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Abstract.    In this paper, a new version of gravitational search algorithm based on opposition-based learning 
(OBGSA) is introduced and applied for optimum design of reinforced concrete retaining walls. The new 
algorithm employs the opposition-based learning concept to generate initial population and updating agents’   
position during the optimization process. This algorithm is applied to minimize three objective functions 
include weight, cost and CO2 emissions of retaining structure subjected to geotechnical and structural 
requirements. The optimization problem involves five geometric variables and three variables for 
reinforcement setups. The performance comparison of the new OBGSA and classical GSA algorithms on a 
suite of five well-known benchmark functions illustrate a faster convergence speed and better search ability 
of OBGSA for numerical optimization. In addition, the reliability and efficiency of the proposed algorithm 
for optimization of retaining structures are investigated by considering two design examples of retaining 
walls. The numerical experiments demonstrate that the new algorithm has high viability, accuracy and 
stability and significantly outperforms the original algorithm and some other methods in the literature. 
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1. Introduction 
 

Reinforced concrete cantilever (RCC) retaining wall, which is one of the most common and 
utilized types of geotechnical retaining structures, constitute an integral part of the infrastructure 
and are frequently constructed for a variety of applications. In the analysis and design of retaining 
structures, the structure must safely and reliably support the backfill soil; provide stability against 
the possibility of overturning and sliding; limit stresses in both the soil and the structure; and 
provide acceptable safety factors for all failure modes. In addition to these design objectives, there 
are many requirements that a reinforced concrete wall must satisfy. It must have sufficient shear 
and moment capacities in the stem, toe and heel of the wall; the bearing capacity of the foundation 
cannot be exceeded or allowed to be in tensile stress; and the configuration of the steel 
reinforcement must meet all building code requirements (Camp and Akin 2012). 
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The traditional goals of engineers in the field of structural optimization design were minimize 
the objective function, which is usually the cost or the weight of the structure rather than 
environmental factors. Nowadays, the objective of structural design becomes to optimize the 
consumption of materials not only from an economic point of view, but also environmental. This 
study deals with the optimization of RCC retaining walls in terms of minimum weight, cost and 
CO2 emissions. The CO2 objective function quantifies the total amount of carbon dioxide 
emissions resulting from the use of materials and minimization of embedded CO2 emissions seems 
necessary to include design criteria.   

Generally, the structural optimization problem can be executed using either conventional 
deterministic or modern heuristic methods. In deterministic methods, the objective function must 
be differentiable or continuous or the reasonable region must be convex. This requirement 
indicates that the efficiency of these methods is limited to problems with a few design variables. 
Conversely, the second main category of the optimization methods is heuristic methods, which are 
not restricted in the aforementioned manner. Specifically, heuristics are techniques which provide 
acceptable (near optimal) solutions at a reasonable computational cost for solving hard and 
complex problems. These algorithms mimic physical or biological processes. The heuristic 
optimization algorithms do not require the objective function to be derivable or even continuous 
and can be employed directly on the fitness function to be optimized. This category includes a 
large number of search algorithms based on iterations in which the objective function is evaluated 
and the structural constraints are checked.  

In the last decade, these algorithms have been broadly implemented to solve various structural 
optimization problems and have occasionally overcome several deficiencies of conventional 
deterministic methods. Some of these include application of genetic algorithm (GA) (Camp et al. 
1998, Aguilar Madeira et al. 2005), harmony search (HS) (Lee and Geem 2004; Togan et al. 2011), 
particle swarm optimization (PSO) (Perez and Behdinan 2007, Doğan and Saka 2012), simulated 
annealing (SA) (Hasançebi and Erbatur 2002, Yepes et al. 2008), artificial bee colony (ABC) 
(Sonmez 2011, Degertekin 2012), ant colony optimization (ACO) (Camp et al. 2005, Aydogdu 
and Saka 2012) and many others. However, because of complexity and nonlinearity of the 
objective function and constraints in the field of structural engineering problems, many researchers 
tried to improve the performance and efficiency of the original heuristic algorithms in some ways 
and applied them for a specific application. Salajegheh and Gholizadeh (2005) applied improved 
GA for optimum design of large-scale structures, Wang et al. (2010) employed modified ACO for 
optimization of a laminated composite plate, Hasancebi et al. (2010) applied improved SA for 
optimization of steel structures, Degertekin (2011) implemented improved HS for optimization of 
truss structures, Khajehzadeh et al. (2011) employed modified PSO for optimization of 
geotechnical structures, etc. 

Gravitational search algorithm (GSA) is one of the latest heuristic optimization algorithms, 
motivated by the gravitational law and laws of motion (Rashedi et al. 2009). This approach 
provides an iterative method that simulates mass interactions, and moves through a multi-
dimensional search space under the influence of gravitation. The GSA is characterized as a simple 
concept that is both easy to implement and computationally efficient. In this study, a new version 
of GSA (OBGSA) is introduced and applied for minimization of weight, cost and CO2

 emissions 
of RCC retaining walls. The proposed OBGSA introduces a novel scheme for population 
initialization and updating the agents’ positions by applying opposition-based learning concept. 
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2. Retaining wall optimization 
 

A general RCC retaining wall optimization problem can be stated as follows 

                 (1) 

where X is a vector of length n containing the design variables, f(X) is the objective function, 
which returns a scalar value to be minimized, g(X) is a vector of length m containing the values of 
the inequality constraints evaluated at X. XL and XU are two vectors of length n containing the 
lower and upper bounds of the design variables, respectively. The above mathematical formulation 
contains only inequality constraints, as equality constraints are usually not the case in retaining 
wall optimization. 

 
2.1. Objective functions 
 
In this study, the problem of RCC retaining wall optimization consists of three objective 

functions; the embedded CO2 emissions, total cost and total weight of the structure. Therefore, the 
optimization aims to minimize one of these three objective functions. 

The first objective function measures the total amount of CO2 emissions resulting from the use 
of materials that involve emissions at the different stages of production and placement. 
Mathematically, the CO2 emissions objective function can be presented in the following form 

  1 c c f fe e sb sbf e V e V e V e A e W    X                       (2) 

where ec, ee, eb, ef and es are the CO2 unit emissions of concrete, excavation, backfill, formwork, 
and reinforcement, respectively. In addition, Vc, Ve and Vb denote the volume of concrete, 
excavation and backfill per unit length of the wall. Af shows the area of formwork and Ws indicates 
the weight of steel per unit length of the structure. In the current study, the CO2 unit emissions 
considered for the optimization are given in Table 1 and are obtained from the BEDEC PR/PCT 
ITEC materials database of the Catalonia Institute of Construction Technology (2009). 

The second objective function quantifies the total cost of RCC retaining wall. This objective 
function includes the cost of the materials and costs associated with labor and installation. The cost 
function can be expressed in the following form 

 2 c c e e b b f f s sf C V C V C V C A C W    X                      (3) 

In Eq. (3), Cc, Ce, Cb, Cf and Cs are the unit cost of concrete, excavation, backfill, formwork, 
and reinforcement, respectively. The unit costs considered here are presented in Table 1 and are 
obtained from the BEDEC PR/PCT ITEC materials database of the Catalonia Institute of 
Construction Technology (2009).  

The last objective function is based solely on the weight of the materials, which is expressed as 
follows 

 3 100 c scf V W X                              (4) 
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 Table 1 Basic prices and CO2 emission considered in the analysis  

Item Unit Unit Emission (kg/m) Unit Cost (USD/m) 
Earth removal m3 13.16 11.41 
Foundation formwork m2 14.55 36.82 
Stem formwork m2 31.66 37.08 
Reinforcement kg 2.82 1.51 
Concrete in foundations m3 224.94 104.51 
Concrete in stem m3 265.28 118.05 
Earth fill-in m3 27.20 38.10 

 
 
where γc is the unit weight of concrete and a factor of 100 is used for consistency of units (Saribas 
and Erbatur 1996). 

 
2.2. Design variables 
 
Fig. 1 shows the cross section and design variables for the retaining wall model. The design 

variables are divided into two categories: those that describe the geometric dimensions of wall 
cross-section, and those that model the steel reinforcement. As it is shown in Fig. 1, there are five 
geometric design variables representing the dimensions of the retaining wall: X1 is width of the 
heel, X2 is stem thickness at the top, X3 is stem thickness at the bottom, X4 is width of the toe and X5 

is thickness of the base slab. There are three additional design variables related to the steel 
reinforcement of the various sections of the retaining wall: X6 is the vertical steel reinforcement in 
the stem, X7 is the horizontal steel reinforcement in the toe and X8 is the horizontal steel 
reinforcement in the heel. B is the base width of the wall’s foundation, H is total height of the wall 
and H΄ is height of the stem.  
 

   
Fig. 1 Design variables of the RCC retaining wall 
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2.3. Design Constraints 
 

Fig. 2 shows the general forces acting on the retaining wall. In this figure,  '1 and γ1 are the 
effective friction angle and unit weight of retained soil; 　 '2, γ2 and c2 are the effective friction 
angle, unit weight and cohesion of base soil; β is the backfill slop angle; D is the depth of soil in 
front of the wall and q is the distributed surcharge load. In addition, Pa is the active earth pressure; 
Pp is the passive earth pressure; WW is the combined weight of all the sections of the structure; WS 
is the weight of backfill acting on the heel and Q is the centralized surcharge load. The active and 
passive earth pressure can be evaluated by Rankine or Coulomb theory (Bowles 1982). qmin and 
qmax are the minimum and maximum bearing stresses on the base of the foundation, respectively, 
based on the following equation 

min
max

6
1

V e
q

B B
   
 




                             
(5) 

In Eq. (5), ∑V is sum of the vertical forces due to weight of wall, soil above the base, and 
surcharge load. e is the eccentricity which is ratio of the summation of overturning moments about 
the toe to the sum of vertical forces and can be calculated by 

2

R OM MB
e

V


  

                            

(6) 

where ∑MR is sum of the moments of forces that tends to resist overturning about the toe and ∑MO 
is sum of the moments of forces that tends to overturn the structure about the toe. ∑MR and ∑MO 
can be evaluated from the following equations 

R W S Q PavM M M M M                            
(7) 

 O PahM M                               
(8) 

In the above equations,  MW, MS, MQ, and MPav are moments about the toe due to WW, WS, Q 
and vertical components of the active earth pressure (Pa), respectively (see Fig. 2). MPah is 
moments due to the horizontal components of the active earth pressure (Pa).  

 

 
Fig. 2 Forces acting on a retaining wall 
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 Table 2 Failure modes of retaining wall 

Inequality constraints Failure mode Constraints 

g1(X) Sliding stability FSS  (ΣFR/ ΣFd) 
g2(X) Overturning stability FSO  (ΣMR/ ΣMO) 

g3(X) Bearing capacity FSb  (qult / qmax) 
g4(X) Eccentricity failure e  (B/6) 
g5(X) Toe shear Vut  Vnt 
g6(X) Toe moment M ut   Mnt 
g7(X) Heel shear Vuh  Vnh 
g8(X) Heel moment M uh   Mnh 
g9(X) Shear at bottom of stem Vus  Vns 
g10(X) Moment at bottom of stem M us  Mns 
g11(X) Deflection at top of the stem (1/150)×H΄  δmax 

 
 

The typical design philosophy of retaining walls seeks designs that provide safety and stability 
against failure modes and comply with concrete building code requirements. The various design 
constraints shall be considered in the optimization of the RCC retaining wall are summarized and 
presented in Table 2. 

In Table 2, FSS = required factor of safety against sliding; FSO = required factor of safety 
against overturning; FSb = required factor of safety against bearing capacity; ∑FR = sum of the 
horizontal resisting forces; ∑Fd = sum of the horizontal driving forces; Vut , Vuh and Vus = ultimate 
shearing force of toe, heel and stem; Vnt , Vnh and Vns = nominal shear strength of concrete; Mut , 
Muh and Mus = ultimate bending moment of toe, heel and stem; Mnt , Mnh and Mns = nominal 
flexural strength of concrete; δmax = maximum deflection at the top of the stem. 

According to ACI (2005) the nominal shear strength and nominal flexural strength of concrete 
can be evaluated by Eqs. (9) and (10), respectively. 

1
'

6n V cV f bd
                            

(9) 

where V is the shear strength reduction factor equal to 0.75 (ACI 2005), f΄c is the compression 
strength of concrete and b is the width of the section. 

2n M S y

a
M A f d    

                          
(10)

 

where M is the flexure strength reduction factor equal to 0.9 (ACI 2005), As is the cross-sectional 
area of steel reinforcement, fy is the yield strength of steel, d is the distance from compression 
surface to the centroid of tension steel and a is the depth of stress block. 
In addition to the above mentioned constraints, the design variables have practical minimum and 
maximum value (Bowles 1982). The lower and upper bounds of the design variables are 
summarized in Table 3. 
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 Table 3 Upper bound and lower bound for design variables of retaining wall 

Description Lower bound Upper bound 
Width of footing Bmin = 0.4 H Bmax = 0.7 H 

Thickness of base slab X5min = H/12 X5max = H/10 
Width of toe X4min = 0.4 H/3 X4max = 0.7 H/3 

Stem thickness at the top X2min = 20 cm - 

Steel reinforcement ratio min
1.4

max ,0.25 c

y y

f

f f


    
  

 max 1
600

0.85
600

c

y y

f

f f
 

 
    

 

 
 
3. Gravitational search algorithm 
 

Gravitational search algorithm (GSA) is one of the newest heuristic population based search 
algorithms. The GSA could be considered as a small artificial world of masses obeying the 
Newtonian laws of gravitation and motion (Rashedi et al. 2009). In this approach, all the 
individuals (search agents) can be viewed as objects and their performances are evaluated by their 
masses. All these objects attract each other by a gravity force, and this force causes the movement 
of all objects globally towards objects with heavier masses. The heavy masses correspond to good 
solutions of the problem. The position of the agent represents a potential answer of the problem, 
and its mass is determined using a fitness function. By lapse of time, masses are attracted by the 
heaviest mass, which correspond an optimum solution in the search space. In the following, the 
formulation of GSA is presented in short. 

In GSA, an agent status on the search space is characterized by two factors: its position (Xi) and 
velocity (Vi). In this approach, the new velocity and position of agent i will be updated according 
to the following equations 

( 1) ( ) ( )d d d
i i i iv t rand v t a t                           (11) 

( 1) ( ) ( 1)d d d
i i ix t x t v t                             (12) 

where vi
d is the velocity of agent i in dimension d, which represents the distance to be traveled by 

this agent from its current position, xi
d represents the position of agent i and t is the iteration 

number. randi is a uniform random variable in the interval [0, 1]. This random number is applied to 
give a randomized characteristic to the search and to increase diversity and the probability of 
finding the global optimum. In Eq. (11), ai

d is the acceleration of agent i in dimension d and can be 
calculated as follows 

, ,

( )
( ) ( ) ( ( ) ( ))

( )
jd d d

i j j i
j kbest j i i j

M t
a t rand G t x t x t

R t  

 


                 
(13) 

where randj is a random number in the interval [0, 1]; G (t) is the gravitational constant at time t 
based on Eq. (14); Mj is mass of agent j based on Eq. (15); ε is a small value to avoid division by 
zero and Ri,j(t) is the Euclidean distance between two agents, i and j defined as Ri,j(t) = || Xi(t), 
Xj(t)||2. It is worth to mention that we use here R instead of R2 in Eq. (13), because, according to 
the experiments presented in (Rashedi et al. 2009) R provides better results than R2.  kbest is the 
set of first K agents with the best fitness value and biggest mass. Kbest is a function of time, 
initialized to K0 at the beginning and decreased with time to improve the performance of GSA by 
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controlling exploration and exploitation (Rashedi et al. 2009). Here K0 is set to N (total number of 
agents) and is decreased linearly to 1. In Eq. (13), the gravitational constant, G(t), is a decreasing 
function of time where it is set to G0 at the beginning and will be reduced exponentially to control 
the search accuracy of the algorithm based on the following equation 

 0 max( ) expG t G t t                              (14) 

where β is a constant, t is the current iterations and tmax is the maximum iteration number.  
In addition, the mass of each agent in Eq. (13) is evaluated using the following equation 

1

( )
( )

( )
i

i N

jj

m t
M t

m t





                                             (15) 

in which 

ifit ( ) - worst( )
( )

best( ) - worst( )i

t t
m t

t t


                          
(16)               

where fiti(t) represent the fitness value of the agent i at time t. best(t) and worst(t) is the best and 
worst fitness of all agents, respectively.  

Even though GSA is faster in finding quality solutions, compared to other evolutionary 
computation techniques (Rashedi et al. 2009), it faces some difficulty in obtaining better quality 
solutions and may face premature convergence while exploring complex functions.  
 
 
4. Opposition-based gravitational search algorithm (OBGSA) 
 

In order to overcome the problem mentioned above and to improve the performance, efficiency 
and accuracy of the classical GSA, this paper presents a novel approach of the algorithm by 
applying the concept of opposition-based learning (OBL). The opposition-based learning theory 
was first introduced by Tizhoosh (2005). Before concentrating on opposition-based gravitational 
search algorithm (OBGSA), we need to define opposite numbers. 

For a real number x  [xL, xU], the opposite number of x, which denoted by ox is 
L Uox x x x                                 (17) 

where x
L and xU are the lower and upper bounds of x. 

Similarly, if X = (x1, x2, ..., xn) be an n-dimensional vector, where xi  [xL
i, x

U
i] and i = 1, 2, . . ., 

n, the opposite point of xi, oxi, is defined by 
L U

i i i iox x x x                                (18) 

The proposed OBGSA employed OBL concept during two stages of the optimization procedure. 
The first stage is during the population initialization and the second one is during updating agents’ 
positions. 

As a member of population based optimization algorithm, GSA starts with some initial 
solutions (initial population) and try to improve performance toward some optimal solutions. 
Generally speaking, population initialization is a very important task in GSA because it can affect 
the algorithm performance, convergence speed and the quality of the final solution. In the absence 
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of a priori information about the solution, classical GSA uses random initialization in order to 
generate candidate solutions (initial population). In the proposed OBGSA, the OBL theory is 
employed to generate initial population and make GSA faster. In this approach, the random agent 
(candidate solution) and its opposite are considered at the same time in order to achieve a better 
approximation for current candidate solution. A mathematical proof to show that, in general, 
opposite numbers are more likely to be closer to the optimal solution than purely random ones has 
been proposed by Rahnamayan et al. (2008). 

Let xi be an agent in n-dimensional space (i.e., candidate solution). Assume f(·) is a fitness 
function, which is used to measure the agent’s fitness. According to the definition of the opposite 
point, oxi is the opposite of xi. Now, in the OBGSA, if f(oxi) is better than f(xi), then agent xi can be 
replaced with oxi; otherwise, we continue with xi. Hence, the agent and its opposite are evaluated 
simultaneously in order to obtain fitter starting candidate solutions even when there is no a priori 
knowledge. The following is the proposed opposition-based population initialization algorithm, 
which can be used instead of a pure random initialization. 

1. Generating uniformly distributed random population, X, 
2. Calculating opposite population, OX,  
3. Selecting N fittest individuals from { }OX X as initial population. 

In addition, the proposed OBGSA employed OBL concept for updating the agents’ positions. 
During the search process, occasionally some agents fallen into a local minimum and do not move 
for several iterations. Therefore, measures must be taken to overcome this problem and prevent 
premature convergence. In the OBGSA, based on OBL theory, m worst agents yielding the largest 
fitness values replace with their opposite at each iteration of the optimization process. 

In order to keep balance between global exploration and local exploitation, m should be a 
variable. At the beginning stage of optimization, m should be a large value to provide an effective 
global exploration of the search space. Over the iterations, the value of m should reduce gradually 
to provide a local exploitation. Therefore, the following time varying equation is introduced 

 
max

(1 )
5

N t
m Round

t

 
  

                            
(19) 

where Round(x) rounds the value of x to the nearest integer. This process tries to improve the 
solution, by maintaining diversity in the population and explores new regions across the search 
space. The new strategy replaces the position vectors of a predefined number of least ranked 
agents with their opposite in each iteration.  

The whole workflow of the proposed OBGSA is shown as a flowchart in Fig. 3. 
 
 
5. Model Verification 
 
In this section, the efficiency and robustness of the proposed OBGSA for numerical optimization 
will be investigated. In order to prove that an algorithm is able to perform sufficiently well over a 
wide range of feasible functions, the most commonly used strategy is the application of benchmark 
test comprising several functions. These functions are specially designed and routinely used to 
evaluate the performance of the global optimization algorithms. In this study, a set of five well-
known standard benchmark functions are employed. Although these functions may not necessarily 
give an accurate indication of the performance of an algorithm on real world problems, they can be 
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used to investigate certain aspects of the algorithms under consideration. The functions, dimension, 
admissible range of the variable and the optimum to be obtained are summarized in Table 4. All 
the functions are to be minimized. The first three functions are unimodal functions whereas the 
next two functions are multimodal optimization problems with a considerable amount of local 
minima. 
 
 

 
Fig. 3 Flowchart of the opposition-based gravitational search algorithm 
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 Table 4 Standard benchmark functions 

Test Function Dimension (n) Range Optimum

 2

1 1 1
( )

n i

ji j
F X x

 
    30 [-100,100]n 0 

4
2 1
( ) [0,1)

n

ii
F X ix random


   30 [-1.28,1.28]n 0 

 3 ( ) max ,1iF X x i n    30 [-100,100]n 0 

2
4 1
( ) ( 10cos(2 ) 10)

n

i ii
F X x x


    30 [-5.12,5.12]n 0 

 12 2 2 2
5 1 11

1

( ) 10sin ( ) ( 1) [1 10sin ( )] ( 1)

( ,5,100,4)

( ) ,
1

1 , ( , , , ) 0,
4

( ) ,

n

i i ni

n

ii

m
i i

i
i i i

m
i i

F x y y y y
n

u x

k x a x a
x

y u x a k m a x a

k x a x a

  





     



  
 

     
    





30 [-50,50]n 0 

 
 
Table 5 Parameters of GSA and OBGSA algorithms 

Parameter Description GSA OBGSA 
N Population size 50 50 
G0 Initial value of gravitational constant 100 150 

β  20 20 
ε  2.22e-16 2.22e-16 

tmax Maximum iteration number  500  500 

 
 
Table 6 Minimization result of benchmark functions  

Function Method Worst Mean Median Best 
Standard 
deviation 

F1 

 
GSA 
OBGSA 

1120.8 
7.84 e-7 

486.03 
5.33 e-8 

418.38 
1.6 e-9 

261.32 
4.54 e-15 

189.9 
1.55 e-7 

F2 

 
GSA 
OBGSA 

2.304 
3.2 e-4 

0.151 
7.05 e-5 

0.0418 
3.89 e-5 

0.014 
4.56 e-7 

0.428 
7.68 e-5 

F3 

 
GSA 
OBGSA 

7.34 
8.56 e-9 

3.73
5.11 e-9 

3.51
4.89 e-9 

0.086
3.36 e-9 

1.88 
1.46 e-9 

F4 

 
GSA 
OBGSA 

29.85 
2.27 e-13 

19.43 
5.3 e-14 

19.4 
5.68 e-14 

11.94 
0.00 

5.085 
6.14 e-14 

F5 

 
GSA 
OBGSA 

2.88 
0.0099 

0.736 
0.0017 

0.374 
6.24 e-4 

0.0111 
2.76 e-5 

0.946 
0.003 

 
 
The presented benchmark functions are solved using both GSA and OBGSA algorithms. In all 
experiments, the parameters of each algorithm are selected utilizing several experimental studies 
examining the effect of each parameter on the final solution, convergence and overall performance 
of the algorithms. Table 5 presents the best-selected parameters of each algorithm. 
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The algorithms are simulated 50 times independently and the results are recorded. Then the 
statistical analyses are carried out and for each method, worst, mean, median, best and standard 
deviation are calculated. The performance comparison between two algorithms on five functions is 
presented in Table 6. 

Table 6 shows that OBGSA converged to a more significantly accurate final solution than GSA 
for all test functions. In terms of mean and best fitness values, the new algorithm could provide a 
significantly better solution for all functions. At the same time, the standard deviation of the results 
obtained by OBGSA for all functions are smaller than those computed by GSA indicating the 
superior stability of the new method.  

Fig.s 4-8 demonstrate the convergence rate comparison among the proposed OBGSA and 
classical GSA. In these figures, the representative variations of the mean best fitness in the form of 
logarithm values over the number of iterations are depicted.  

 
 

Fig. 4 Performance comparison of GSA and OBGSA
     for minimization of F1 

Fig. 5 Performance comparison of GSA and 
        OBGSA for minimization of F2 

 

Fig. 6 Performance comparison of GSA and OBGSA
     for minimization of F3 

Fig. 7 Performance comparison of GSA and OBGSA
     for minimization of F4 
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Fig. 8 Performance comparison of GSA and OBGSA for minimization of F5 

 
 
From Figs. 4-8, it can be seen that the varying curves of fitness values obtained by OBGSA 

descend much faster to a lower level than those of GSA. In addition, as shown in these figures the 
resulting history converges very quickly by GSA, within the first 100 iterations, but does not 
improve after the initial convergence. In other words, after becoming converged, GSA loses its 
ability to explore and then becomes inactive. However, the new algorithm is more successful in 
exploring the search space. The obtained results indicate that OBGSA significantly improves the 
solution quality and surpasses GSA for all test functions.  
 
 
6. Illustrative Examples 
 

In this section, the efficiency and robustness of the proposed OBGSA for optimization of RCC 
retaining walls will be investigated. In order to demonstrate, compare and analyze the 
effectiveness and performance of the new method, two illustrative examples will be presented. The 
implementation of OBGSA for retaining wall optimization has been carried out using a computer 
program developed in MATLAB R2009a. In the following cases, the considered parameters of the 
algorithms are specified in the previous section. 

 
6.1. Design Example 1 

 
The first example is concern with the optimum design of a RCC retaining structure with height 

of 3m. Other input parameters for this example are given in Table 7.  
The problem is solved by the presented procedure using OBGSA algorithm. The results of 

analyses for minimum weight, cost and CO2 emissions are presented in Table 8. 
The results of Table 8 show that OBGSA could provide a better solution by evaluating a lower 

value of objective functions compared with classical GSA. In addition, the findings presented in 
Table 8 show the dependence of the design variables to the objective function. The results of Table 
8 show the dependence of the design variables to the objective function. We can evaluate the cost 
of the structure at optimum values found with the CO2 objective function and vice versa. By doing 
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this, the cost of the structure with respect to the CO2 objective function is 554.5 USD/m and it 
means to have an environmentally friendly structure the structure cost increases only 0.76%. 
Alternatively, the CO2 emissions at the best cost solutions is 708.7 kg/m, which is only 0.80% is 
higher than the best CO2 emissions solutions. This indicates both cost and CO2 objective functions 
are closely related and yield almost similar solutions. However, the best weight solutions are 
significantly different with the solutions of other target functions. 

This problem originally presented by Saribas and Erbatur (1996) and solved using nonlinear 
programming for minimum weight and minimum cost only. The minimum weight of the structure 
evaluated in their study was 2498.77 kg/m, which is almost 3% heavier than that calculated by the 
proposed method. For minimum cost, Saribas and Erbatur (1996) used different unit prices and did 
not measure the cost of excavation, formwork and backfill. The best price achieved in their 
research was 82.47 USD/m. However, the optimum cost design is dependent on the unit price and 
it changes with variation of the unit prices. For further verification of the new method, the problem 
is solved under the same conditions with same unit prices of Saribas and Erbatur (1996) study and 
the best price computed by OBGSA is 60.9 USD/m, which is 26% cheaper than that computed in 
their study.  
 

 
Table 7 Input parameters for design examples 1 and 2 

Parameter Unit Value for example 1 Value for example 2
Height of stem m 3.0 4.5 
Internal friction angle of retained soil degree 36 36 
Internal friction angle of base soil degree 0.0 34 
Unit weight of retained soil kN/m3 17.5 17.5 
Unit weight of base soil kN/m3 18.5 18.5 
Unit weight of concrete kN/m3 23.5 23.5 
Cohesion of base soil kPa 125 100 
Depth of soil in front of wall m 0.5 0.75 
Surcharge load kPa 20 30 
Backfill slop degree 10 15 
Concrete cover cm 7.0 7.0 
Yield strength of reinforcing steel MPa 400 400 
Compressive strength of concrete MPa 21 21 
Shrinkage and temporary reinforcement percent - 0.002 0.002 

Factor of safety for overturning stability - 1.5 1.5 
Factor of safety against sliding - 1.5 1.5 
Factor of safety for bearing capacity - 3.0 3.0 

 
 

6.2. Design Example 2 
 

Optimum design of a RCC retaining structure with height of 4.5m is investigated in the second 
example. This problem is also originally presented and solved by Saribas and Erbatur (1996) for 
minimum weight and minimum cost only. Other input parameters for this example are given in 
Table 7.  

This example is solved using OBGSA and the results of analyses for optimum weight, optimum 
cost and optimum CO2 emissions are presented in Table 9. 
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From the results of Table 9, it can be observed that the minimum weight, cost and CO2 
emissions obtained by OBGSA are lower than those evaluated by classical algorithm. Similar to 
the firs case, the results of Table 9 also show that both cost and CO2 objectives yield similar 
solutions and are rather coincident. In the other words, solutions that are acceptable in terms of 
CO2 emissions are also viable in terms of cost while good solutions in terms of cost are also 
acceptable in terms of CO2 emissions. However, the CO2 objective function appears more 
environmentally friendly and robust, as prices are more sensitive to variations in market values, 
while emissions are more rigid since they depend on manufacturing processes. 

The findings in Table 9 are also comparable with Saribas and Erbatur (1996) study. The 
minimum weight of the structure evaluated by Saribas and Erbatur (1996) was 5280.96 kg/m 
which is almost 13% more than that calculated by the proposed method. For minimum cost, the 
best price achieved in their research was 189.55 USD/m. Under the same conditions, the best price 
computed by OBGSA is 133.6 USD/m. 
 
 
Table 8 Optimization result for design example 1 

Design variable Unit 
Optimum values for 

minimum weight
Optimum values 

for minimum cost 

Optimum values for 
minimum CO2 

emissions 
Width of heel (X1) m 0.80 0.517 0.561 
Stem thickness at the top (X2) m 0.20 0.2 0.2 
Stem thickness at the bottom (X3) m 0.20 0.26 0.209 

Width of toe (X4) m 0.50 0.778 0.778 
Thickness of base slab (X5) m 0.272 0.272 0.272 
Vertical steel area of the stem (X6) cm2/m 11 7.0 9.0 
Horizontal steel area of the toe (X7) cm2/m 7.0 7.0 7.0 

Horizontal steel area of the heel (X8) cm2/m 7.0 7.0 7.0 

Objective function value (OBGSA)  2416.8 kg/m 550.34 USD/m 703.1 kg/m 
Objective function value (GSA)  2419.8 kg/m 550.92 USD/m 706.9 kg/m 

 
 
Table 9 Optimization result for design example 2 

Design variable Unit 
Optimum values for 

minimum weight
Optimum values 

for minimum cost 

Optimum values for 
minimum CO2 

emissions 
Width of heel (X1) m 1.136 0.694 0.773 
Stem thickness at the top (X2) m 0.216 0.216 0.216 
Stem thickness at the bottom (X3) m 0.222 0.451 0.354 
Width of toe (X4) m 0.850 1.167 1.167 
Thickness of base slab (X5) m 0.409 0.409 0.409 
Vertical steel area of the stem (X6) cm2/m 32 12 16 
Horizontal steel area of the toe (X7) cm2/m 11 11 11 
Horizontal steel area of the heel (X8) cm2/m 11 11 11 

Objective function value (OBGSA)  4596.3 kg/m 1039.8 USD/m 1410.6 kg/m 
Objective function value (GSA)  4601.4 kg/m 1062.6 USD/m 1448.2 kg/m 
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7. Conclusion 
 

In this paper, a new version of gravitational search algorithm based on opposition-based 
learning concept (OBGSA) is introduced and applied for optimum design of RCC retaining 
structures. In the proposed OBGSA, initial random population and its opposite are considered 
simultaneously to generate fittest initial population. In addition, OBGSA replaces some of the 
worst agents yielding the largest fitness values with their opposite at each iteration of the 
optimization process. Compared with classical GSA on five well-known unimodal/multimodal 
benchmark functions, our proposed algorithm has been testified to possess excellent performance 
in terms of accuracy, convergence rate, stability and robustness. For RCC retaining wall 
optimization, three objective functions include weight, cost and amount of embedded CO2 
emissions are considered. The results comparison between presented method, classical GSA, and 
selected other methods employed in previous studies demonstrate better performance of OBGSA 
in terms of computational efficiency and robustness. In terms of objective function type, the 
findings indicates that CO2 emissions and cost target functions are almost related, in which the 
acceptable solutions in terms of CO2 emissions are also viable in terms of cost while good 
solutions in terms of cost are also acceptable in terms of CO2 emissions. 
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