Fig. 2 Prestressed internal stiffening beam 

 
 
In order to take the prestress force into consideration in the performed analysis, the 

displacements obtained by means of Eq. (1) that correspond to the load application are 
superimposed to the ones obtained with the Parabola Method (Subsection 2.2) that account for the 
displacements due to the prestress of the intermediate beams. The percentage of reaction taken by 
the plate are determined through the diagram of deformation volumes, built with the superposition 
of the two above-mentioned effects.  

The characteristics of the analyzed model are as follows: 
a = b = 6 m 
k = 9.8  107 N/m3  
q = 9.8  105 N/m2 
E = 1.4  1010 N/m2   
μ = 0.30 
where: 
a and b: plate sizes 

The first case to be developed was a plate with internal stiffening beams of 0.30 m high and 
0.30 m width. It was prestressed by applying force (V) ranging between 15 × 104 N and 56 × 104 N, 
with a maximum offset of 0.05 m. 

Table 5 presents central point displacements due to pre-stressing applied to internal stiffening 
beams. 
 
    Table 5 Central displacements in function of the pre-stressing forces 

V 
(N) (×104) 

a × b
(m) 

e 
(m) 

qeq 
(N/m)

E 
(N/m2) (×1010)

I 
(m4) (×10-3)

Maximum 
Displacement (m) 

15 6 × 6 0.05 1633 1.4 1.677 0.00240 
30 6 × 6 0.05 3266 1.4 1.677 0.00479 
40 6 × 6 0.05 4355 1.4 1.677 0.00639 
50 6 × 6 0.05 5444 1.4 1.677 0.00799 
56 6 × 6 0.05 6097 1.4 1.677 0.00894 
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By applying the superposition principle to the displacements produced by prestressing to those 
of the external load, and within MATLAB software, the reaction percentage applied to plates with 
internal stiffening beams for each of the prestressing forces, can be observed in Table 6. 
 
 
          Table 6 Load percentages admitted by plate versus the prestressing force 

V (N) (×104) Percentage absorbed by plate 

0 43.66 
15 31.95 
30 21.32 
40 14.56 
50 7.40 
56 3.33 

 
 

In Fig. 3 and Fig. 4 reaction percentage values absorbed by the plate were plotted versus the 
prestressing force applied to the internal stiffening beams.  

The equation of the straight lines shown in Fig. 4, were determined using a Regression 
Analysis for different internal stiffening beam heights (Table 7). 

 
 

Fig. 3 Reaction absorbed by the plate versus the applied prestressing  
     force for a 0.30 m (h/a=1/20) high internal stiffening beam 

 
 
          Table 7 Equations of the plate absorbed percentage variation versus prestressing 
                for different beam heights 

Beam height (m) Straight line equation 

0.30 P = - 7.16 10-5 V + 43.162 
0.40 P = - 9.49 10-5 V + 41.113 
0.60 P = - 4.42 10-5 V + 39.772 
0.84 P = - 2.46 10-5 V + 39.360 

y = -7.16 10-6 x + 43.162

R2 = 0.9994
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Fig. 4 Reaction absorbed by the plate versus the pre-stressing  
 force for different internal stiffening beam heights

 
 

The results presented in Fig. 5 shows the influence of soil type (Table 8) in the distribution of 
reactions between the plate and the edge beams. To obtain these results was adopted a plate of 6 m 
× 6m 0.20m thick with internal beams (0.30 m high and 0.30 m wide), to which was applied 
different pre-stressing force and an external load of q = 9.8 × 105 N/m2. 
 
 
           Table 8 Soil reaction modules (k) 

Soil type k (× 107 N/m3) 
Fine sand 
Filled with silt, sand and gravel

0.98 

Wet clay 2.94 to 4.90 
Silt compacted with sand and gravel Gravel with  
very fine sand 

9.80 

Medium gravel with fine sand 14.7 
Coarse gravel with coarse sand 19.6 
Quite compacted coarse gravel 24.50 

 
 

Fig. 5 shows that, when soils are very low bearing capacity (k = 0.98 × 107 N/m3), plates with 
internal stiffening beams, transferred few load to perimetric beams, regardless the prestressing 
load applied to the internal stiffening beams. 

Moreover, in the case of soil with a high load bearing capacity (k = 25.00 × 107 N/m3), the 
percentage of load transferred to the perimetric beams are influenced by pre-stressing force, such 
that as it increases, the reaction taken by the plate decrease. Furthermore it is seen that there is a 
maximum value of pre-stressing force after which the reaction taken by the plate is null. 

For soil bearing capacity between these two values, the behavior is similar varying the 
maximum pre-stressing load. It should be noted that, the variation is approximately linear and in 
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Fig. 5 Reaction absorbed by the plate versus the pre-stressing force for  
         diferents soil reaction modules (k) 

 
 

Fig. 6 Pre-stressing force that should be applied to internal stiffening beams for 
     different eccentricity values with beams height of 0.84 m (h/a=1/7) 

 
 
none of the cases analyzed, the percentage of reaction taken by the plate, exceeds 53 %. 
It should be mentioned that, the results obtained analyzing other cases with pre-stressed internal 

beams with different heights (0.30 to 0.84 m), were similar to those shown in Fig. 5. It is 
interesting to note that the percentage of load taken by plated do not depend on the applied  
external load q. 

It is interesting to observe that for beams over 0.40 m high, vertical displacement can be varied 
 by changing the eccentricity or prestressing force, such as is shown in Fig. 6, that corresponds to  
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an 0.84 m high beam with null vertical displacement in the midpoint plate. 
 
 
4. Conclusions 
 

From the above presented results, the following conclusions were drawn: 
 A numerical method has been developed to determine the distribution of soil reaction in 

foundations with inner stiffening beams. 
 The accuracy of the developed method was verified by comparing it with other methods, such 

as the Finite Element Method.  
 An improvement in soil reaction percentage was observed as prestressing forces applied to the 

internal stiffening beams were increased until the optimum prestressing force, namely the one 
that cancel plate deflection, was reached. 

 The herein described method could also be applied to the solution of slabs with internal 
stiffening beams, with or without pre-stressing, supporting important loads. 
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