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Abstract.    In the recent decade, practical of wavelet technique is being utilized in various domain of 
science. Particularly, engineers are interested to the wavelet solution method in the time series analysis.  
Fundamentally, seismic responses of structures against time history loading such as an earthquake, illustrates 
optimum capability of systems. In this paper, a procedure using particularly discrete Haar wavelet basis 
functions is introduced, to solve dynamic equation of motion. In the proposed approach, a straightforward 
formulation in a fluent manner is derived from the approximation of the displacements. For this purpose, 
Haar operational matrix is derived and applied in the dynamic analysis. It’s free-scaled matrix converts 
differential equation of motion to the algebraic equations. It is shown that accuracy of dynamic responses 
relies on, access of load in the first step, before piecewise analysis added to the technique of equation solver 
in the last step for large scale of wavelet. To demonstrate the effectiveness of this scheme, improved 
formulations are extended to the linear and nonlinear structural dynamic analysis. The validity and 
effectiveness of the developed method is verified with three examples. The results were compared with 
those from the numerical methods such as Duhamel integration, Runge-Kutta and Wilson-θ method. 
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1. Introduction 
 

Haar basis function as a rectangular pulse pair was presented with Alfred Haar in 1910 (Fig. 1). 
Although in 1980s it was derived that the Haar function is the first order of Daubechies Wavelet; it 
seems that Haar basis is the simple basis for wavelet analysis in numerical problems (Frag 1992, 
Goedecker and Ivanov 1998). 

Fig.1 shows that the Haar wavelet is not continuous in the point of 0.5 and at the point of 
discontinuity the derivatives do not exist. Hence, it is impossible to use this wavelet directly to 
solve high-ordered differential equations; Although, Lepik (2009) and Yuanlu Li (2010) has been 
presented practical of this discrete wavelet to solve several fractional differential equations. 
Moreover, efficiency of Haar wavelet method has been demonstrated by Lepik (2008) to solve 
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higher order differential equations. In addition, initial and boundary value problems were 
evaluated in the case of linear or nonlinear equations by Lepik (2008).  

In general, there are two possibilities to overcome the essential shortcoming of discrete Haar 
wavelet. First, the piecewise constant Haar functions can be regularized with interpolation splines. 
This method that has been applied by Cattani (2004), greatly complicates the solution. Second 
convenient solution, to use this wavelet is, utilizing the integral method, which the highest 
derivative objections in the differential equation is expanded into the Haar series. This 
approximation is integrated while the boundary conditions are incorporated by using integration 
constants. This approach has been considered for the Haar wavelet by Chen and Hsiao (1997) and 
an optimal control problem with the quadratic performance index was discussed by them (Cattani 
2004).  

In addition, Haar discrete wavelet transforms have been utilized by Cattani (2004) to achieve 
three goals: first, to filter the data without removing localized effective changes which is capable 
in the case of structural engineering to shorten components of complicated loadings such as 
earthquake to achieve an optimum structural dynamic scheme. Second, to classify the detected 
jumps and finally, to obtain a smooth trend to represent the time series evolution.     

According to the technique of Chen and Hsiao (CHM), either linear differential equation or 
nonlinear one is converted into an algebraic equation.  Although, in the entire time history analysis 
of structures, durations of intervals are important to gain the stable responses, in this method, 
particularly for complicated loads such as equation of motion, a long step with many collocation 
points makes the accurate coefficient matrix to achieve a desirable response as quick as common 
numerical methods, do accurately. This method that divides intervals to many points as collocation 
point is called segmentation method (SM) (Hubbard 1997, Lepik 2004).  

Obviously, for smooth loadings, such as harmonic loadings, to reduce computational 
complexity and computation time of analysis, the interval of integration needs to be divided into 
fewer points (Salajeghe and Heidari 2004); this method is called reduced Haar transform (Galli et 
al. 1996). Meanwhile, in the reduced Haar transform technique the number of collocation points in 
each segment is smaller than in the CHM method is. Consequently, for some specific and simple 
loadings, further simplification of the solution can be obtained as long as a segment is being 
divided into only one node. It is assumed that the highest derivative is constant in each segment. 
This method is called piecewise constant approximation (PCA) (Chen and Hsiao 1997). 

The main aim of this paper is, formulate a developed method with the free scale of Haar 
wavelet to optimum time history analysis of equation of motion elaborately. Moreover, results 
which are calculated with some numerical methods such as CHM, SM and PCA against various 
loadings with Haar wavelet have been compared with common numerical techniques. To consider 
efficiency of developed method, it is exemplified with a SDOF structure in the linear and 
nonlinear way. Finally, computation time involved and errors have been investigated 
comparatively through the proposed method and common numerical methods.   
 
 
2. Haar wavelet basis 
 

The family of Haar wavelet for t   [0, 1] is defined as follow 
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Where 

m  = 2j + k + 1 ,   j ≥ 0 ,   0 ≤ k ≤ 2j  − 1                                           (2) 
 
 

 

Fig. 1 Haar wavelet family (the first 8 transition of scaled wavelet) 
 
 

In this formulation M = 2j(j = 0,1, …, j) indicates the order of wavelet; k = 0,1, …, M − 1 is the 
parameter of transition. To expansion of the CHM to the SM method with collocation points, 2M is 
the number of points in segmentations that indicates the scale of Haar wavelet (Chen and Hsiao 
1997). In addition, accuracy of analysis regarding to the steps and scale of wavelet depend on the 
number of points that are calculated in each step. Obviously, to gain the accurate responses, further 
points are needed in each segmentation. It means further analyzing with transition of scaled 
functions in each step achieves the accurate responses, although it takes a long computation time 
(Chen and Hsiao 1997). 

Through to this method, points are increased in each computation steps in the power of 2(2j );  
= 1 denotes scale function (h0 in the Fig. 1) and m = 2 denotes mother wavelet of Haar (h1 in the 
Fig. 1). Orthogonality of Haar wavelets as obtained in Eq. (3) motivates them as one useful 
transition basis function for wavelet analysis in the engineering problems. 
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3. Algebraic approximation of equations with Haar wavelet 
 

As can be seen from Fig. 1, Haar wavelet functions are expanded for 8 points as following 

M = 2j ,   j = 0,1, …, j = 4                                                     (4) 

Where 

j = 2 → 2M = 8 ,   k = 0,1, … , m – 1                                            (5) 

Relevantly, each function such as signal (t) expressed as 

signal(t) = )t(hi
M2

oi i
                                                        (6) 

Thereby, Haar weight coefficients i  are calculated directly as 


M2 

0 

j
i 2 signal(t)hi(t)dt                                                   (7) 

Through the algebraic approximation of functions, square matrixes of coefficient H2M×2M and 
operation of integration P2M×2M are improved in the following equations. In the H matrix, (Fig. 2) it 
is a declined trend for scale of Haar wavelet from the first row to the 2Mth row and shifted 
transition from the first column to the 2Mth one. 
 
                                                                                     

 

                Fig. 2 Schematic format of Haar wavelet coefficients matrix in the SM method 
 
 
Where the block A is the scale block, B1 is the Haar mother wavelet, and from the first block to 

the end, the scale of Haar wavelet is declined. This numerically developed matrix shows that from 
a column to next one the scaled wavelet has been shifted to make an elaborate algebraic system. 
Thereby, dimension of B blocks from B2M to B1 follows the rule of 

B(2M/2i , 2M) → (i = 1,2, …, j + 1) , A (1,2M)                               (8) 

Where 

2i = 1,2, …, j + 1                                                         (9) 
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For instance, if 2M = 8, H matrix is developed as 
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In addition of direct way, weight function of i is indirectly calculated via functions’ matrix of 

loading, multiplied by inverse of coefficient matrix of Haar wavelet ( 1
M2H  )  

i  = signal(t) × 1
M2H                                                           (11) 

Next, operation of integration matrix P2M×2M  is defined by the following equation 

)t(PHdt)t(H M2

1 

0 
M2                                                        (12) 

However, Chen and Hsiao presented an equation for this square matrix, for simplifying this 
equation in computer programming in a sequenced way, it is developed tersely as 
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4. Solution of the second-ordered differential equations via Haar wavelet 

 
According to the collocation method, after dividing time dependent lateral force to the N equal  

segmentations with length of dn, local nodes are defined. For example, it is considered as 
SM 4 as long as intervals are divided to the 4 points. Thereby, local points are introduced as 

M2 , ... ,2,1J   ),5.0  j(
M2

1
j                                               (14) 

Next, to convert local time to the global computation time (tj) 

)M2,...,2,1j(   ,
d

tt
    t)(dt

n

jnn
jnjnjn 


                                     (15) 

To approximate the following ODE 
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The first order of equations is used, instead 


dt

du
                                                                 (17)

 

)v ,u ,t(F
dt
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2

2

                                                        (18) 

To convert new equations to the local time, these are considered by 

nd .v
d

du



                                                                  (19) 

)v ,u ),(dt(F .d
dt

dv
jnnn                                                    (20) 

u, v are row vectors as 

uj = u(τi),   vj = v(τj),   j = 1,2, … ,2M                                       (21) 

For instance in SM 4 the vector of velocity and displacement are defined as 

   43214321 v v v vv   ,u u u uu 


                                             (22) 

For algebraic expansion of the first derivation, via Haar wavelet in PCA method it is considered 
as 

00

t 

0 
0

t 

0 
u)t(PH au)(d)(H au)(d)(u  u)t( a u               (23) 

Equivalently, velocity is simplified as 

0v)t(PH bv)t(h bv 
                                           

(24) 

Next, it is defined as an algebraic system in SM2M method 








EuPH au   ,H au

EvPH bv   ,H bv

n

n




                                                 (25)  

Here a, b are row vectors with dimension of 2M, for multiplying with aPH or bPH an unit 
vector is suffixed as E1×2M. Finally un, vn are initial and boundary conditions in t = tn, that are 
obtained with linear interpolation of u1 in the current interval and u2M is derived from previous 
interval. Substitution of Eq. (22) into Eq. (23) gives 

aH = dn(b PH + vnE),   bH = dnF(tn + dnτ, aH + unE,   b PH + vnE)                  (26) 

Consequently, this algebraic system is solved and gives a, b. After considering about initial 
conditions, velocity and acceleration are obtained as 

un+1 = a1 + unE                                                           (27) 
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un+1 = b1 + vnE                                                           (28) 

Here a1, b1 are the first components of vector a and b in each step (Lepik 2004). 
 
 
5. Solution of dynamic equation of motion via free scale of Haar wavelet 

 
The second ordered ODE for the dynamic equilibrium in the global time is considered as 

)t(f .fu .k
dt

du
c

dt

ud
m 02

2

                                               (29)  

Where in the linear behaviors, stiffness (K) and damping (C) and mass (m) are constants. After 
discretization of external loading f0. f(t) to the N equal intervals, 2M points are considered in each  
dn  as collocation points and finally it is converted to the local time analysis as follow 
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Where, term of velocity and acceleration are considered as 

v.du n                                                                 (31) 
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Or equivalently are expanded as 

v = b PH + vn E = aH                                                      (33) 

aHEvdPH b du nnn                                                  (34) 

With assumption of = EH-1
 , it gives vector of  a1×2M as 

a = dn bP + dn vnY                                                        (35) 

Where 

                        E = [1,1, …, 1]1,2M                                                       (36) 

Substitution of Eq. (32) into Eqs. (23), (29), vector of b1×2M is developed as 
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Here I stands for the 2M dimensional identity matrix and function of load in the local time is 
defined with a vector matrix as 
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F(tn + dnτ) = […]1×2M                                                                                     (38) 

Finally, with substituting Eqs. (32), (34) into Eqs. (25), (26) vectors of acceleration and 
velocity in each collocation point will be calculated. However, this procedure illustrates that for 
high accurate responses further points should be chosen; it takes long calculation time that is not 
optimized way, particularly for multi-degree of freedom structures such as continuum structures. 
Similarly, to extend this method in the nonlinear structures, the preceding provisions in previous 
step are calculated as new conditions in current step for each nonlinear behavior. 
 
 
6. Computer program code development 

 
To investigate elaborately about efficient and free scale of Haar wavelets a comprehensive 

program is codified in MATLAB. In addition, it has expanded for time history linear and nonlinear 
dynamic analysis of SDOF structures, through the following steps: 

 
Part-A: Initial calculation: 
1-Formulate Haar wavelet coefficient matrix (H) relevantly to the scale and transition factor 
due to the lateral loading and desirable accuracy of results (Fig. 2). 
2-Formulate operation of integral (P) matrix of Haar wavelet relevantly to the H matrix of Haar 
wavelet (Eq. (13)). 
3-Formulate local time due to collocation points of scaled Haar wavelet (Eq. (15)).  
4-Discretization of the lateral load into N equal intervals and approximate the value of loading 
according to the Haar polynomials (Eq. (35)) for each time step. 
 
Part-B: calculation in each time step: 
1-Define a constant for the mass (M), stiffness (K) and damping (C) of SDOF structure in each 
time step. For instance, in the nonlinear study this constant will be defined from the previous 
step according to the relation of nonlinearity. 
2-Calculation of the initial conditions due to a, b by solving the relevant algebraic equation 
systems. (Eqs. (34), (32)). 
3-Calculation of the velocity (U ), displacement (U) in each step as initial condition of next 
step (Eqs. (25), (26)). 
However, nonlinearity also can be expanded with Haar wavelet; in this study nonlinearity has 

been applied in each time steps by calculation of initial conditions, which are calculated from 
previous steps.   
 
 
7. Numerical applications 

The accuracy and computation time of diverse scale of Haar wavelet have been evaluated in 
comparison of responses which are computed with prevalence dynamically numerical methods 
through the three models. 

7-1: The SDOF structure which concentrated harmonic loading F(t) = 5.sin(2t) is applied to the 
rigid floor is considered with following members’ characteristics (Fig. 3): According to the equal 
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frequency for lateral loading and Structure, results which are calculated from resonance 
formulation will be checked out ( I = 25170 cm4, E = 2.1e 6 kg/cm2, k = 24 EI/L3 ). 

This example was analyzed by free scales of Haar wavelet and 2 methods including Duhamel 
method which the time increment is selected by dn = 0.01s and resonance formulation. Responses 
from Runge-Kutta method have been calculated as exact method and errors (∆e) are presented in 
comparison with Runge-Kutta results. Results including the value of the displacements for shear 
degree of freedom have been calculated and plotted in Fig. 4. 

 
 
 

 
Fig. 3 SDOF model 

 
 

 
Fig. 4 Comparison of linear system for harmonic loading (Ex. 1) 

 

 

   Table 1 Absolute error and calculation time of model 7-1 with free scale of Haar wavelet 

 Haar Wavelet, 10 sec loading, dn = 0.01 

 PCA SM2 SM4 SM8 SM16 SM32 SM64 SM128 

t (sec) 1.4894 2.0628 2.7254 4.5271 7.3592 13.8257 27.6564 64.5791

∆e 7.60E-04 6.00E-04 5.90E-04 9.20E-05 8.00E-05 6.30E-05 5.00E-05 5.00E-05
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   Table 2 Absolute error and computation time of exact and prevalence methods for model 7-1 

Time of loading (T)=1 sec, dn = 0.01 t (sec) ∆e 

Duhamel with damping 1.4578 4.00E-05 

Resonance equation with damping 1.4395 3.35E-02 

Exact Runge-Kutta method 47.0795 - 

 
 

 
Fig. 5 Average errors in displacement of SDOF based on diverse scale of Haar wavelet (Ex. 7-1) 

 
 

In addition, computational time and exact error of responses for each method have been shown 
in Tables 1 and 2. Table 1 shows that, albeit computation time in the PCA reaches to the minimum 
amount of 1.49 sec, but value of error with 7.6E-04 in comparison with other scales makes 
undesirable responses.  Finally, percentages of errors have been calculated separately for various 
scaled and translated Haar wavelet, Duhamel and resonance formulation (Fig. 5). 

It can be seen overtly from Fig. 5 that errors have a downward trend in the first 3 scale of Haar 
wavelet. Despite the fact that, Fig. 5 illustrates value of errors decreased significantly in high scale 
of Haar wavelet, data in Tables 1 and 2, show that computational time involved has been sharply 
increased due to the high scale of Haar wavelet (SM32, SM64 and SM128). However, it was 
calculated that the results from high scale of Haar wavelet are closer than low ones; computational 
time involved for high scale of this wavelet makes suboptimal solution way. As a result, it can be 
evaluated comparatively from data that desirable results have been calculated with low scale of 
Haar wavelet in comparison with common numerical methods particularly for smooth loadings.  
 

7-2: The SDOF model which was considered in model 1 (Fig. 3) is excited by Elcentro 
acceleration (ImperialValley-1940) as shown in Fig. 6 and the linearly dynamic analysis is carried 
out. 

In this instance, to validate proposed method SDOF structure (Fig. 3) has been solved under
seismic excitation as ground acceleration of Elcentro (Fig. 6). Calculated results have been 
compared with common direct integration method due to the Duhamel method. Duhamels’ results 
being computed in time increment dn = 0.01s. Time history analysis of displacements are plotted 
in Figs. 7, 8 respectively for the first 10 and 1 second of Elcentro and calculated in Table 3 for free 
scale of Haar wavelet in comparison with Duhamel method. 

Furthermore, average percentages of errors in compare of Duhamel are calculated in Fig. 9 and 
in Fig. 10 respectively computational time has been investigated for proposed method. What is 
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more, time history responses for displacement of SDOF are plotted for the first one second of 
complex lateral loading and computational time has been investigated in Table 3 for two 
comprehensive scales of Haar wavelet and Duhamel method. 

Table 3, Fig. 9 and Fig. 10 indicate that 16th scale of Haar wavelet makes less computation time 
and closer responses rather than other scale of Haar wavelet. According to the Fig. 9, although 
fewer errors belong to the 128th scale of Haar wavelet; time consumption of this scale due to the 
Fig. 10 is in the maximum pick that for this complex loading will be non-optimal. Overall, time 
history analysis of SDOF structure under complex loading which is consist of divers frequencies, 
indicates that higher scale of Haar wavelet which covers various frequency of loading achieves 
accurate responses albeit the computational time involved has been drastically increased. 
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Fig. 6 Elcentro-USA (Imperial Valley-1940) earthquake acceleration record (g) 
 
 

 
Fig. 7 Comparison of linear system for Elcentro acceleration with free scale of Haar wavelet in the first 10 

            seconds 
 
 
Table 3 Absolute errors and computation times of Duhamel and free scale of Haar wavelet for example 7-2 

 Haar Wavelet, 10 sec loading, dn = 0.01                    Direct integration 

 PCA SM2 SM4 SM8 SM16 SM32 SM64 SM128 Duhamel

t (sec) 2.6196 3.0628 4.5788 7.3447 13.173 24.3701 48.4159 102.5703 14.1404

∆e 3.65E-02 3.53E-02 3.45E-02 2.40E-02 2.35E-02 1.30E-03 5.40E-04 6.00E-05 - 
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Fig. 8 Comparison of linear system for Elcentro acceleration with free scale of Haar wavelet in the first 1  

              second 
 
 

 
Fig. 9 Average errors in displacement of SDOF based on diverse scale of Haar wavelet (Ex. 7-2) 

 
 

 
Fig. 10 Computational time (Sec) for diverse scaled Haar wavelet analysis (Ex. 7-2) 

 
 
Table 4 Absolute error and computation time of Duhamel and two scale of Haar wavelet for example 7-2 

 Haar Wavelet, 1 sec loading, dn = 0.01 Direct integration 

 SM8 SM16 Duhamel 

t (sec) 1.2905 1.9375 1.4123 

∆e 3.67E-02 1.90E-03 - 
 
 

7-3: The SDOF model which was considered in model 1 (Fig. 3) is excited by Elcentro 
acceleration (Imperial Valley-1940) as shown in Fig. 6 and the nonlinearly dynamic analysis is 
carried out. For considered model the nonlinear stiffness is defined in term of displacement as 

1)u(abs/4000k                                                      (39) 
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Which u denotes initial displacement in each interval. 
In this example SDOF structure Fig. 3 has been solved nonlinearly under excitation of Elcentro 

Fig. 6. Nonlinearity of the stiffness is defined as a function of displacement is each time step. 
Results which have been calculated with Wilson (θ = 1.4) in time increment of dn = 0.001s, are 
supposed as exact responses and errors (∆e) are validated through the proposed method. 

Time history analysis of displacement has been plotted in Figs. 11 and 12 respectively for the 
first 10 and 2 second of complex loading. Errors are calculated for 3 different Wilson (θ = 1.4) 
method including dn equal to 0.05, 0.1 and 0.2 s and free scale of Haar wavelet method in Fig.13. 

Table 6 indicates that, computation time for simple nonlinear analysis through the Wilson 
method, at the first 2 seconds has been increased directly related to the duration of intervals from 
1.6 to 2.9 sec. 

 
 

 
Fig. 11 Comparison of nonlinear system for Elcentro acceleration with free scale of Haar wavelet in the first 
             10 seconds 
 

 

  Table 5 Absolute error and computation time of Haar wavelet for example 7-3 in the first 2 seconds of  

            loading 

 Haar Wavelet, 2 sec loading, dn = 0.01 

 PCA SM2 SM4 SM8 SM16 SM32 SM64 SM128 

t (sec) 1.2862 1.4221 1.6664 2.1105 2.9968 4.8411 8.7217 17.4492

∆e 3.62E-03 8.93E-04 6.30E-04 7.00E-05 5.60E-05 3.00E-05 1.90E-05 8.50E-06

 
 

Table 6 Computation time for various intervals in Wilson-θ method for example 7-3 

 Wilson (θ = 1.4) , 2 sec loading 

dn = 0.1 1.2558 

dn = 0.01 1.5586 

dn = 0.05 1.3298 

dn = 0.001 2.8933 
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As a result, for a complete analysis of structure at the first 20 sec against a complex loading this 
amount is not acceptable and makes inefficient numerical solution way. On the other hand, data 
which are shown at the Fig. 12 and Table 7, illustrate efficiency of proposed numerical method for 
the low scale of Haar wavelet for the first 2 and 10 seconds of loading. 

Fig. 13 obviously shows that the first 2 scale of Haar wavelet compute inaccurate responses 
although with less computation time. Furthermore, it shows that it is an abrupt decline from SM4, 
SM8 without considerable computation time involved. Consequently, in comparison with the 
others this scale of Haar wavelet is more accurate one with less computational time even with 
Wilson-θ method. Significantly, because of complex loading and complex characteristic of sample 
modeling it is predictable that optimum responses will be calculated approximately with proposed 
method. 

 
 

 
Fig. 12 Comparison of nonlinear system for Elcentro acceleration with free scale of Haar wavelet  

in the first 2 seconds 
 

 

 Table 7 Absolute error and computation time of Wilson and Haar wavelet in various intervals for example  
              7-3 

 T (loading-sec) dn t (sec) ∆e 

Wilson (θ = 1.4) 10 0.01 1.9735 - 

Haar Wavelet SM4 10 0.01 6.0299 8.20E-04 

Wilson (θ = 1.4) 2 0.001 3.2518 - 

Haar Wavelet SM32 2 0.001 12.8882 9.70E-06 

 
 

 
Fig. 13 Average errors in displacement of one DOF, based on diverse scale of Haar wavelet (Ex. 7-3) 
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Optimum time history analysis of SDOF structures using free scale of Haar wavelet 

8. Conclusions 
 

In this paper, through the optimally dynamic analysis of structures following conclusions are 
carried out as: 
1. Dynamic equation of motion has been analyzed coherently with accurate approximation of 
complex loading. Overtly, it makes distinction of this method against common numerical methods 
such as Duhamel or Wilson which a short interval should be chosen to gain the desirable responses.  
Eventually, it takes a long computational time especially for multi-degree of freedoms’ structures. 
2. It illustrates that the Haar wavelet is more efficient and optimum wavelet for analyzing of 
smooth loadings such as harmonic ones, with less collocation points. 
3. Fundamentally, in one sense of analysis, combination of more collocation points in complicated 
steps of loading which are consist of various frequencies, and less ones in smooth steps of loading 
gives the optimized responses.  
4. Despite accurate responses in high scale of Haar wavelet due to the inherent shape function of 
this wavelet, it was investigated that it is not the most optimum one in dynamic analysis of 
complex loading such as earthquake which are governing to the SDOF or MDOF structures. 
5. Overall, according to the simple and discrete shape function of Haar wavelet an indirect way has 
been done for dynamic analysis. Alternatively, computation time involved has been considerably 
increased. Consequently, it will be suggested to try the continuous basis function in wavelet 
method to analyze the equation of motion directly. 
 
 
References 
 
Babolian, B. and Fatahzadeh, F. (2010), “Numerical solution of differential equations by using Chebyshev 

wavelet operational matrix of integration”, Appl. Maths. Comput., 188, 417-426. 
Cattani, C. (2004), “Haar wavelets based technique in evolution problems”, Proc. Estonian Acad. of  Sci. 

Phys. Math., 53(1), 45-63. 
Cattani, C. (2004), “Haar wavelet based technique for sharp jump classification”, Mathematical and 

Computer Modeling, 39, 255-279.  
Chen, C.F. and Hsiao, C.H. (1997), “Haar wavelet method for solving lumped and distributed-parameter 

system”, IEE Proc. Control Theory Appl., 144(1), 87-94.  
Chen, C.F. and Hsiao, C.H. (1997), “Wavelet approach to optimizing dynamic systems”, IEE Proc. Control 

Theory Appl., 16, 146.  
Chopra, A.K. (1987), Dynamic of Structures: Theory and Applications to Earthquake Engineering, Prentice-

Hall, Englewood Cliffs, NJ.  
Frag, M. (1992), “Wavelet transforms and their application to turbulence”, Ann. Rev. Fluid Mech., 24, 395-

457. 
Galli, A.W., Heydt, G.T. and Ribeiro, P.F. (1996), “Exploring the power of wavelet analysis”, IEEE 

Computer Application in Power, 9(4), 37-41.  
Goedecker, S. and Ivanov, O. (1998), “Solution of multi scale partial differential equations using wavelets”, 

Comput. Phys., 12, 548-555.  
Hubbard, B.B. (1996), The world according to wavelets, Peters, A.K., Wellesley.  
Lepik, U. (2005), “Numerical solution of differential equations using Haar wavelets”, Mathematics and 

Computers in Simulation, 68, 127-143.  
Lepik, U. (2008), “Haar wavelet method for solving higher order differential equations”, Int. Journal. Math. 

and Comput., 1, 84-94.  

109



 
 
 
 
 
 

S.H. Mahdavi and S. Shojaee 

Lepik, U. (2009), “Solving fractional integral equations by the Haar wavelet method”, Appl. Maths. Comput., 
214, 467-481.  

Lepik, U. (2009), “Haar wavelet method for solving stiff differential equations”, Mathematical Modeling 
and Analysis, 14(1), 467-481. 

Misiti, M., Misiti, Y., Oppenhiem, G. and Poggi, J.M. (2001), Wavelet toolbox user guide: for use with 
matlab, Math. Works.  

Orbit, Z. and Momani, S. (2008), “Numerical method for nonlinear partial differential equations of fractional 
order”,  Appl. Math. Modeling., 32, 28-39. 

Salajeghe, E. and Heidari, A. (2004), “Time history dynamic analysis of structures using filter bank and 
wavelet transform”, Struct. Multi-Disciplinary Opti., 28, 277-285. 

Yuanlu, Li. (2010), “Solving a nonlinear fractional differential equations using Chebyshev wavelet”, 
Commun Nonlinear Sci. Numer. Sim., 15, 2284-2292. 

110


	27590-1.pdf
	27590



