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Abstract. This paper presents a Modified Tikhonov Regularization (MTR) method in model updating
for damage identification with model errors and measurement noise influences consideration. The
identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is
usually solved with regularization method. When the structural system contains model errors and
measurement noise, the identified results from Tikhonov Regularization (TR) method often diverge after
several iterations. In the MTR method, new side conditions with limits on the identification of physical
parameters allow for the presence of model errors and ensure the physical meanings of the identified
parameters. Chebyshev polynomial is applied to approximate the acceleration response for moderation of
measurement noise. The identified physical parameter can converge to a relative correct direction. A
three-dimensional unsymmetrical frame structure with different scenarios is studied to illustrate the
proposed method. Results revealed show that the proposed method has superior performance than TR
Method when there are both model errors and measurement noise in the structure system.

Keywords: damage identification; noise; model error; modified Tikhonov regularization; model updating;
sensitivity; iteration 

1. Introduction

Most structures are subject to damage during their service lives due to unfavorable factors such as

environmental loads, fatigue effects, corrosion effects, material aging and etc. Early damage

detection and structural condition assessment are necessary for a structure such that timely

maintenance and repair of structural damage can be properly scheduled. This is vital to ensure the

overall safety in the service life of a structure. Structural damage may, in general, lead to changes in

the properties of a structure (mass, stiffness and damping) and these changes will in turn affect its

dynamic responses and characteristics. This fact forms the basis of vibration-based damage

identification techniques. 

There are many vibration-based damage detection methods. The identification approaches are

mainly based on the changes in natural frequencies (Cawley and Adams 1979, Hassiotis and Jeong

1993, Bicanic and Chen 1997), mode shape curvature (Pandey et al. 1991), modal flexibility

(Toksoy and Aktan 1994) and modal strain energy (Osegueda et al. 1997) which are usually taken
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as the measured information to identify local damage in the frequency domain. 

Comparing to the frequency domain approach, the time domain approach takes advantage of the

time dimension with plenty of measured data to formulate an over-determined set of equations for

the finite element model updating and damage detection. Lu and Law (2007) proposed a sensitivity-

based approach for identifying the local damages in a structure directly from the measured dynamic

responses. Sensitivity matrix of the response was calculated and directly used to locate and quantify

the damage severity. 

This paper does not introduce another method for damage identification. A Modified Tiknonov

Regularization (MTR) Method is proposed with the dynamic response sensitivity approach. Damage

in a structure can be defined in terms of a stiffness reduction factor. The change in the global

stiffness matrix is , in which Ki is the stiffness matrix of the ith element, ne is the

number of elements in the structure, αi is the stiffness reduction factor of the ith element. The

stiffness matrix of the damaged structure then becomes K + ∆K. The notations on the stiffness

change in the following study are defined as follows: α and ∆α are the total stiffness change and

the increment of an iteration with the size of ne × 1, respectively. The superscript k in αk and ∆αk

denotes results obtained for the kth iteration. αi and ∆αi are the ith element of the vector α and ∆α. 

The inverse problem based on sensitivity approach is often associated with the solution of a set of

equations of . Like many other inverse problems, this kind of equations is ill-conditioned

and the classical least-squares solution from the minimization of the norm  would be

inaccurate when there are model errors and measurement noise in practice. This kind of problem is

usually solved by regularization method (Tikhonov 1963, Hansen 1987, Hansen 1992, Vogel 2002).

From experiences gained in model updating with simulated structures, Tikhonov Regularization

(TR) method is found to give the optimal solution when there is no noise or very small noise in the

measurement. The solution norm  is added to the residual norm  as a side condition,

and the regularized solution can be obtained from the minimization of .

Parameter λ is the regularization parameter controlling the weight of the solution norm and the

residual norm, and it can usually be determined by the L-curve method (Hansen 1992). However,

some of the solutions obtained from the TR method exceed their physical limits ( ) and

lose their physical meanings. Li and Law (2010) proposed an Adaptive Tikhonov Regularization

Method for damage detection based on nonlinear model updating. The discrimination of possible

damaged elements and undamaged elements is performed from results obtained in previous

iterations via a new side condition which aims at (a) to limit the local change in damaged structural

elements in each iteration; and (b) to ensure the variation of other undamaged elements close to

zero. This method was proved effective even with noise contamination in the measurements.

However, this new side condition does not take care of all possible variations of the stiffness

change, and in particular, the effect of initial model errors. 

In the proposed MTR method, new side conditions with limits on the identification of physical

parameters allow for the presence of model errors and ensure the physical meanings of the

identified parameters. Chebyshev polynomial (Ni and Chen 2009) is applied to approximate the

acceleration response for moderation of measurement noise. The identified physical parameter can

converge to a relative correct direction. A three-dimensional unsymmetrical frame structure with

different scenarios is studied to illustrate the proposed method. Results from simulations show that

the proposed method has superior performance than the TR method when there are both model

errors and measurement noise.
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2. Forward problem

2.1 Dynamic response of a structure

For a general finite element model of a time-invariant N degrees-of-freedom (DOFs) damped

structure, the equation of motion can be written as

(1)

where M, C, and K are the mass, damping and stiffness matrices of the structural system

respectively. Rayleigh damping is adopted which is of the form

 (2)

where a1 and a2 are constants to be determined from the modal damping ratios of two modes. , 

and x are vectors of acceleration, velocity and displacement of the structural system respectively. F

is the vector of external excitation forces with matrix L mapping these forces to the associated

DOFs of the structure. If the external excitation and the finite element model of the structure are

known, responses ,  and x in Eq. (1) can be solved using the step-by-step Newmark-β
integration method.

2.2 Sensitivity of response in time domain

Differentiate Eq. (1) with respect to αi, we have

(3)

where  are vectors of the acceleration, velocity and displacement

sensitivities with respect to the stiffness fractional change respectively. Since x and  have been

obtained from Eq. (1), the right-hand side of Eq. (3) can be considered as an equivalent forcing

function, and Eq. (3) is of the same form as Eq. (1). The sensitivities  and 

can be also obtained by step-by-step Newmark-β integration method.

3. Inverse problem

In the forward analysis, the dynamic responses and their sensitivities with respect to the structural

parameters of a finite element system can be obtained from Eq. (1) and Eq. (3). In the inverse

problem, the stiffness fractional change will be identified from the measured responses at the

accessible DOFs. The most commonly used measured response is acceleration because of its ease of

measurement. 

An error function, defined as the difference between the calculated responses from the updated

finite element model and the measured acceleration responses of the structure, can be written as 

(4)

The identification equation can be expressed as the first order Taylor expansion of the acceleration

responses (Lu and Law 2007)
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 (5)

where S is the acceleration response sensitivity matrix that can be calculated from Eq. (3), and it

can be written as (Lu and Law 2007)

 (6)

where nt is the total number of time sampling points, Nsensor is the number of sensors. S is a two

dimensional matrix representing three-dimensional array, with one dimension of time, one

dimension of measured DOFs and the other dimension of the number of structural parameters to be

identified.

The model updating technique is required. An analytical model of the target structure is treated as

the reference model, and the measurements from the damaged structure will be used to update the

reference model with iterations. The vector of structural physical parameters can be identified through

model updating. The damage identification equation for the (k+1)th iteration can be written as

 (7)

where Sk and  are obtained from the kth iteration. 

Convergence is considered achieved when the following criterion is met

(8)

where  is the stiffness fractional change from the kth iterative step. Tolerance is a small value to

be defined.

The final fractional change in the stiffness of the ith element after nth iteration is 

 (9)

in which n is the number of iterations,  is the assumed initial stiffness reduction factor that is

usually assumed equal to 0.0.

The relative percentage error in the identified result is defined as

Relative error =  (10)

where αid is the vector of identified stiffness reduction factors and αreal denotes the vector of real set

of stiffness reduction factors.
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4. MTR method

4.1 MTR method

Like many other inverse problems, Eq. (7) is ill-conditioned. This means that small perturbations

can lead to unrealistically large perturbations in the update parameters, and regularization method

should be taken to solve the problem. The two most common regularization methods are TR

method and the truncated singular value decomposition (Golub and Van Loan 1996).

In the TR method, Eq. (7) can be solved as the minimization of the following objective function

 (11)

This function has two parts: the first part is the least-squares solution of Eq. (7); the second part

limits the size of the update solutions. The regularization parameter λ controls the weight given

to the solution norm  relative to the residual norm . 

The TR method in Eq. (11) adds a regularization term to the least-squares minimization form in

order to solve the ill-conditioned problem. However, when a structural system contains model errors

and measurement noise, some of the solutions obtained will exceed their limits and lose their

physical meanings. The reason for this is that the TR method does have a side condition on the

least-squares solution, but the range of the regularized solution is from  to  which means the

physical meaning of the solution is not ensure. In order to avoid the shortcoming of the TR method,

the minimization function in the MTR method can be defined similar to the consistent regularization

form (Weber et al. 2009, Li and Law 2010) 

 (12)

When there is no model error in the finite element model of the structure, the accumulated change

only exists in damaged elements with a decrease in stiffness. The range of the summation of

increments of the stiffness fractional change is as follows 

 (13)

when k = 0, 

when 

(14)

However, in practice, the structure may contain initial model errors. Model errors in structure

usually refer to parametric perturbations, wrong geometric properties, incorrect boundary conditions

and etc. This paper only focuses on the parameter errors. With the consideration of model errors,

the accumulated change (difference) not only exists in damaged elements but in all of the structure

elements. Thus, a range of the stiffness fractional change is provided in the MTR method as 

(15)
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general range of the stiffness change factor to ensure the physical meanings of the structure

element. However, [llow, lup] can be a narrow range with  and , and it can be

determined from engineering considerations like results of non-destructive tests for structural

parameters. Eq. (14) can then be expressed in the MTR method as 

(16)

To minimize the objective function in Eq. (12), the sensitivity matrix is singular value

decomposed as

 (17)

where U and V are of dimensions  and  respectively with >

ne. The vectors in U and V are orthogonal, i.e., . However, ,

because matrix U contains only ne columns in the thin version of the singular value decomposition.

This thin version decomposition is more economical and is usually sufficient for calculation (Weber

et al. 2009).  has the singular values σi arranged in a non-increasing order

such that .

The solution to Eq. (7) can then be obtained as a function of the regularization parameter λ

(18)

where ,  and f is the vector of filter factors with the expression as

. Since the range of the regularization parameter is .

It is noted that regularization method makes use of the filter factors to damp the effects associated

with small singular values. 

4.2 Determination of regularization parameter

The L-curve method (Hansen 1992) is used for determining λ in this work. L-curve is a plot on

all valid regularization parameters with the norm of the regularized solution versus the

corresponding residual. The range of the regularization parameter  is divided into 2000

points for choosing the optimal λ.

The residual norm and solution norm are

 (19)

 (20)

Fig. 1 shows the generic form of the L-curve. It displays the compromise between minimization

1– llow 0≤ ≤ 0 lup 1≤ ≤

α
k *,

lup      if α
k( )i lup>( )

α
k( )i   if llow α

k( )i lup≤ ≤( )

llow        if α
k( )i llow<( )⎩

⎪
⎨
⎪
⎧

=

S
k

UΣV
T

=

Nsensor nt×( ) ne× ne ne× Nsensor nt×( )
U

T
U V

T
V VV

T
Ine ne×

= = = UU
T

I≠

Σ diag σ1 σ2 … σne, , ,( )=

σ1 σ2 … σne 0≥ ≥ ≥ ≥

α
k 1+∆ Sk

T
Sk λ

2
I+( )

1–

Sk

T
x··
k∆ λ

2
α

k
α

k *,
–( )–[ ]=

 Vifixw Vi 1 fi–( )xv–( )
i 1=

ne

∑=

xw Ui

T
x··
k∆ /σi= xv V

T
α

k
α

k *,
–( )=

fi σi

2
/ σi

2
λ
2

+( ), i 1 2 … ne, , ,=( )= σ1 λ σne≥ ≥

σne σ1,[ ]

ρ
2

S
k

α
k 1+

x··
k∆–∆⋅ 2

2

Uiσi fixw 1 fi–( )xv–( ) x··
k∆–( )

i 1=

ne

∑
2

2

= =

η
2

α
k 1+

α
k *,

– 2

2

Vi fixw Vi 1 fi–( )xv– α
k

α
k *,

–+( )
i 1=

ne

∑
2

2

= =



Modified Tikhonov regularization in model updating for damage identification 591

of these two quantities. The value of λ can be located corresponding to the maximum value of the

curvature.

4.3 Moderation of the measurement noise effect

White noise is added to the calculated responses to simulate the polluted measured responses

 (21)

where Ep is the percentage noise level,  is a standard normal distribution vector with zero

mean and unit standard deviation,  is the standard deviation of the calculated acceleration

response.

Since the dynamic response sensitivity approach is in time domain, Chebyshev Polynomial (Ni

and Chen 2009) is applied to approximate the time history ( ) of the “measured”

accelerations so as to moderate the influence of noise.

Firstly, the time variable  is normalized as  as follows

,  (22)

The “measured” acceleration is defined as

(23)

while the “measured” acceleration after curve-fitting is defined as 

(24)

with 

, (25)

where, Nm denotes the number of terms of the Chebyshev Polynomial. The Chebyshev Polynomial

Ti is determined from the following recurrence formulae 
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Fig. 1 Generic form of the L-curve
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(26)

The coefficient of the Chebyshev Polynomial qi can be taken as unknowns in the curve fitting via

the least-squares method. The cost function which is the difference between the responses after

curve-fitting and the measured responses can be written as

 

(27)

in which τ is calculated by Eq. (22). qi is obtained by minimizing the cost function in Eq. (27).

4.4 Implementation procedure

The implementation procedure in model updating via MTR method is shown as follows: 

Step 1: Conduct acceleration measurements  at the accessible DOFs of the structure.

Step 2: The Chebyshev Polynomial is applied to approximate the “measured” responses. The

vector of coefficients of Chebyshev Polynomials qi is calculated by minimizing the cost

function in Eq. (27), and the “measured” acceleration after curve-fitting can be obtained

from Eq. (25). 

Step 3: The range of the stiffness fractional change [llow, lup] is determined from engineering

considerations like results of non-destructive tests.

Step 4: With the given force vector acting on the structure and the structural mass, damping and

stiffness matrices of the analytical reference model updated from the last k iterations, the

acceleration vector  is obtained from Eq. (1) at the (k+1)th iterative step using

Newmark-β integration method. Subsequently, the error vector  of the differences

between the calculated acceleration  and measured acceleration  is computed from

Eq. (4).

Step 5: The sensitivity matrix S of the acceleration with respect to the different physical parameter

of the structure is obtained from Eq. (3) using again Newmark-β integration method at

(k+1)th iteration with the physical parameter vector and acceleration response vector

obtained from the last k iterations.

Step 6: The sensitivity matrix S obtained in step 5 is singular value decomposed from Eq. (17).

The side condition in MTR method is determined according to the results obtained from

the last k iterations. The residual norm ρ and solution norm η are calculated from Eq. (19)
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and Eq. (20) respectively. The regularization parameter λ is determined by L-curve

method. The regularized solution of the changes of the structural parameters is calculated

from Eq. (18). 

Step 7: The finite element model is updated. 

Step 8: Repeat Steps 4 to 7 until the convergence condition in Eq. (8) is met.

5. Numerical examples

5.1 Simulation studies with a three-dimensional frame structure

A three-dimensional unsymmetrical frame structure shown in Fig. 2 is studied to illustrate the

performance of the proposed method. The finite element model of the structure consists of 26

elements and 20 nodes each with six DOFs. The frame is fixed to the ground at Nodes 1 to 8 with

rigid supports. The elastic modulus of material is 210 GPa, and the material density is 7.8 × 103 kg/

m3. The area of the member cross-section is 0.04 m2. The flexural moment of inertias of all

members in the x- and y-directions are 1.33 × 10−4 m4. Rayleigh damping is assumed and the

damping ratios for the first two modes are both taken as ξ = 0.02.

Fig. 2 Finite element model of the three-dimensional frame structure 
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The structure is subject to North-South El-Centro seismic acceleration acting along the y-axis of

the supporting nodes. The equation of motion of the structural system becomes 

 (28)

where Γ is a vector of zeros and ones defining the loading from ground acceleration onto the

structure,  is the ground acceleration. The DOFs in x-direction at Nodes 10 and 15, y-direction at

Nodes 10, 12, 13 and 14 and z-direction at Nodes 11 and 16 are taken as the sensor locations. The

sampling rate and time are 500 Hz and 1s respectively. 

The elastic modulus of material, Ei, is taken as the stiffness parameter to be identified in this

study. The mass and damping of the system are assumed unchanged. The model errors that are

simulated as random errors uniformly distributed within of the modulus of elasticity of material E.

The Tolerance in Eq. (8) is taken equal to 10−8, 10−4 and 10−3 for different cases as listed in Table 1.

The values [llow , lup] in Eq. (16) are set equal to [−1.0, 0.1] and [−1.0, −0.02] for the studies with

and without initial model errors respectively except otherwise stated. 

5.2 Discussions on the identified results

A damage scenario with 15% reduction in the elastic modulus of elements 1 and 4 is studied with

different levels of random noise and model errors. 

To moderate the influence of noise, all the “measured” responses are fitted with the Chebyshev

Polynomial. Take the acceleration response at y-direction of Node 14 as an example, the error

versus number of terms of the Chebyshev Polynomial polluted with 10% noise is shown in Fig. 3

with the error defined as 

 (29)

where  denotes the “measured” acceleration matrix and  denotes accelerations after

curve fitting. The error is the smallest when the number of terms is 220, and the error remains

relatively stable for a larger number of terms. Therefore, 220 terms are adopted in the Chebyshev

Polynomial approximation of the acceleration response. Fig. 4 compares the polluted and curve-

fitted responses at y-direction of Node 14. It can be seen that the Chebyshev Polynomial

approximation is noted to be effective to remove the noise effect. 

The TR and MTR methods are used to identify the damage scenarios described below.
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Table 1 Computation and iteration detail

Case no. Method Convergence error Iteration no. required Error (%) of identification

Case 1
TR 10−8 35 7.65 × 10−4

MTR 10−8 20 1.24 × 10−5

Case 2
TR 10−4 3 50.83

MTR 10−4 4 0.78

Case 3
TR 10−3 6 52.19

MTR 10−3 6 1.24
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5.2.1 Case 1: without noise and model errors

Identified results from the TR method and the MTR method are plotted on the same graph for

easy comparison. From Fig. 5 it can be found that the local damages are identified accurately with

the two methods when there are no noise and model errors. Information on the computation

requirements are given in Table 1. The evaluation of convergence error is computed from Eq. (8)

and the error of identification is computed from Eq. (10). The convergence error for the two

methods is 10−8. The error computed from Eq. (8) for the TR method is  which is

bigger than  for the MTR method. 

5.2.2 Case 2: with 10% noise

When there is 10% noise in the measurements, results from the TR method are much poorer than

those from the MTR method. The identification results from TR method diverge at the second step.

7.65 10
4–×( )%

1.24 10
5–×( )%

Fig. 3 Error versus number of terms of the Chebyshev
Polynomial

Fig. 4 Comparison of the polluted and curve-fitted
responses at y-direction of Node 14

Fig. 5 Comparison of the identified results from the
two methods for Case 1

Fig. 6 Evolution of the error of identification with
iterations for Case 2 
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Here, diverge means that the regularization parameter dramatically changes and directs the

regularization to a wrong path. Fig. 6 shows the evolution of the error of identification with

iterations from the two methods. It is noted that the two methods are the same in the first iteration

which is expected as they are based on the same initial condition. However, the identification results

from TR method diverge at the second step and converge to a wrong path at the third step with a

convergence error 10−4 while those from the MTR method converge to a steady value with the right

path at the fourth step. 

Figs. 7(a) and 7(b) show the L-curve and the regularization parameter with the two methods for the

third and fourth iterations respectively. It is found that the regularization parameter for the TR method

is extremely big with the value of  and this parameter directs regularization to a wrong

path. In MTR method, the regularization parameter is 0.33 and it only has a little change after the

fourth iteration. It proves that the MTR method regularizes the solution in a consistent way. 

Figs. 8(a) and 8(b) show the identified results with bar chart from the two methods. The errors

computed from Eq. (8) are 50.83% and 0.67% for the TR and MTR methods respectively. It can be

1.67 10
138×

Fig. 7 Comparison of L-curves and the regularization parameters from the two methods for Case 2 

Fig. 8 Comparison of the identified results from the two methods for Case 2



Modified Tikhonov regularization in model updating for damage identification 597

seen that almost all the elements are wrongly identified except the damaged element 1 in the TR

method. The results obtained from the MTR method are noted to be much better than those

obtained from the TR method with 10% noise in the measured responses. The location and extent

of damages can be identified with acceptable errors from MTR method. 

Figs. 9(a) and 9(b) show the evolution of the stiffness fractional change with iterations from the

two methods. The identification results of the TR method are with larger errors in the identification

results while those are with higher accuracy from the MTR method. The identified stiffness

fractional changes converge to steady and relative accurate values after iterations. 

5.2.3 Case 3: with 10% noise and 5% model errors

The followings give the comparative studies of the two methods for the case with 10% noise and

5% initial model errors that are simulated as random errors uniformly distributed within ±5% of the

modulus of elasticity of material E. Fig. 10 shows the evolution of the error of identification with

iterations from the two methods. The identification results from TR method diverge at the second

Fig. 9 Evolution of stiffness fractional change factor from the two method for Case 2

Fig. 10 Evolution of the error of identification with iterations for Case 3
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step and converge to a wrong path at the sixth step with a convergence error 10−3 while those from

the MTR method converge to a steady value with the right path at the sixth step. 

Figs. 11(a) and 11(b) show the L-curve and the regularization parameter with the two methods for

the sixth iteration respectively. Similar to Case 1, the regularization parameter for the TR method is

extremely big with the value of  and this parameter directs the regularization to a wrong

path. In the MTR method, the regularization parameter is 0.28 and it has a little change after the

sixth iteration. 

The errors computed from Eq. (8) are 52.19% and 1.24% for the TR and MTR methods

respectively. Fig. 12(a) and 12(b) show the identified results with bar chart from the two methods.

In the TR method the physical meaning of the solution is not ensured, and the errors of the

identified results are too big to be acceptable. The errors of identification results from the MTR

method which has limits on the identified results are slightly small. There are only few wrongly

identified elements with small model errors and the stiffness parameters of other elements can be

identified accurately. 

Figs. 13(a) and 13(b) show the evolution of the stiffness fractional change with iterations from the

8.79 10
70×

Fig. 11 Comparison of L-curves and the regularization parameters from the two methods for Case 3

Fig. 12 Comparison of the identified results from the two methods for Case 3
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two methods. The TR method has larger identification errors in almost all the elements. The

identification results are with higher accuracy from the MTR method and the identified stiffness

fractional changes converge to steady and relative accurate values after iterations. 

5.2.4 The influence of limits

To investigate the influence of limits of lup and llow on the identification accuracy in MTR method,

the limits of [−1, 0.1], [−1, 0.15], [−1, 0.2] are applied in the reference term in Eq. (16). The

computation results are listed in Table 2. It is found that the identification error with the limit range

[−1, 0.1] is the smallest and the errors with the other two limit ranges are very close to that with

limit range [−1, 0.1]. It can be concluded that a proper limit range is [−1, lup], in which lup should be

smaller than 1. The error of identification result will be small if lup is set close to the upper range of

the real model errors. 

6. Conclusions 

A Modified Tikhonov Regularization Method for model updating is presented in this paper for the

case where there are both measurement noise and model errors in the structural system. The

conventional Tikhonov Regularization Method has been shown to diverge after a few iterations in

the computation. The proposed Regularization Method imposes limits on the fractional change of

the physical parameters in the determination of the regularization parameter to allow for the

Fig. 13 Evolution of stiffness fractional change factor from the two method for Case 3 

Table 2 Computation and iteration detail (Scenarios with different limits)

Scenario
Limits of the

 identified parameter
Convergence

 error
Iteration no. 

required
Regularization

Parameter
Error (%) of 
identification

1 [−1, 0.1] 10-3 6 0.28 1.24

2 [−1, 0.15] 10-3 3 0.31 1.43

3 [−1, 0.2] 10-3 6 0.32 1.30
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presence of initial model errors which may be above or below the analytical value. A side condition

changes adaptively according to the results obtained in previous iterative steps to ensure the solution

is in a realistic range. Chebyshev polynomial is applied to approximate the acceleration responses

for moderating the influence of measurement noise. A three-dimensional unsymmetrical frame

structure with different damage scenarios is studied to illustrate the proposed method. Results from

simulations show that the proposed method has superior performance than the conventional TR

method when there are both measurement noise and model errors.
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