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Abstract. The dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads is
analysed. The non-dimensional form of the motion equation of a beam crossed by a moving harmonic
load is solved through a perturbation technique based on a two-scale temporal expansion, which permits a
straightforward interpretation of the analytical solution. The dynamic response is expressed through a
harmonic function slowly modulated in time, and the maximum dynamic response is identified with the
maximum of the slow-varying amplitude. In case of ideal Euler-Bernoulli beams with elastic rotational
springs at the support points, starting from analytical expressions for eigenfunctions, closed form solutions
for the time-history of the dynamic response and for its maximum value are provided. Two dynamic
factors are discussed: the Dynamic Amplification Factor, function of the non-dimensional speed parameter
and of the structural damping ratio, and the Transition Deamplification Factor, function of the sole ratio
between the two non-dimensional parameters. The influence of the involved parameters on the dynamic
amplification is discussed within a general framework. The proposed procedure appears effective also in
assessing the maximum response of real bridges characterized by numerically-estimated mode shapes,
without requiring burdensome step-by-step dynamic analyses.
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1. Introduction

The analysis of simple Euler-Bernoulli beams crossed by harmonic loads is of interest both from a

theoretical point of view, with the aim of assessing the influence of the involved parameters on the

dynamics, and from a technical point of view, in order to provide efficient tools to estimate easily

the maximum dynamic response and the dynamic amplification factor. Moving harmonic loads can

represent, for instance, a component of the load transmitted to rails by moving trains (Fryba 1999,

Garinei 2006), the load applied by vehicles resulting from the pavement surface roughness and the

mechanical systems of the vehicle (Kim 2004), or the load exerted on a footbridge by a walking

pedestrian (Allen and Murray 1993, Bachmann et al. 1995). 

The monograph by Fryba (1999), containing a large body of work on moving load problems and

providing an extensive bibliography (up to the nineties) in this field, reports a closed-form solution

for the dynamic response of a simply-supported beam crossed by a moving resonant harmonic load.
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The dynamic response of beams to harmonic moving loads has been recently analysed within

different contexts: railway engineering (e.g., Chen et al. 2001, Kargarnovin 2005), beam-type

dynamic absorber (e.g., Oniszczuk 2003), dynamic response of pavement systems to vehicles (e.g.,

Kim 2004), pre-stressed beams of viaducts in roadways, railways and bridges (e.g., Kocaturk and

Simsek 2006). All such studies, involving the modelling of the soil, the presence of axial loads and

the modelling of connected beams, describe parametric analyses showing the time-history of the

dynamic response for different values of the parameters governing the dynamics of the problem

(commonly, velocity and frequency of the load). 

The vibrations of simple beam-like modelled bridges crossed by a moving harmonic load have

been recently re-examined, within railway engineering applications (Abu-Hilal and Mosen 2000,

Garinei 2006, Garinei and Risitano 2008). In these papers, based on the closed-form solution of the

convolution integral, complicated analytical expressions for the dynamic response are provided;

furthermore, parametric analyses are performed for different values of the involved parameters.

Catal (2012) has recently studied the forced vibration of Euler-Bernoulli beams using the differential

transform method. Starting from the classic closed form solution for the dynamic response of a

simply-supported beam crossed by a resonant harmonic moving load proposed by Fryba (1999),

Pimentel and Fernandes (2002) performed numerical simulations to evaluate the maximum

pedestrian-induced dynamic response of footbridges for various values of the damping ratio. The

main limit of the papers in the literature is the lack of a general framework in order to assess the

role of the involved parameters. The authors of the present paper have analyzed the dynamic

response of simply-supported beams to resonant moving harmonic loads (Tubino and Piccardo

2008, Piccardo and Tubino 2009), providing closed-form solutions for the dynamic response and for

the dynamic amplification factor as functions of suitably-defined non-dimensional parameters.

Moreover, concerning the case of relatively slow motion (typical of pedestrian-induced loads), they

represent the dynamic response as a harmonic modulate in time by slowly-varying amplitudes.

Ricciardelli and Briatico (2011) have proposed a solution conceptually very similar to Tubino and

Piccardo (2008), Piccardo and Tubino (2009), using a different non-dimensional form. They achieve

results in perfect accordance with Tubino and Piccardo (2008), Piccardo and Tubino (2009), as

regards the resonant condition; furthermore, they discuss the possibility of obtaining approximate

solutions away from resonance.

In this paper, a general approach is proposed for evaluating the dynamic response of a generic

Euler-Bernoulli beam, provided with rotational springs at both ends, to resonant harmonic moving

loads in order to achieve simple closed-form expressions for the dynamic response and for the

dynamic amplification factor. The problem can generally be solved by the convolution integral,

which can be estimated in closed-form if the mode shape is expressed through a simple analytical

expression (e.g., Abu-Hilal and Mosen 2000, Garinei 2006), or numerically if the mode shape is

more complicated. The non-dimensional form of the equation of motion and the ordering of the

governing parameters, according to their technical values, point out that the forcing function can be

expressed as the product of two terms depending on two different (slow and fast) time scales. Such

a particular condition suggests the possibility of solving the equation of motion through a

perturbation technique based on a two temporal scale expansion, able to represent the solution as a

harmonic function slowly modulated in time (two-variable expansion procedure; Kevorkian and

Cole 1996, Simmonds and Mann 1998, Nayfeh and Mook 1979); thus, the maximum dynamic

response coincides with the maximum of the slow-variable amplitude. Furthermore, based on a

closed-form expression of the mode shapes for a generic Euler-Bernoulli beam, equipped with
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rotational springs at both ends and fixed vertical supports (Appendix A), analytical expressions of

the response amplitude and of the dynamic amplification factor can be deduced as a function of a

suitable non-dimensional speed parameter (depending on the structural properties - span length and

circular natural frequency - and on the load velocity; Fryba 1999) and of the structural damping

ratio. 

In Section 2 the vibrations of a beam to a moving harmonic load are analysed adopting both the

convolution integral and the two-scale perturbation technique, showing that the dynamic response

can be schematized as a harmonic with slow-varying amplitude. In Section 3, based on the

analytical expression for mode shapes of Euler-Bernoulli beams with different boundary conditions,

closed-form solutions are obtained for the response amplitude, the Dynamic Amplification Factor

(i.e., the ratio between the maximum dynamic response and the static response to the maximum

dynamic load) and the Transition Deamplification Factor (i.e., the ratio between the effective

maximum dynamic response and the maximum dynamic response to the harmonic load fixed in the

point where the eigenfunction is maximum), as functions of suitable non-dimensional parameters. In

particular cases (Section 3.1-3.2) as simply-supported and double-clamped beams, the proposed

solution becomes particularly simple and permits to recognize literature solutions and their limits of

applicability. Numerical examples of ideal and real beams showing the consistency of the proposed

formulation are given in Section 4. Finally, some conclusions are drawn (Section 5).

2. Mathematical formulation

The deflection q(x,t) of a Euler-Bernoulli prismatic beam to a harmonic load moving with a

constant speed c (Fig. 1) is described by the well-known field equation

(1)

where µ is the mass per unit length, χ is the damping coefficient, EJ is the flexural stiffness, F0 and

Ω are, respectively, the amplitude and the circular frequency of the moving load, δ is the Dirac

delta function, H is the Heaviside step function, L is the beam span length.

By the standard Galerkin method, the solution of Eq. (1) can be expressed in the form

(2)

where ϕj(x) is the j-th comparison function (Meirovitch 1980) and pj(t) is the corresponding

 

 

Fig. 1 Schematic representation of a generic beam crossed by a harmonic load 
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principal (or generalized) coordinate. By using the eigenfunctions of the eigenvalue problem related

to the free response of Eq. (1), ϕj(x) is assumed as the j-th vibration mode of the beam and, being a

comparison function, it satisfies the mechanical and geometric boundary conditions of the beam

(Fig. 1; Appendix A). Thanks to the orthogonality property of eigenfunctions, assuming proportional

damping, the equation of motion of the j-th principal coordinate pj is

 (3)

where ξj is the modal damping ratio, ωj is the natural circular frequency, Mj is the modal mass, Fj(t)

is the modal force. Expressing the generic mode shape ϕj as a function of a non-dimensional

abscissa ζ = x/L, Fj(t) is given by

(4)

Let us introduce the following non-dimensional quantities

(5)

where  is the non-dimensional frequency and  is the non-dimensional speed parameter (Fryba

1999). The coefficient ε is considered as a naturally small parameter, assuming F0 much lower than

the product Mj L. Substituting Eqs. (4) and (5) into Eq. (3), it becomes

(6)

Since the structural damping is usually small too, and assuming the non-dimensional speed

parameter  equally small (such an assumption is valid if c is small compared with the product ωj

L, namely the speed of the harmonic load is sufficiently lower than the critical speed of the beam),

they can be expressed as small of the same order of the parameter ε

(7)

The limit of validity of this assumption on the non-dimensional speed parameter will be deeply

discussed in Section 3.

Substituting Eq. (7) into Eq. (6), it becomes

(8)

The solution of Eq. (8) can be easily expressed through the convolution integral, which in general

has to be solved numerically for a generic structural mode. However, the non-dimensional form

points out the particular expression of the forcing function, being the product of a sinusoidal term,

depending on the non-dimensional time , and of the structural mode shape, depending on a slower

time scale . Such a particular condition suggests the possibility of solving Eq. (8) through a

perturbation technique based on a two-scale expansion (Kevorkian and Cole 1996, Simmonds and

Mann 1998), that can be seen as an application of the Multiple Scale Method (MSM) (e.g., Nayfeh
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and Mook 1979) using two sole temporal scale. The (perhaps) unusual adoption of the MSM for

solving a simple linear dynamic problem allows us to represent the solution as a harmonic function

slowly modulated in time; such an expression permits an easy determination of the maximum value

of the response, which can be very useful for practical applications. In the following, both the

solutions through the convolution integral (Section 2.1) and through the two-scale perturbation

technique (Section 2.2) will be presented. Finally, considerations about the dynamic response and its

maximum value are reported in Section 2.3.

2.1 Solution by the convolution integral

Eq. (8) can be solved through the convolution integral (e.g., Clough and Penzien 2003)

 (9)

where  is the non-dimensional impulse response function of the j-th mode of vibration

(10)

neglecting the terms of order O(ε2).

Substituting Eq. (10) into Eq. (9) and taking into account suitable trigonometric identities, one

obtains

(11)

Under the hypothesis that  = 1 (i.e., perfect resonance), Eq. (11) can be rewritten as follows

(12)

Therefore, the dynamic response evaluated by the convolution integral, Eq. (9), can be expressed

as the summation of three integrals: the first one depends on a non-oscillating function through the

slower time scale , while the second and third integrands are oscillating functions depending on

the fast time scale . The solution of Eq. (12) leads to the exact dynamic response of the system,

and it can be evaluated in closed-form only for particular expressions of the mode shape ϕj.
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2.2 Solution by the two-scale perturbation method

The particular expression of the forcing term in Eq. (8) suggests the possibility of solving it

through a perturbation method based on a temporal scale expansion, introducing the two time scales

 and  (two-variable expansion or two-scale method), so that the first and second time-

derivative are expressed as , and , where  (j =

0, 1).

The solution  can be developed in series of the small parameter ε << 1

(13)

Substituting Eq. (13) into Eq. (8) and equating the coefficients at the same order of ε, the two

following perturbation equations are obtained (up to order ε)

Order ε0 (14)

Order ε (15)

The general solution of Eq. (14) is given by

(16)

where i is the imaginary unit and the term c.c. denotes the complex conjugate.

Substituting Eq. (16) into Eq. (15), it becomes

(17)

Under the particular condition of perfect resonance,  (i.e., the loading frequency is perfectly

coincident with the structural frequency), corresponding to the maximum dynamic structural

response, Eq. (17) becomes

(18)

Eliminating the term that produces a secular term in  demands that

(19)

which leads to

(20)

It is evident from Eq. (20) that A is a real function, thus Eq. (16) can simply be re-written as

(21)

t̃0 t̃= t̃1 ε t̃=

d/dt̃ D0 εD1+= d
2
/dt̃
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Substituting Eq. (20) into Eq. (21), the solution  is obtained (at the first approximation order)

(22)

Eq. (22) coincides with the first term of the exact solution (12), obtained through the convolution

integral. It can be observed that all the integrands at the right-hand side of Eq. (12) involve the

same expression depending on the slow time-scale, but the second and third ones are also multiplied

by a function of the fast time-scale. As a consequence, the second and third integrals in Eq. (12),

calculated on functions fast oscillating in time, are very small compared to the first integral (the

only one retained by the perturbation method) calculated on the slowly variable function. Fig. 2

shows a picture of the three integrands in the particular case of sinusoidal mode of vibration; in

general, their shape depends on the non-dimensional parameters  and ξj, and on the mode ϕj(x).

It has been verified that the qualitative trend of such functions does not noticeably modify when

other mode shapes or different structural parameters are considered.

2.3 Dynamic response and corresponding maximum value

From Eq. (22) the j-th principal coordinate  can be expressed in the following meaningful way

p̃j

 

Ω̃c

pj t̃( )

Fig. 2 Typical picture of the three integrands in Eq. (12) ( = 0.003, ξj = 0.005), being 
, , 

Ω̃c f1 τ̃( ) =
ϕj Ω̃cτ̃( )exp ξcτ̃( ) f2 τ̃( ) sin 2τ̃( )ϕj Ω̃cτ̃( )exp ξjτ̃( )=  f3 τ̃( ) cos 2τ̃( )ϕj Ω̃cτ̃( )exp ξjτ̃( )=
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(23)

where Aj  is the dimensional slow-varying amplitude

(24)

It should be noted that this integral can be easily approximated by a summation if the vibration

mode is not known in closed form (Tubino and Piccardo 2008). Therefore Eq. (24) can be

employed to evaluate the amplitude of the dynamic response of a generic structure (modeled as a 1-

D continuum) to a resonant harmonic moving load (see Section 4.2).

Under the simplifying hypothesis that the beam dynamic response is dominated by the j-th

resonant mode of vibration, the structural response in terms of displacement and acceleration can be

approximated by the following equations

(25)

ζ being the non-dimensional abscissa, x/L.

The Dynamic Amplification Factor (DAF) is usually defined as the ratio between the effective

maximum dynamic response (hence in the point where the structural eigenfunction is maximum)

and the maximum static response (i.e., the static response to the maximum value of the dynamic

load applied in the point where the structural eigenfunction is maximum). Being the dynamic

response expressed by Eq. (25), the maximum dynamic response is proportional to the maximum

amplitude ; thus, the DAF can be expressed as 

(26)

where  is the maximum value of the modulus of the beam mode shape, .

It is evident that the factor β depends on the non-dimensional parameters  and ξj through the

maximum amplitude ; it assumes values much greater than 1, of the order of 1/(2ξj), if the

load velocity is very small. 

Furthermore, a Transition Deamplification Factor (TDF) β* can be introduced as the ratio

between the effective maximum dynamic response to a moving resonant harmonic load and the

maximum dynamic response to the same load considered fixed in the point where the structural

eigenfunction is maximum. Thus, the TDF β* expresses the reduction in the maximum dynamic

response due to the effect of the motion of the load, and it can be formulated as a function of the

DAF β as follows

(27)

For its definition, the TDF β* is always lower than unity and it has the advantage of formally

depending from only one parameter, the ratio : such a circumstance is expressly clarified in

Section 3, where the problem is solved in closed-form for ideal beams. Nevertheless, the classic
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DAF definition maintains its usefulness since it points out the limits of applicability of the proposed

solution (essentially depending on values of the non-dimensional speed parameter ), which are

not explicit in the TDF expression.

3. Closed-form solution for ideal beams

For simple structural schemes, analytical expressions are available for the mode shape ϕj: in such

cases, the integral in Eq. (24) can be solved in closed-form. Furthermore, the maximum value of the

amplitude of the j-th principal coordinate, and thus the DAF β and the TDF β*, can be expressed in

closed-form as a function of the non-dimensional parameters.

Let us consider a Euler-Bernoulli beam, with two rotational springs of different stiffness k1 and k2
at the right and left end, respectively (Fig. 1). The following j-th mode shape can be assumed for

generic boundary conditions (see Appendix A)

(28)

where α1 (= k1L/EJ) is the non-dimensional stiffness of the left-end spring, and σj is given by 

(29)

The eigenvalue λj is the solution of the following transcendental equation (Appendix A) 

(30)

α2 (= k2L/EJ) being the non-dimensional stiffness of the right-end spring. 

Considering a resonant harmonic load, the j-th principal coordinate can be expressed by Eq. (23),

where the amplitude can be obtained substituting Eq. (28) into Eq. (24)

(31)

Thus, the time derivative of the amplitude in Eq. (31) is given by

Ω̃c
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(32)

The non-dimensional time max at which the amplitude Aj reaches the maximum value can be

obtained setting equal to zero the time derivative of the amplitude. Since the first three terms in Eq.

(32) are numerically negligible with respect to the last one, max is approximately given by

(33)

Therefore, the DAF β (26) for a generic Euler-Bernoulli beam can be expressed in closed form as

a function of two non-dimensional parameters,  and ξj

 (34)

where  is given by Eq. (33). Substituting the explicit value (33) of the non-dimensional time

 into Eq. (34), it is evident that the DAF β depends on the non-dimensional speed parameter

 and on the damping ratio ξj.

Furthermore, substituting the DAF β into the TRF β*, Eq. (27), the TRF can be expressed as a

function of the ratio  as follows

 

t̃

t̃
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 (35)

where δ is a function of the ratio  and it is given by

(36)

In order to analyse the general tendency of the dynamic amplification on varying the involved

non-dimensional parameters, Fig. 3 shows a surface plot of the DAF β for a simply-supported beam

(α1 = α2 = 0) crossed by a harmonic load in resonance with the first mode of vibration, as a function

of the damping ratio ξj and of the non-dimensional speed parameter : the DAF rapidly decreases

on increasing both the damping ratio ξj and the non-dimensional speed parameter . It should be

 

Ω̃c/ξj

 

Ω̃c

Ω̃c

Fig. 3 Dynamic amplification factor β for a simply-supported beam crossed by a harmonic load in resonance
with the first mode of vibration 
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pointed out that the closed-form solution here reported is reliable only when the non-dimensional

speed parameter  is sufficiently small,  < 0.1. This condition is easily satisfied if the velocity

of the harmonic resonant load is small enough, as in the case of pedestrian-induced loading (e.g.,

Piccardo and Tubino 2012). If the harmonic load derives from the movement of train axles,  =

0.1 corresponds to a load velocity , being ccr the critical speed of the bridge. For

instance, for a trial bridge with a span of 30 m and a fundamental frequency of 3 Hz (Garinei

2006),  = 0.1 corresponds to a load velocity c = 56 m/s, i.e. approximately 205 km/h. Thus, the

closed-form solution here proposed is not reliable for very high speed loads.

In order to analyze the dependence of the DAF β on boundary conditions, Fig. 4 plots β as a

Ω̃c Ω̃c

Ω̃c

c 0.3 ccr⋅≅

Ω̃c

Fig. 4 Dynamic Amplification Factor β: α2 = 0, α1 = 0, 10, ∞: (a) j = 1, (b) j = 2, (c) j = 3, (d) j = 4 (ξj =
0.005) 
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function of the non-dimensional speed parameter  (setting a modal damping ξj = 0.005), for a

beam pinned at the right-hand side (α2 = 0) and for three different boundary conditions at the left-

hand side: the pinned (α1 = 0) support, an intermediate situation (α1 = 10) and the perfect clamped

(α1 = ∞) condition. The beam is crossed by a harmonic load in resonance with the j-th mode of

vibration: (a) j = 1, (b) j = 2, (c) j = 3, (d) j = 4; right-hand figures show the shape of the

corresponding vibration mode. The different boundary conditions clearly affect the DAF of the first

vibration mode only, at low values of the non-dimensional speed parameter, Fig. 4(a), where the

different left support leads to moderate differences (e.g., β changes from 86 to 83 when  =

0.001). When the non-dimensional speed parameter is increasing, or for higher modes, the DAF

values seem not modified by the different boundary conditions. On the other hand, for a fixed value

of the non-dimensional speed parameter (for instance, = 0.001), the DAF β is highly influenced

by the vibration mode wherewith the harmonic load is resonant, showing a drastic reduction of the

DAF on increasing the mode number (e.g., assuming = 0.001 and considering the simply-

supported beam, β = 86 for the first mode, j = 1, and β = 48 for the fourth mode, j = 4). 

Concerning the first vibration mode, Fig. 5 plots the analytical expression of the TDF β*,

Eq. (35), for three different boundary conditions, compared with its numerical values obtained

through a direct use of the convolution Eq. (9). The proposed analytical solution appears very close

to numerical values for all the support conditions, at least in the range of the ratio  considered

in the Figure. In fact, as discussed above, the proposed solution is based on the assumption that 

is small ( < 0.1), therefore the ratio , ξj being small of the same order as , can not

overcome values about 10. For higher values of the ratio , the analytical solution is not

reliable and the maximum response often appears during beam's free vibrations.

In any case, it seems important to highlight that the limit value of the TDF β* is not zero (i.e., the

dynamic response is not nil) when the ratio  is increasing. Such a circumstance is due to the

fact that, when  is high (i.e., the speed of the harmonic load is high and/or the damping ratio

is very small) the deamplification due to the motion of the resonant harmonic load is very marked,

and the dynamic response is approaching the maximum static response.

Fig. 6 summarizes the results of this Section comparing the TDF β* for the three ideal support

conditions of Euler-Bernoulli beams. Remarkable differences may be noted for intermediate values

of the ratio ; for instance, when  = 1, the TDF assumes the value 0.41 for simply-

supported beam and 0.35 for double-clamped beam, with a difference of about 17% in the

maximum of the dynamic response.

The closed-form solution proposed in this Section can be easily adopted for any value of the

stiffness of the springs at the ends of the beam (Appendix A). However, the expression of the mode

Ω̃c

Ω̃c

Ω̃c

Ω̃c

Ω̃c/ξj

Ω̃c

Ω̃c Ω̃c/ξj Ω̃c

Ω̃c/ξj

Ω̃c/ξj

Ω̃c/ξj

Ω̃c/ξj Ω̃c/ξj

Fig. 5 Transition Deamplification Factor β*: comparison between closed-form solution (solid line) and
numerical solution (circles), (a) simply-supported, (b) pinned-clamped, (c) double-clamped 
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shape and the closed-form solution for the response amplitude and for the dynamic factors result

considerably simplified when the stiffness of the supporting springs tend to zero (simply-supported

beam) or to infinity (clamped beam). Section 3.1 and Section 3.2 illustrate the solution for the

simply-supported beam and for the double-clamped beam, respectively.

3.1 Simply-supported beams

The solution for the simply-supported beam can be obtained from Eqs. (28), (31), (33), (34) and

(35), setting α1 = α2 = 0.

In such a case, the j-th mode shape, Eq. (28), assumes the well-known form

(37)

The amplitude of the j-th principal coordinate, Eq. (31), is given by

 (38)

The non-dimensional time  at which the amplitude Aj reaches the maximum value, Eq. (33),

becomes

(39)

Thus, the DAF β, Eq. (34), can be expressed as

(40)

where  is given by Eq. (39).

Finally, the TDF β*, Eq. (35), assumes the following explicit expression

 

 

t̃max

 

 

t̃max

Fig. 6 Transition Deamplification Factor β*: __ simply-supported, _ _ pinned-clamped, _ . _ double-clamped 
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(41)

The solution obtained in this Section is very similar to solutions already reported in the scientific

literature. A solution for the dynamic response of simply-supported beams crossed by a resonant

moving harmonic force has been obtained by Fryba (1999) in a different way, solving the equation

of motion through the Laplace-Carlson transformation. Fryba (1999) also proposed an expression

for a dynamic coefficient, conceptually equivalent to the DAF β, as a function of the speed and

damping parameters; however, this dynamic coefficient shows a poor accuracy in applications. The

interpretation of the dynamic response as a harmonic with slow-varying amplitude, and a closed-

form solution for the DAF, have been first introduced by the authors of the present paper (Tubino

and Piccardo 2008, Piccardo and Tubino 2009). Ricciardelli and Briatico (2011) have obtained

analogous expressions for the response amplitude (38), for the time instant (39) when the amplitude

reaches its maximum, and for the TDF (41); nevertheless the range of validity of their analytical

solution is not clearly delineated.

3.2 Double-clamped beams

The solution for double-clamped beams can be obtained from Eqs. (28), (31), (33) and (34),

setting α1 = α2 = ∞.

In such a case, the j-th mode shape, Eq. (28), assumes the form

(42)

The amplitude of the j-th principal coordinate, Eq. (31), is given by

(43)

The non-dimensional time  at which the amplitude Aj reaches the maximum value, Eq. (33),

becomes

(44)

Furthermore, the DAF β, Eq. (34), can be expressed as

 

 

 

t̃max
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(45)

where  is given by Eq. (44).

The TDF β* for the double-clampled beam is not liable for particular reductions and it assumes an

expression very similar to Eq. (35), related to generically-supported Euler-Bernoulli beams.

4. Numerical examples

In this Section, in order to illustrate the reliability both of the proposed closed-form solution in the

evaluation of the maximum dynamic response, and of its applicability to real bridges, two

typologies of examples are considered: simple beams for which closed-form solutions are

specifically deduced (Section 4.1), and an example of a real cable-stayed bridge (Section 4.2). For

each structural example, the dynamic response is first evaluated through a numerical integration of

the equation of motion; then, the proposed formulation is applied to analytically estimate the

dynamic response of the beam and its maximum value.

4.1 Closed-form solution for simple beams

In order to clarify the reliability of the proposed closed-form solution for the maximum dynamic

response, let us consider, as a test case, a clamped-pinned beam characterized by α1 = ∞, α2 = 0. At

 

t̃max

Fig. 7 Mode shape, time history of the principal coordinate, slow-varying amplitude and its time derivative
for a simple beam: (a) j = 1, (b) j = 2, (c) j = 3 
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first, the dynamic response of the beam crossed by a harmonic moving load in resonance with one

of the first three modes of vibration is evaluated, assuming the non-dimensional parameters ξj =

0.005, = 0.01 (Fig. 7). Then, the influence of the non-dimensional speed parameter on the

dynamic response to a load in resonance with the first mode of vibration is investigated (Fig. 8).

The closed-form solution for the amplitude of the principal coordinate is given by Eq. (31), the

time derivative of the amplitude is given by Eq. (32), the time at which the response is maximum

by Eq. (33).

Fig. 7 shows the dynamic response of the beam to a load in resonance with one of the first three

modes of vibration: (a) j = 1, (b) j = 2, (c) j = 3. The top figures show the beam mode shape. The

middle figures show the time history of the j-th principal coordinate, comparing the numerical

solution (thin solid line) with the closed-form solution proposed in this paper (dashed line), together

with the closed-form amplitude (thick solid line). The triangle indicates the maximum numerical

value of the principal coordinate; the circle denotes the maximum value provided by the closed-

form solution proposed in this paper. The bottom figures represent the time derivative of the

amplitude (solid lines), together with its approximation used in the evaluation of the maximum,

obtained neglecting the first three terms in Eq. (32) (dashed lines).

From an inspection of the bottom figures, it can be deduced that the approximation of the time

derivative of the response amplitude is very good in all the three modes; thus, the time at which the

response amplitude is maximum is well estimated by the approximated closed-form solution. The

middle figures show that the numerically-estimated time-histories of the principal coordinate are

perfectly coincident with the analytical solutions (thin solid and dashed lines are not

distinguishable); thus, the proposed closed-form solution practically coincides with the exact

solution. The slow-varying amplitude of the principal coordinate pj (solid thick lines) is able to

perfectly envelope the time-varying response too. Thus, the maximum principal coordinate

estimated analytically (circle) practically coincides with the numerically obtained maximum value

(triangle). These results confirm the excellent precision of the proposed analytical solution in its

validity domain, as already highlighted with reference to the TDF β*, Fig. 5.

Concerning the first vibration mode (j = 1), Fig. 8 plots the time history of the principal

coordinate for two different values of the non-dimensional speed parameter  ( = 0.001,

Fig. 8(a), = 0.1, Fig. 8(b)). When  is very small, Fig. 8(a), the proposed solution is surely

valid and the dynamic response is optimally approximated by the proposed closed-form expression.

In the limit case = 0.1, Fig. 8(b), the proposed solution still approximates well the dynamic

response. As discussed in Section 3, the accuracy of the analytical solution tends to diminish when

 becomes greater than 0.1. This occurs when the harmonic load performs few loading cycles

during its permanence on the beam. 

Ω̃c

Ω̃c Ω̃c

Ω̃c Ω̃c

Ω̃c

Ω̃c

Fig. 8 Time history of the principal coordinate for a simple beam: (a)  = 0.001, (b)  = 0.1 Ω̃c Ω̃c
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4.2 Pedestrian-induced vibrations of a real cable-stayed bridge

In this Section, the pedestrian-induced dynamic response of a real cable-stayed footbridge is

considered.

A single pedestrian walking on a footbridge exerts a dynamic loading in the vertical (v) and

lateral (l) directions, fpv(t) and fpl(t), respectively, which can be schematized as periodic loading

through a Fourier series (Allen and Murray 1993, Bachmann et al. 1995)

 
(46)

where G is the person’s weight (G � 700 N), αiv, αil are Fourier’s coefficients (i.e., the dynamic

load factors, DLFs) of the i-th harmonic in the vertical and lateral directions, respectively, fp is the

walking rate (Hz), φi is the phase shift of the i-th harmonic, i is the order number of the harmonic, n

is the total number of contributing harmonics. For usual walking speeds, the frequency of the

dominant harmonic is included between 1.6 and 2.4 Hz, and the DLF of the first vertical and lateral

harmonics are α1v� 0.4 and α1h� 0.1, respectively (Bachmann et al. 1995, Zivanovic et al. 2005).

Concerning the dynamic loading in the vertical direction, footbridges with natural frequencies below

5 Hz are considered as prone to human-induced vertical vibrations. A simplified vertical force

model is given by a simple sinusoid in resonance with one structural mode of vibration (Fig. 1),

moving across the bridge with a velocity c related to the pace frequency. Conventional Design

Codes (see, e.g., FIB 2005) adopt such a simplifying loading model and require the classic

evaluation of the maximum structural acceleration induced by the single pedestrian in order to

verify bridge’s vibration acceptability compared to suitable limit values.

The steel footbridge here considered has been recently built in Italy, and it is characterized by a

 

Fig. 9 Mode shapes of a real cable stayed bridge: (a) numerical results, (b) approximation with
eigenfunctions of ideal Euler-Bernoulli beams 
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span length L = 59.37 m; it has been modelled by a finite-element code and a modal analysis has

been performed, Fig. 9(a), subsequently verified through full-scale tests. The first mode of vibration

(n1 = 1.39 Hz) is flexural in the lateral direction, the second (n2 = 1.73 Hz) and third (n3 = 2.93 Hz)

modes of vibration are flexural in the vertical direction. Fig. 9(b) shows the vibration modes

obtained numerically (circle points) and their possible approximation through mode shapes of ideal

Euler-Bernoulli beams (continuous lines). The proposed general procedure has been applied in order

to evaluate the lateral/vertical dynamic response to a pedestrian crossing the bridge with a walking

rate resonant with each of the first three modes of vibration; the results are compared with the

response obtained by step-by-step dynamic analyses performed within the finite-element code. A

modal damping ξj = 0.005 has been assumed for the first three modes of vibration, the sampling

period is Ts = 0.01 s and the force amplitude has been assumed F0 = 87.5 N for mode 1 (lateral

direction) and F0 = 180 N for modes 2, 3 (vertical direction). The velocity of the pedestrian is

assumed c = 1.25 m/s for the analysis of mode 1, c = 0.9 × n2 = 1.56 m/s for mode 2, c = 2.5 m/s

for mode 3.

Fig. 10 shows the time-histories of the numerically estimated accelerations (thin solid lines),

compared with the solution proposed in this paper (dashed lines) in which the slow-varying

Fig. 10 Time-histories of acceleration for a real cable-stayed bridge: __ step-by-step solution, _ _ proposed
solution, __ slow-varying amplitude), harmonic load resonant with the first (a), second (b) and third
(c) mode of vibration 
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amplitude is calculated from a discretization of the integral in Eq. (24) using the numerically-

estimated modes (thick solid lines). Fig. 10(a) shows the lateral bridge acceleration at the deck mid-

span (xm = L/2) caused by a pedestrian walking in resonance with the first mode of vibration,

Figs. 10(b) and 10(c) plot the vertical bridge acceleration to a pedestrian walking in resonance with

the second and third mode of vibration, respectively, corresponding to the bridge deck abscissa xm
where the mode shape is maximum (xm = L/2 for mode 2, xm ≅ L/3 for mode 3). In all the figures,

thin solid and dashed lines are not distinguishable, thus, in all the cases analyzed, the response

evaluated by the proposed method perfectly coincides with the response estimated by step-by-step

analyses in finite-element codes. Moreover, the slow-varying amplitude (thick solid line) represents a

perfect envelope of the solution. Therefore, the proposed general procedure, based on the

representation of the response as a harmonic slowly modulated in time, confirms its applicability to

generic footbridges and represents an efficient tool to estimate the maximum footbridge acceleration.

A further simplified analysis has been carried out in order to test the possibility of estimating the

maximum acceleration induced by a walking pedestrian on a real footbridge, adopting the closed-

form expressions for the DAF β (Section 3) with boundary conditions providing a good

approximation of the numerical mode shapes. In particular, mode 1 can be considered as

intermediate between the first mode shape of a pinned-pinned and a double-clamped beam, modes 2

and 3 are similar to the first and second mode shape of a double-clamped beam, Fig. 9(b). The

numerical values for the stiffness of the supporting springs providing the selected approximation of

the three mode shapes have been reported in the figure. The maximum acceleration of the real

footbridge has been estimated multiplying the maximum quasi-static acceleration, , and

the DAF β for the approximating values of α1 and α2. Table 1 summarizes the results obtained for

the 3 modes analyzed: column 2 reports the load velocity, column 3 quotes the maximum numerical

acceleration estimated from the time-histories of Fig. 10, column 4 reports the maximum quasi-

static acceleration, column 5 quotes the values of the non-dimensional frequencies , columns 6

and 7 report the corresponding values of the dynamic amplification factor and of the maximum

acceleration evaluated adopting the proposed procedure. The comparison between the maximum

accelerations evaluated from the time-histories (column 3) and the corresponding values estimated

through the dynamic amplification factor for ideal Euler-Bernoulli beams (column 7) shows that the

proposed analytical expressions for ideal beams is able to evaluate the maximum dynamic response

of real complex structures with appreciable precision.

5. Conclusions 

In this paper, the dynamic response of a Euler-Bernoulli beam crossed by a resonant harmonic

F0ϕjmax

2
/Mj

Ω̃c

Table 1 Maximum dynamic response of a real cable-stayed bridge: comparison between the numerical results
and the proposed closed form solutions for ideal Euler-Bernoulli beams 

j
c

(m/s) (m/s2)
 (QS)

(m/s2)
β 

 (EB)
(m/s2)

1 1.25 0.095 0.0015 0.0024 61.8 0.093

2 1.56 0.23 0.0045 0.0024 57.1 0.256

3 2.5 0.16 0.0043 0.0023 41.5 0.176

q··max q··max Ω̃c

q··max
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load moving with constant velocity has been found in closed-form, solving the equation of motion

by a two-scale perturbation technique. It has also been shown that the same solution could be

obtained by the convolution integral, neglecting small terms depending on the fast time-scale. The

perturbation method points out the circumstance that the response can be modelled as a harmonic

function with slow-varying amplitude, and suggests that the maximum response is achieved when

this amplitude reaches its maximum value.

In case of Bernoulli-Euler beams with elastic rotational springs at the support points, starting from

analytical expressions for the eigenfunctions, the time-history of the dynamic response and the

Dynamic Amplification Factor have been provided in closed-form as functions of two non-

dimensional parameters, the speed parameter and the damping ratio. A Transition Deamplification

Factor is also introduced, depending only on the ratio between the speed parameter and the damping

ratio. Such expressions appear of technical interest, since they allow the evaluation of the maximum

dynamic response without the need for numerically made graphs, such as those proposed in the

literature, or for step-by-step numerical analyses. The limits of validity of the proposed procedure

have been deeply discussed as regards significant values of the non-dimensional parameters. For

real bridges characterized by generic mode shapes, the maximum dynamic response can be

evaluated adopting two different procedures: a first possibility is the (easy) discretization of the

integral defining the slow-varying amplitude; the alternative is to seek an equivalent stiffness for the

supporting springs in order to provide a reliable approximation of the structural mode shape, and to

use the closed-form solution for ideal Euler-Bernoulli beams here proposed. Therefore, the proposed

procedure represents an effective analytical tool for evaluating the sensitivity of a real bridge to

vibrations induced by moving resonant harmonic loads.
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Appendix A

Let us consider an Euler-Bernoulli beam with elastically restrained ends, provided by rotational springs
(Fig. 1). The equation of motion for free flexural undamped vibrations is

(47)

where q(x, t) is the vertical/lateral displacement, EJ is the flexural stiffness, µ is the mass-per-unit-length.
The boundary conditions are given by (Fig. 1)

(48)

The natural modes of vibration can be found searching for solutions of Eq. (47) expressed as 

(49)

Substituting Eq. (49) into Eq. (47), the mode shape ϕ(x/L) has to satisfy the following differential equation 

(50)

where λ is given by 

(51)

The general solution of Eq. (50) is given by 

(52)

Imposing the boundary conditions, Eq. (48), the following system of equations is obtained

(53)

Setting equal to zero the determinant of the coefficient matrix of the system (53), the following characteris-
tic equation is obtained

(54)

An approximate solution for the frequencies of an elastically restrained beam has been reported by New-
mark and Veletsos (1952), leading to
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(55)

Furthermore, expressing the constants c1, c2 and c3 as functions of c4, the mode shape can be simply
expressed as

 (56)

where σ is given by

 (57)

Eq. (56) can be viewed as a particular case of the equation obtained by Rao and Mirza (1989), who analy-
sed the more general case of a beam with both rotational and vertical springs at both ends, in the particular
case when the stiffness of vertical springs tends to infinity.

The mode shape and characteristic equation for simply-supported and clamped beams can be obtained from
Eqs. (54), (56) and (57) setting α1 and α2 equal to zero and infinity, respectively. The following Sections
report the classic solution in such particular cases.

A.1 Simply-supported beam

In case of simply-supported beams, setting α1 = α2 = 0 in Eqs. (54) and (56), simplified expressions for the
characteristic equation and for the mode shape can be obtained. 

The characteristic equation can be expressed as

(58)

The mode shape becomes

(59)

A.2 Clamped beam

In case of clamped beams, setting α1 = α2 = ∞ in Eqs. (54), (56) and (57), simplified expressions for the
characteristic equation, for the mode shape and for the parameter σ can be obtained. 

The characteristic equation can be expressed as

 (60)

The mode shape becomes

 (61)

Finally, σ is given by

(62)

 

 

 

 

 

 

 

 




