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Abstract.    This study aimed to develop a model to accurately predict the acceleration of structural systems 
during an earthquake. The acceleration and applied force of a structure were measured at current time step 
and the velocity and displacement were estimated through linear integration. These data were used as input 
to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener 
neural network (VWNN) which contained the mathematical model to predict the acceleration. For 
alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized 
as the signal processing tool, including the Taylor series components in the input nodes of the neural 
network. The number of the intermediate layer nodes in the neural network model, containing the training 
and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent 
with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the 
network weights, on prediction errors were provided. During the simulation stage, different earthquake 
excitations were tested with the optimized settings acquired from the training stage to find out which of the 
algorithms would result in the smallest error, to determine a proper simulation model. 
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1. Introduction 
 

Periodic structural health monitoring was necessary to secure the safety and maintain the 
serviceability of structures (Park et al. 2007). Structural health monitoring methods would be 
chosen based on materials used for structures, monitoring ranges, and purposes. Examples 
included the structural acceleration prediction (Pei et al. 2004), concrete damage monitoring (Park 
et al. 2006), restoring force prediction (Lin and Chen 2009, Kosmatopoulos et al. 2001). This 
study aimed to establish a model to accurately predict structural accelerations during earthquakes. 
The Volterra/Wiener neural network (VWNN) was utilized as the computation tool. The VWNN 
model was often used to mitigate the problems of non-linear dynamic systems (Kosmatopoulos et 
al. 2001) and was thus adopted to evaluate the influences of Taylor series components in the input 
nodes, the number of intermediate layer nodes, and the computation algorithms on relative errors 
of predictions in this study, so that the signal processing of structural systems (Lin 2010, 2011) can 
be effectively achieved.
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Increasing emphases have been placed on structural health monitoring especially after 
earthquakes such as the Chi-Chi Earthquake in Taiwan. Besides damages caused by earthquakes, 
there were still several hidden factors for structures that caused structural responses different from 
those calculated at the design stage; for instance, simplified assumptions made in structural 
modeling, differences between the design drawings and the built structure, and the stochastic 
nature of environmental loads and service loads (Park et al. 2007). For the purpose of structural 
health monitoring, an automated method for tracking the health of a structure combing damage 
detection algorithms with structural monitoring systems was developed (Lynch and Loh 2006). An 
example with simulated data demonstrated the efficiency of the neural network in predicting 
structural accelerations (Pei et al. 2004). An impedance-based damage detection technique 
utilizing a piezoelectric ceramic material evolved as a new tool for the implementation of a built-in 
diagnostic system (Park et al. 2006). A model based adaptive approaches for the on-line 
identification of hysteretic systems subjected to stochastic dynamic environments have emerged 
(Kosmatopoulos et al. 2001). 

Neural networks were favored problem-solving approaches because of their nonlinearity, 
adaptivity, input/output mapping, evidential response, contextual information, and fault tolerance 
(Haykin 1994). Volterra and Wiener neural networks (VWNNs) presented a kind of neural 
networks. The Volterra and Wiener approach could be treated as a special case of a kernel 
regression framework (Franz and Scholkopf 2006). The structure of the Volterra and Wiener series, 
modeling the relationship between system response and input in terms of series of first and higher 
order convolution integrals, provided analytical platforms that could be used for parameter 
estimation (Vyas and Chatterjee 2011) and adaptive filtering (Kosmatopoulos et al. 2001). 
Although Volterra and Wiener approaches were popular, their applications were limited to 
relatively low-dimensional and weakly nonlinear systems because of the increasing number of 
terms that had to be estimated (Franz and Scholkopf 2006). Yet, the use of Taylor methods for 
differential-algebraic equations provided with excellent results (Barrio et al. 2011). 

Based on the arguments above for the advancement of signal processing of structural systems 
for structural health monitoring, the modeling of VWNN was considered to predict structural 
accelerations followed by the assessment of the entire signal processing approach. In this study, 
signal preprocessing included the measurement of structural acceleration and applied force at 
current time step and the estimation of structural velocity and displacement through linear 
integration using a VW filter. These data were used as input data to predict structural acceleration 
at next time step. For acquiring accurate predictions of structural accelerations as well as 
alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was 
adopted as the fundamental signal processing tool with the addition of Taylor series expansion test, 
together with two other tests for evaluation purposes. The first test was to find out if applying the 
Taylor series would assist to reduce relative errors of predictions by comparing model outputs with 
actual outputs. The second test was to search for an optimal empirical formula involving the 
number of intermediate layer nodes in the VWNN, since the output could be influenced by the 
selection of intermediate layer nodes and by the adopted estimation algorithms. The third test was 
to evaluate the influences of two algorithms for determining the network weights, including the 
gradient descent with adaptive learning rate (GDA) algorithm and the Levenberg-Marquardt (LM) 
algorithm, on prediction errors for successful signal processing of structural accelerations. 
 
 
2. Structural dynamics presentation for acceleration prediction 
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Since this study aimed to develop a model to accurately predict the acceleration of structural 
systems during an earthquake, a formula for acceleration prediction was required according to the 
structural dynamics proposed by Pei et al. (2004) 

r(t)M(t)fM(t)"x 1
111

1
111

                           (1) 

where X1''(t) is the acceleration of a structure (e.g., shear-type building) induced by earthquake, 
M11 is a matrix representing the weight of each floor, r(t) is the restoring force with unknown 
properties, and f1(t) is the excitation force on the structure. The acceleration and applied force of 
the structure were measured at current time step and the velocity and displacement were estimated 
through linear integration. The restoring force was estimated using the velocity and displacement 
(Pei et al. 2004) and was written as 

(t))'x(t),xQ(r(t),(t)r 11                            (2) 

where Q is a continuous function, noting that this function is not exhaustive as more independent 
variables can be added to represent more complicated nonlinearities. Pei et al. (2004) further 
applied linear difference equation for approximation of Eq. (2), and with simple algebra operations, 
it was possible to obtain 

)r(t)r(t)t)](t(t'x),(tx),[Q(r(t 1nnn1nn1n1n                    (3) 

where r(tn) is the restoring force at the current time step tn, and r(tn+1) is the restoring force at the 
next time step tn+1. The time interval (tn+1 - tn) is constant. Plugging the information of r(tn+1) in Eq. 
(3) into Eq. (1) yielded 
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        (4) 

With the substitution of r(tn) in Eq. (4) by using the r(t) in Eq. (1) and letting t = tn in Eq. (1), it 
was possible to simplify Eq. (4) as (Pei et al. 2004) 

))(tf),(tf),(t"x),(t'x),(tψ(x)(t"x 1n1n1n1n1n11n1                   (5) 

where Ψ is an unknown non-linear continuous function. 
 
 
3. Neural network construction 
 

A neural network was considered a massively parallel distributed processor that possessed a 
natural propensity for storing experiential knowledge and enabling the network for learning 
(Haykin 1994). The neural network has been broadly applied in fields such as biology, economics, 
engineering, and medical science. To obtain accurate predictions of structural accelerations for 
non-linear systems, the neural network model was adopted as the signal processing tool in this 
study. 

 
3.1 Volterra and Wiener neural network (VWNN) 

 
Since signal preprocessing included the measurement of structural acceleration and applied 
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Fig. 1 Volterra and Wiener neural network (VWNN) 

 
 

force at the current time step as well as the estimation of structural velocity and displacement 
through linear integration using a Volterra and Wiener (VW) filter, the Volterra and Wiener neural 
network (VWNN), as shown in Fig. 1, was considered. Inputs to the network included the 
structural displacement, structural velocity, structural acceleration, and the excitation force at the 
current time step, as well as the excitation force at the next time step. The output was the structural 
acceleration at the next time step for the purpose of acceleration predictions. 

The VWNN consisting of a linear multi-input multi-output (MIMO) stable dynamical system 
connected in cascade with a linear-in-the-weights neural network. The dynamics of the linear 
MIMO system, as in Fig. 1, could be described as (Kosmatopoulos et al. 2001) 

ρ(τ(s)δ)ωφ T                                (6) 

where δ denotes the inputs to the input layer of VWNN, τ s  denotes a stable transfer function 
matrix, ρ denotes a function of μ whose outcome are the input nodes in the intermediate layer of 
VWNN, and ω indicates the synaptic weights of the neural network while φ indicates the output 
of the neural network (Kosmatopoulos et al. 2001). 

In the training process of the neural network, the selection of the transfer function was 
significantly important. An inappropriate transfer function might cause the network convergence 
process relatively slow (Gao and Chen 2011). This study selected the linear transfer function 
(linear integral) in the input layer and the hyperbolic tangent sigmoid transfer function in the 
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intermediate layer of the network (Fig. 1), respectively. The hyperbolic tangent sigmoid transfer 
function was computed as follows 

1
e1

2
h(q)

2q



                                (7) 

where q denotes the input while h q  denotes the output after passing through the transfer 
function (Adnani et al. 2011). Through the hyperbolic tangent sigmoid transfer function, 
mitigating the non-linearity problems of multi-layer neural networks, the output data are confined 
in values between 1 and -1. 

 
3.2 Adoption of Taylor series 
 
In addition to the adoption of the VWNN model, the Taylor series was also incorporated into 

the modeling process to acquire accurate predictions of structural accelerations. The quality of the 
nonlinear black-box modeling process was always a result of a certain compromise between the 
“expressive power” of the model to be identified and the measurement error (Lin and Chen 2009). 
The incorporation of the Taylor series would be beneficial not only to the reduction of modeling 
error but also to the evaluation of large space systems where several degrees of freedom and 
related parameters were to be estimated. The Taylor series, after omitting the cross components in 
the power series (Lin and Chen 2009), was thus applied to the network for the acceleration 
prediction. According to the definition of Taylor series 

iHO

1i i c)(xaf(x)  
                            (8) 

where c is any arbitrary constant, HO is the highest order and usually defined by users, and x is an 
independent variable. The function f(x) is represented in a polynomial series function. With c = 0, 
Eq. (8) becomes 

iHO
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                               (9) 

Thus the formula used to predict the structural acceleration (Eq. 5) can be expressed using the 
Taylor series as follows 
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Virtually, the larger HO is, the Taylor series expansion is more capable of approximating Ψ in 
Eq. (10). A higher order of Taylor series leads to a higher number of input nodes in the 
intermediate layer of VWNN (Fig. 1). For example, a 3rd-order Taylor series expansion includes 15 
input nodes in this study. On the other hand, computer calculation may result in a round-off error, 
which increases as the order increases. Hence, higher order of the Taylor series expansion does not 
necessary give better results. 

To reduce relative errors of predictions by comparing model outputs with actual outputs, the 

57



 
 
 
 
 
 

Jeng-Wen Lin and Tzung-Han Wu 

optimal order of the Taylor series expansion should be acquired through various order tests. 
Further, an optimal empirical formula for the number of intermediate layer nodes of the VWNN is 
required because the output of the network depends on the selection of intermediate layer nodes. 
 

3.3 Number of intermediate layer nodes 
 
Choosing one intermediate layer (Fig. 1), various trials conducted in this study to determine the 

optimal number of nodes in the intermediate layer of the neural network include 
 
(1) If the neural network is used to predict structural accelerations, the number of nodes in the 

intermediate layer can be		3N 2N , where N  is the degrees of freedom of the system and is 
regarded as the number of nodes in the output layer, while N  is the degrees of freedom when the 
excitation force is applied and is regarded as the number of applied force nodes in the input layer 
(Pei et al. 2004). 

(2) If a considered system belongs to a general system, the number of nodes in the intermediate 
layer can be N N ,	where N 	is the number of nodes in the input layer and N  is the number 
of nodes in the output layer (Masri et al. 1999). 

(3) If a considered system belongs to a complicated system, the number of nodes in the 
intermediate layer can be	 N N ∗ 2,	where	N  is the number of nodes in the input layer 
and	N  is the number of nodes in the output layer (Peng 2010). 

(4) If a considered system belongs to an easy system, the number of nodes in the intermediate 
layer can be N N /2,	where N  is the number of nodes in the input layer and N  is the 
number of nodes in the output layer (Peng 2010). 

(5) Also, the trial number of nodes in the intermediate layer can be (N N )1/2, where N  is 
the number of nodes in the input layer and N  is the number of nodes in the output layer (Yeh 
2003). 

 
Discussions have been provided on the influence of the number of nodes in the intermediate 

layer on prediction errors in order to search for a minimum relative error. Furthermore, the output 
of VWNN also depends on its estimation algorithm for determining the network weights. 
 
 
4. GDA algorithm and LM algorithm 
 

Two of the neural network algorithms used in the assessment of prediction errors are introduced. 
The first algorithm is the gradient descent with adaptive learning rate (GDA) algorithm. Although 
there were varieties of learning algorithms available, the major of them, which included the 
popular back propagation learning algorithm, were of the gradient descent type (Qian 1999). In 
gradient-based techniques, a performance criterion was defined based on the error between the 
network and actual response in terms of mean square errors 

2
1n1n a)(txJ                                (11) 

where x t  denotes the network output and a  denotes the actual output. Since x t  
depended on the network parameters, the value of J could be decreased if the network weights 
were revised in the direction of the negative gradient of the performance function (Masri et al. 
1999). The GDA algorithm was a performance of the steepest descent algorithm with changing 
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learning rate during the training process (MathWorks 1994), in which the steepest descent 
algorithm recalculated the weights at time step t 

)( twt wEw                                (12) 

where  denotes the learning rate while Ξ  denotes the gradient operator with respect to the 
weights and  is the error function. The gradient of the error function with respect to each 
weight was then computed and the weights were modified along the downhill direction of the 
gradient in order to reduce the error (Qian 1999). The gradient descent techniques utilized only 
first derivation information, while others could be derived that utilized second- and higher-order 
derivation information (Masri et al. 1999). 

The second algorithm is the Levenberg/ Marquardt (LM) algorithm. The LM algorithm was 
widely used and recognized as very efficient for solving the problem of minimizing non-linear 
minimum squares (De Oliveira 2011). The LM algorithm manifested the most efficient 
convergence during the back propagation training process since it acted as a trade-off between the 
first-order optimization method (steepest-descent algorithm) with stable but slow convergence and 
the second-order optimization method (Gauss-Newton method) with opposite characteristics 
(Chen et al. 2003). The mathematical form of the LM algorithm can be expressed as 

1k
TT

k
T

k weJ)]Jdiag(JλJ[Jw                        (13) 

where w  is the weights and	w  is the new weights, k is the iteration step, J is the Jacobian 
Matrix, e is the error vector, and λ  is a scalar that controls convergence properties (Lautour and 
Omenzetter 2010). When using the LM algorithm for neural network training, however, some 
disadvantages appeared in the numerical computations. Large memory was required for matrix 
operations at each iteration process, and large error oscillations during the standard LM training 
process frequently occurred (Chen et al. 2003). 

Discussions on the influences of the GDA algorithm and the LM algorithm on prediction errors 
were provided so as to choose an algorithm to achieve the smallest error possible. 

 
 

5. Numerical results and discussions 
 

The data used in this study were measured through experiments conducted in the civil 
engineering department of Feng Chia University, Taiwan. A 30%-scaled steel structure of a 3-floor 
building was placed on a shaking table. Each floor of the structure was designed with beams, 
columns, and slabs. The weight of the first, second, and third floor was estimated as 530.65 kg, 
530.65 kg, and 514.67 kg, respectively. Since the adopted VWNN model for the prediction of 
structural accelerations contained the training and simulation stage, the training stage was 
discussed to search for optimized settings used for the simulation stage. During the simulation 
stage, different earthquake excitations were tested with the optimized settings obtained from the 
training stage to determine a proper simulation model. 

 
5.1 Training stage of VWNN 
 
Using MATLAB R2010a software, the data at the training stage of neural network were divided 
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Fig. 2 Simulation after test projects with cases as in Table 1 

 
 

into portions of 70% for training, 15% for validation, and of 15% for testing. Three projects with 
two cases were designed for test as listed in Table 1. Fig. 2 shows the simulation after test projects 
with cases as in Table 1. The relative errors of the two cases were compared to find out which one 
would be better. Numerical results of the minimum relative errors of acceleration predictions using 
different number of nodes in the intermediate layer of VWNN at the training stage were listed in 
Table 2. Details of the projects and results were described as follows. 

 
Project 1 
The first test was to find out if applying the Taylor series expansion to the input nodes in the 

intermediate layer of VWNN (Fig. 1) would assist to reduce relative errors of predictions by 
comparing model outputs with actual outputs. The influences of various orders from one to ten of 
Taylor series expansion on prediction errors were compared to determine which order could result 
in the smallest error. Orders higher than ten were not considered since as the order increased, the 
training time increased and the round-off error interfered. It was addressed that minimum 
prediction errors were often reached using 3rd-order Taylor series model (Lin and Chen 2009). The 
test results were shown in Figs. 3-7, each with different number of intermediate layer nodes. When 
the GDA algorithm was applied, the prediction error could not be reduced as the order increased, 
demonstrating that the Taylor series was not suitable for the GDA algorithm to improve the 
prediction accuracy of structural accelerations. When the LM algorithm was applied, the 
prediction error was reduced as the order increased and then began to increase after a certain order, 
demonstrating that the Taylor series was suitable for the LM algorithm to reach minimum relative 
errors of acceleration predictions. 
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Table 1 Test projects with control factor 

Project  Control factor  Case 1  Case 2

1  A. Using various Taylor series order  ✔  ✔ 

2  
B. Designing different number of nodes in the intermediate layer 

of VWNN 
 ✔  ✔ 

3 

 
C. Using the gradient descent with adaptive learning rate (GDA) 

algorithm 
 ✔   

 D. Using the Levenberg/Marquardt (LM) algorithm    ✔ 

(Note: ✔ indicates the control factor corresponding to the case) 
 
 
Table 2 Minimum relative errors of acceleration predictions using different number of nodes in the 
intermediate layer of VWNN at the training stage 

Number of nodes in 
the intermediate layer 

Minimum error Optimal algorithm Optimal Taylor series order 

3 2  0.0362 LM 7 

 0.0264 LM 5 

∗ 2 0.0258 LM 4 

/2 0.0287 LM 9 

(N1*N2)
1/2 0.0402 LM 10 

Optimal setting 

∗ 2 0.0258 LM 4 

(Note: Minimum relative errors in terms of RMS, to the third non-zero digit) 
 
 
Project 2 
The second test was to search for an optimal empirical formula regarding the number of 

intermediate layer nodes in the VWNN, since the output could be influenced by the selection of 
intermediate layer nodes in addition to the adopted estimation algorithm. The results were 
summarized in Table 2. It was found that the relative error was minimal with the number of nodes 
in the intermediate layer being	 N N ∗ 2, implying that the problem of acceleration prediction 

belonged to a complicated system. Different number of intermediate layer nodes corresponded to 
different optimal Taylor series order, which increased from 5 to 7, 9, and 10 with respective 
number of intermediate layer nodes being N N , 3N 2N , N N /2, and √N1 ∗ N2. 
If a small number of intermediate layer nodes were used, the neural network could be limited and 
not able to solve complicated systems. 

 
Project 3 
The third test was to evaluate the influences of the GDA algorithm and the LM algorithm, both 

for estimating the network weights, on relative errors for successful signal processing of structural 
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Fig. 3 Influence of various Taylor series order on relative error of acceleration predictions with the number

of intermediate layer nodes = 3N 2N  
 

 
Fig. 4 Influence of various Taylor series order on relative error of acceleration predictions with the number

of intermediate layer nodes = N N  
 

 
Fig. 5 Influence of various Taylor series order on relative error of acceleration predictions with the number

of intermediate layer nodes = N N ∗ 2 
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Fig. 6 Influence of various Taylor series order on relative error of acceleration predictions with the number 

of intermediate layer nodes = N N /2 
 

 
Fig. 7 Influence of various Taylor series order on relative error of acceleration predictions with the number 

of intermediate layer nodes = (N1*N2)
1/2 

 

 
Fig. 8 Simulated accelerations using the Chi-chi earthquake excitations, with the number of intermediate

layer nodes being N N ∗ 2, the GDA algorithm, Taylor series order = 1, and the training data
using the California earthquake excitations 
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Fig. 9 Simulated accelerations using the California earthquake excitations, with the number of intermediate

layer nodes being N N ∗ 2, the GDA algorithm, Taylor series order = 1, and the training data
using the Chi-chi earthquake excitations 

 

 
Fig. 10 Simulated accelerations using the Chi-chi earthquake excitations, with the number of intermediate 

layer nodes being N N ∗ 2, the LM algorithm, Taylor series order = 4, and the training data
using the California earthquake excitations 

 

 
Fig. 11 Simulated accelerations using the California earthquake excitations, with the number of intermediate

layer nodes being N N ∗ 2, the LM algorithm, Taylor series order = 4, and the training data
using the Chi-chi earthquake excitations 
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Table 3 Results of simulations 

Case A B C D 

RMS error 0.04899 0.05831 0.3762 0.09327 

Average 0.05365 0.2347 

(Note: Prediction errors in terms of RMS, to the forth non-zero digit) 
 
 
accelerations. The results were listed in Table 2, illustrating that the optimal algorithm was the LM 
algorithm compared to the GDA algorithm and the difference was significant. Hence, the LM 
algorithm was a better choice for the VWNN at the training stage. 

Just for comparison purposes, the prediction error of Case 2 (Table 1) using the VWNN model 
in general was 50% reduced than the work of Pei et al. (2004). In practice, such a developed 
VWNN model can be applied to off-line modify structural accelerations. 
 

5.2 Simulation stage of VWNN 
 
During the simulation stage, different earthquake excitations, including California earthquake 

and the Chi-chi earthquake, were tested with the optimized settings obtained from the training 
stage to find out which of the algorithms would result in the smallest error, to determine a proper 
simulation model. The test cases were described as follows. 

 
Case A 
With the number of intermediate layer nodes being N N ∗ 2, the GDA algorithm, Taylor 

series order = 1, and the training data using the California earthquake excitations while the simulation 
data using the Chi-chi earthquake excitations, the simulation results were shown in Fig. 8. 

Case B 
With the number of intermediate layer nodes being N N ∗ 2, the GDA algorithm, Taylor 

series order = 1, and the training data using the Chi-chi earthquake excitations while the simulation 
data using the California earthquake excitations, the simulation results were shown in Fig. 9. 

Case C 
With the number of intermediate layer nodes being N N ∗ 2, the LM algorithm, Taylor 

series order = 4, and the training data using the California earthquake excitations while the simulation 
data using the Chi-chi earthquake excitations, the simulation results were shown in Fig. 10. 

Case D 
With the number of intermediate layer nodes being N N ∗ 2, the LM algorithm, Taylor 

series order = 4, and the training data using the Chi-chi earthquake excitations while the simulation 
data using the California earthquake excitations, the simulation results were shown in Fig. 11. 
 

Table 3 listed the simulation results of Case A-D. It was noted that the GDA algorithm (Case A 
and B, with smaller prediction errors) was better than the LM algorithm (Case C and D) for the 
simulation stage of VWNN. The averaged RMS error of the GDA algorithm was decreased by 
77% when compared to the LM algorithm with fourth-order Taylor series model. In practice, the 
GDA algorithm with first-order Taylor series model, along with the number of intermediate layer 
nodes of VWNN being 		 N N ∗ 2 , can be utilized for simulating different earthquake 
excitations. 
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6. Conclusions 
 

This study utilized the Volterra/Wiener (VW) signal preprocessing filter to add the ability of 
the neural network (NN) for solving non-linear problems so as to predict structural accelerations 
for structural health monitoring. In order to improve the accuracy of signal processing, the 
adoption of Taylor series model, different number of intermediate layer nodes in NN, and the 
influence of different algorithms on prediction errors (differences between model and actual 
outputs) have been assessed. 

During the training stage of VWNN, it was concluded to adopt the fourth-order Taylor series 
model, the number of nodes in the intermediate layer of NN being	 N N ∗ 2, and the 
Levenberg/ Marquardt (LM) algorithm. The prediction error was efficiently reduced by 50%. In 
practice, such a developed VWNN model can be applied to off-line modify structural accelerations. 
Although the LM algorithm could lead to smaller error during the training stage, the resulting 
averaged error with this algorithm was larger during the simulation stage of VWNN. During the 
simulation stage, the averaged RMS error of the GDA algorithm was decreased by 77% when 
compared to the LM algorithm with fourth-order Taylor series model. In practice, the GDA 
algorithm with first-order Taylor series model, along with the number of intermediate layer nodes 
of VWNN being		 N N ∗ 2, can be utilized for simulating different earthquake excitations so 
as to predict structural accelerations. 
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