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Abstract. The behaviour of beam-to-column connections plays an important role in the analysis and
design of steel structures. A computer-based method is presented for nonlinear steel frames with semi-
rigid connections accounting for shear deformations. The analytical procedure employs transcendental
stability functions to model the effect of axial force on the stiffness of members. The member stiffness
matrix, and the fixed end forces for various loads were found. The nonlinear analysis method is applied
for three planar steel structures. The method is readily implemented on a computer using matrix structural
analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.
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1. Introduction

In the analysis and design of frame structures the real behaviour of beam-to-column connections

are generally idealized either fully rigid or ideally pinned. The models with ideal connections

simplify analysis procedure, but often cannot represent real structural behaviour. This discrepancy is

reported in numerous experimental investigations of steel frames with different types of connections

(Jones et al. 1983). The rigid connection idealization indicates that relative rotation of the

connection does not exist and the end moment of the beam is entirely transferred to the columns. In

contrast to the rigid connection assumption, the pinned connection idealization indicates that any

restraint does exist for rotation of the connection and the connection moment is zero. Although

these idealizations simplify the analysis and design process, the predicted response of the frame may

be different from its real behaviour. Therefore, this idealization is not adequate as all types of

connections are more or less, flexible or semi-rigid. It is proved by numerous experimental

investigations that have been carried out in the past (Nethercot 1985, Davisson et al. 1987, Moree et

al. 1993). The term semi-rigid is used to express the real connection behaviour. Therefore, beam-to-

column connections in the analysis/design of steel frames should be described as semi-rigid

connections.

Generally, nodal connections of plane frames are subjected to influence of bending moments, axial

forces and shear forces. The effects of axial and shear forces can usually be ignored, and only the
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influence of bending moments is of practical interest. The constitutive moment-relative rotation

relation, M-φ, depends on the particular type of connection. Most experiments have shown that the

M-φ curve is nonlinear all the whole domain and for all types of connections. Therefore, modelling

of the nodal connection is very important for the analysis and design of frame structure.

Based on experimental work due to static monotonic loading tests carried out for various types of

beam-to column connections, many models have been suggested to approximate the connection

behaviour. The simplest and the most common one is the linear model that has been broadly used

for its simplicity (Monforton and Wu 1963, Akkaya 1991, Aksogan and Gorgun 1993). This

approach is based on modelling the connection as a lengthless rotational spring. This method is

widely used in semi-rigid analysis of frames, and the implementation of this approach requires

small modifications in the existing analysis programs. This modification does not considerably

increase the computational time. Therefore, each element of the frame consists of a finite length

element with a lengthless rotational spring. However, this model is good only for the low level

loads, when the connection moment is quite small. In each other case, when the connection rigidity

decrease compared with its initial value, a nonlinear model is necessary. Several mathematical

models to describe the nonlinear behaviour of connections have been formulated and widely used in

research practice (Wu and Chen 1990). Often, many authors use the so called corrective matrices to

modify the conventional stiffness matrices of the beams with fully fixity at both ends (Monforton

and Wu 1963, Romstad and Subramanian 1970, Frye and Morris 1975). Elements of the corrective

matrices are functions of the particular nondimensional parameters-fixity factors (Monforton and

Wu 1963), or rigidity index (Dhillon and Abdel-Majid 1990). In Simoes (1996), such an approach is

used in the context of the optimization of steel frames with semi-rigid connections.

In addition to the linear behaviour, many studies have been developed to the nonlinear analysis of

the static and dynamic behaviour of frames with semi-rigid connections using different models of

geometric nonlinearity of elements and nodal connections (Xu et al. 2005, Aristizabal-Ochoa 2007,

Liu 2009). In most studies, the effect of shear deformation and axial force on elastic behaviour has

been ignored as being of little consequence. However, there are steel frameworks for which shear

effects may be significant, e.g. those that have deep transfer girders (Dincer 1991, Aristizabal-Ochoa

2012). Also, in the analysis of structural systems the members forming the planar frames are

general1y assumed to be rigidly connected among each other. However, more often than not the

assumption of pin connections is also employed in such cases where the rigidity of the connection

cannot be provided to a dependable degree. In fact, both of the foregoing assumptions are

unrealistic when one is treating steel frames and especially, nowadays, widely used precast

reinforced concrete structures. In such structures beams and columns behave as if they are semi-

rigidly, or flexibly, connected among themselves, as far as the rotations of the ends are concerned.

Hence, experimentally determined effective rotational spring constants for those connections should

be used in the analyses of such structures. This paper presents a computer-based method for

geometrically nonlinear analysis of planar steel frameworks with semi-rigid connections based on

Timoshenko beam theory so as to explicitly account for the influence of shear deformation and the

axial force on elastic behaviour (Timoshenko and Gere 1961). Stability functions are employed to

model the effect of axial force on the elastic bending stiffness of members, and the influence of

semi-rigid connections is taken into account. The shear-stiff stability functions presented in

(Livesley and Chandler 1956, Majid 1972, Chen and Lui 1991) are modified to take shear

deformability into account. The history of the stability functions for shear-flexible members is given

in (Al-Sarraf 1986, Mottram 2008).
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The geometrically nonlinear elastic analysis procedure is a direct extension of the conventional

matrix displacement method of linear-elastic analysis. The nonlinear analysis method is verified for

three example benchmark steel structures from the literature.

The present study is an attempt to prepare a computer program that treats the aforementioned type

of structures elegantly, taking into consideration the behaviour of the flexible connections and the

influence of shear deformations on elastic behaviour along with the effect of geometric nonlinearity

due to the axial forces in the members. As is well known, the upper limit of the load in any

structure is the critical value of the load, the buckling load, which is found by taking geometric

nonlinearity into consideration. Hence, the results of the present study will constitute the basis of

the stability analysis of the same type of structures.

The method used in the present study is the well-known stiffness method of structural analysis.

First, the stiffness matrix of a member elastically supported against rotation at both ends is obtained

using the second order analysis. Then, the fixed end forces are found for a member elastically

supported at the two ends by rotational springs for a uniformly distributed load, a concentrated load,

a linearly distributed load, a symmetrical trapezoidal distributed load and an unsymmetrical

triangular distributed load. For the latter analysis, the second order theory was employed once again,

along with the use of differential equations which yielded trigonometric functions for the case of

axial compressive force and hyperbolic functions for the case of axial tensile force.

The computer program that was prepared can be used to solve static problems of planar frames

composed of members that are flexibly connected at the nodes.

2. Analysis model

This study concerns planar steel frameworks discretized as an assembly of beam-column members

that beams flexibly connected to columns taking into account the effect of shear and axial

deformations. It is assumed that there are no out-of-plane actions, and bending, shearing or axial

deformation (φ, γ or δ) under the action of moment, shear or axial force (M, V or P) is concentrated

at member sections.

The present study is mainly composed of two parts. The first part is comprised of the analytical

study that employs the matrix method which is commonly used in structural analysis. In this part,

the stiffness matrix of the structure of concern is obtained, the contributions of different types of

loads to the loading vector are found and the formulation of the equilibrium equations for the

determination of the unknown displacements is explained. Actually, besides the more complicated

type of functions compared to linear analysis, there is also a need for separate analyses for

compressive and tensile axial forces which doubles the analytical work. In the second part of the

study the pertinent computer program was prepared.

In the present study, the method used being the matrix stiffness method the main concern is to set

up the relation between the loading and the displacement vectors of a given structure.

To accomplish this, the first thing to be done is to find the relation between the end forces and the

end deflections for a prismatic planar beam-column member. The terms “force” and “deflection” are

taken to be general expressions signifying direct forces and moments, and linear deflections and

rotations respectively. Towards this end we must first define the sign convention and notation which

is done in Fig. 1 where positive senses of the entities at the two ends in the axial, transverse and

rotational directions are shown with the arrows numbered from one to six. The left and the right
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ends of the member are also shown along with the corresponding spring constants, which express

the ratio of flexural stiffness of connection to flexural stiffness of beam to which it is attached. The

lengths of the springs are supposed to be zero. The physical properties of the member are

designated in the conventional manner-E, G, L, I, A and As denote Young’s modulus, shear modulus,

length, cross-sectional moment of inertia, cross-sectional area and equivalent shear area respectively;

while  and fi (i = 1, 2,…, 6) are local axis member-end forces, deformations and fixed end

forces, respectively. k1 and k2 are the constants of the rotational springs at the left and the right

ends, respectively, The member is perfectly straight, and uniform in cross-section throughout its

length. The material of the member is linearly elastic.

2.1 Modified stiffness matrix of a flexibly connected member

In order to obtain a force-displacement relationship of a beam-column member with semi-rigid

connections, the superposition method cannot be applied. The force-deformation relationship for the

beam-column member in Fig. 1 is

 (1)

where the vectors of end-section forces , deformations  and

fixed end forces due to intermediate loads between joints  are referenced to the

local-axis system for the member, and the local-axis stiffness matrix k for the member is a six by

six matrix.

pi di,

p kd f+=

p p1 p2 … p6, , ,[ ]T= d d1 d2 … d6, , ,[ ]T=

f f1 f2 … f6, , ,[ ]T=

Fig. 2 Notation for beam-column member with axial force

Fig. 1 Beam-column member model
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Under a suitable value of axial compressive force P, the bending moment M (clockwise +) and

shear force T (If the resultant of the forces to the left of a section acts upwards, then the shear force

at that section is positive) at any distance x from the left-hand end in Fig. 2 are

 (2a)

 (2b)

The shear contribution in the total lateral deflection of a beam-column element as treated in the

ordinary small deflection elastic theory is very simple; and, it is very small compared with the

flexural deflection.

In the following analysis, it is assumed that the shear component of the axial force acts

perpendicularly to the total slope, dy/dx, which is defined by

 (2c)

 (due to bending)  (2d)

 (2e)

 (due to shear)  (2f)

in which y = member lateral deflection; x = longitudinal coordinate along member starting from the

left-hand end; θ = bending slope; and γ = shearing strain (slope due to shear force).

 (3)

Refer to Fig. 2, under a suitable value of axial compressive load P, the deflection curve of a

beam-column member is (Timoshenko and Gere 1961)

(4a)

and

(4b)

in which E = Young’s modulus of member material; I = moment of inertia of member cross section;

y = member lateral deflection; x = horizontal coordinate along member starting from left end;

V = shear force at left end, m1 = modified fixed end moment at x = 0. The solutions of these

differential equations are
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(5a)

(5b)

where

 (5c)

The unknown coefficients A and B can be obtained from the following boundary conditions

At  (5d)

At  (5e)

where, θ1 and θ2 = rotations of cross sections at ends 1 and 2 due to bending and shear, respectively.

Therefore 

 (5f)

and shear force V at ends from static equilibrium conditions

 (5g)

When the axial force is tensile and the first term in the bending moment expression in Eq. (2a)

changes sign, then the general solution of Eq. (4a-b) is again given by Eq. (5a-b) only changing the

signs of the last two terms and the trigonometric functions to their corresponding hyperbolic ones

and

(5h)

for axial tensile force.

Assigning the unit end displacements to the outer ends of the springs, each at a time and using the

equilibrium equations for the free body diagrams of the members along with Eq. (5a-b) and the

suitable boundary conditions for the displacements and slopes at the inner ends of the springs, the

local-axis stiffness matrix for the member is

 (6)

y Asin αx( ) Bcos αx( ) V
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---x–

m1
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------+ +=

yd

xd
----- Aαcos αx( ) Bsin αx( )–
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---–=
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yd
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----- θ2= = =
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m1cos αL( ) m2+
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--------------------------------------; B
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------–= =

V
m1 m2+

L
------------------⎝ ⎠
⎛ ⎞=

α
P/EI

1 P/GAs+( )
----------------------------=

k

k 0 0 k14 0 0

 k22 k23 0 k25 k26

  k33 0 k35 k36

   k44 0 0

 sym.   k55 k56

     k66

=
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The effects of the flexible connections are included in the stiffness matrix by modifying the

stiffness terms of frame member with rigid connections. The stiffness influence coefficients

 in Eq. (6) take into account the influence that axial force, shear

deformations, and semi-rigid connections have on elastic bending stiffness and are defined as

follows

 (7a)

 (7b)

 (7c)

 (7d)

In Eq. (7a),  is elastic axial stiffness, the rest of the stiffness influence coefficients;

when axial force P vanishes (linear solution, first-order flexural stffnesses), P = 0

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

for the case of axial compressive force, P < 0

 (14)

 (15)

 (16)

kij i 1 2 … 6; j 1 2 … 6, , ,=, , ,=( )

k11 k44 k14–= =

k22 k55 k25–= =

k23 k35–=

k26 k56–=

k11 EA/L=
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12EI

L
3Ω

------------ 1 β1 β2+ +{ }=

k23

6EI
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---------- 1 2β2+{ }=
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6EI

L
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---------- 1 2β1+{ }=

k33
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--------- 1 3 β β2+( )+{ }=
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--------- 1 6β–{ }=

k66
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3
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2
1 ψ

2
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 (17)

 (18)

 (19)

and for the case of axial tensile force; P > 0

 (20)

 (21)

 (22)

 (23)

 (24)

 (25)

account for elastic bending stiffness.

In Eqs. (8)-(25), the parameters
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in which

k33

EI

LΩ
--------ψ 1 ψ

2
δβ2+( )sinψ ψδcosψ–{ }=

k36

EI

LΩ
--------ψ ψδ sinψ–( )=

k66

EI

LΩ
--------ψ 1 ψ

2
δβ1+( )sinψ ψδcosψ–{ }=

k22

EI

L
3Ω

----------ψ
3
δ

2
1 ψ

2
β1β2+( )sinhψ ψ β1 β2+( )coshψ+{ }=

k23

EI

L
2Ω

----------ψ
2
δ ψβ2sinhψ coshψ 1–+( )=

k26

EI

L
2Ω

----------ψ
2
δ ψβ1sinhψ coshψ 1–+( )=

k33

EI

LΩ
--------– ψ 1 ψ

2
δβ2–( )sinhψ ψδcoshψ–{ }=

k36

EI

LΩ
--------– ψ ψδ sinhψ–( )=

k66

EI

LΩ
--------– ψ 1 ψ

2
δβ1–( )sinhψ ψδcoshψ–{ }=

β
EI

L
2
GAs

---------------=

β1

1

4k1

-------=

β2

1

4k2

-------=

Ω

1 12β 1 β1 β2+ +( ) 4 β1 β2 3β1β2+ +( )+ +

ψ δ ψ
2
β1β2 1–( ) β1 β2+ +{ }sinψ 2 ψ

2
δ β1 β2+( )+{ }cosψ– 2+

ψ δ ψ
2
β1β2 1+( ) β1 β2––{ }sinhψ 2 ψ

2
δ β1 β2+( )–{ }cosψ– 2+

P 0
 

 =

P 0
 

 <

P 0
 

 >

  

⎩
⎪
⎨
⎪
⎧

=



Geometrically nonlinear analysis of plane frames 547

 (30a)

 (30b)

are well-known stability functions that account for the influence of axial force on elastic bending

stiffness. The effect of axial forces on the deformed shape of the member are included in the

stiffness matrix by using modified stability functions.

Finally, in Eqs. (27)-(28), the dimensionless parameters for the ends, 1 and 2, of the member

 (31)

 (32)

where J1 and J2 are the flexural stiffness of the flexible connections at the ends of the member and

 is the stiffness of the member (defined only as the moment required to cause unit rotation of

one of its ends).

 (33)

This assumes a linear moment-rotation relationship and the connection stiffness, J, is the slope of

this relationship. The values of k1 and k2 depend on the known semi-rigid connection stiffness and

the geometrical and elastic properties of the connected member. They vary from zero for a

frictionless pin connection to infinity for a perfectly rigid connection.

2.2 Modified fixed end moments

So far only structures loaded at joints have been considered, but in rigid jointed structures this is

generally not the case. In order to deal with this problem, the whole solution process must be

reviewed. In the analysis of skeletal structures by the stiffness method it was observed that the

loading vector might contain fixed-end forces due to loads applied between joints. It is found that

the presence of an axial load, shear force, and the influence of semi-rigid connections in a member

affects the values of the fixed-end forces, and this is summarised in this section.

Concerning fixed end forces for numerous types of span loadings, although the computations

involved are rather tedious, the method of approach is straightforward and simple. What needs to be

done in each case is to employ the method used for finding the stiffness matrix, namely apply

Eq. (4a-b) where bending moment M given by Eq. (2a), is expressed with an additional term or

terms due to the span loading and the force V at the left end is found by using the moment

equilibrium equation relative to the right end. Moreover, for the case of symmetrical trapezoidal
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distributed load, by making use of symmetry, the mid-span slope was taken to be zero. The

corresponding transverse forces can be found by making use of the two equations of equilibrium for

the member. The moments at the elastically restrained ends of a loaded member for some frequently

encountered loads found for linear and nonlinear cases are presented as follows with the notation

given in the relative figures.

Uniformly distributed load. Fig. 3 shows an elastically restrained member of length L and

uniform flexural EI, loaded with a uniformly distributed load of intensity w per unit length over the

whole span. Modified fixed end moments at the left end, m1 

 (34)m1

wL
2

12Ω
---------- 1 12β 6β2+ +( )
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2

1 ψ
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wL
2

1 ψ
2
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2
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2

1 4β– 2β2–( )+[ ]– coshψ 4 ψ
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P 0 
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 <
 

 

 

 

P 0 
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⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎧

=

Fig. 3 Uniformly distributed load

Fig. 4 Single-point load
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Concentrated load at any point. Modified fixed end moments in the same uniform member of

length L by an unsymmetrical point load of W as shown in Fig. 4.

 (35)

linear variation of load. In Fig. 5, for example, the same uniform member is shown loaded by a

total load W, which is distributed with an intensity varying linearly from w1 at the left-hand end to

w2 at the right.

 (36)

Symmetrical trapezoidal load (See Fig. 6) 
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WL

ψΩ
-------- 1 ψ

2
β–( ) 1 ψ

2
β bβ2+( )–( )sinhψ bψcoshψ– sinhaψ aψ––( ){–

   1 ψ
2
β β2+( )–( )sinhbψ ψcoshbψ+ }–
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Fig. 5 Linear variation of load
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 (37)

Triangular load. Determined the fixed-end moments in the uniform member shown in the Fig. 7,

when subjected to an unsymmetrical load, with a linear variation of intensity but of total wL/2.

 (38)

in which
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Fig. 7 Triangular load

Fig. 6 Symmetrical trapezoidal load
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 (39)

 (40)

The modified fixed end moments at the right ends for above frequently encountered loads for

linear and nonlinear cases are found either from symmetry or by an interchange of a and b, β1 and

β2 or w values at the two ends, and the sign in front of it negative.

3. Analysis procedure

The nonlinear analysis is an iterative procedure that, for each iteration, involves formulating and

solving the equilibrium equations

 (41)

where K, structure stiffness matrix; D, vector of nodal displacements; F, vector of specified

(equivalent) nodal loads.

IT = 1 is an initially specified value selected to ensure that first-order linear-elastic behaviour of

the structure for the first iteration.

If the structure stiffness matrix K is non-singular at the end of an iteration, Eq. (41) are solved for

nodal displacements D. Member end forces pi and deformations di are found. The axial forces for

each member are checked to detect the elastic behaviour and applied to modify member stiffness

matrices k and fixed end moments mi and hence the structure stiffness matrix K, before

commencing the next iteration (see Section 2).

The iterative-load analysis procedure continues until either the specified iteration level is reached,

or the difference between the axial forces found in two successive iterations is less than 0.1% for

each member ( ).

The analytical expressions having been prepared for all the quantities of relevance for the

problem, it remained only to write down a computer program for numerical applications. That was

done and the resulting program contains special differences compared to a linear analysis. The main

difference is that there is an iteration which can be stopped when a desired accuracy is reached. The

geometric stiffness matrix, as it is called, due to axial force is a relevant feature of this analysis,

which actually is the cause of the necessity for the iterative procedure. The computer program
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analysis starts with zero axial forces in all members, giving the linear solution at the first step. It

assumes the axial forces in members to be zero initially. It setups the overall stiffness matrix,

analyzes the frame under the external loads, obtains joint displacements and member end forces.

Then, at each new load step the axial forces and frame deflections found in the previous step are

used in the computations, of both the modified stiffness matrix (calculates the corresponding

stability functions) and the modified fixed end forces. The nonlinear analysis terminated when the

difference between the axial forces found in two successive iterations is less than 0.1% for each

member. When the predetermined precision is attained, the iteration stops and the final

displacements and rotations, member end forces, and variations of bending moment along relevant

members are determined. The maximum value of the bending moment in each member is given,

along with the maximum value and its position on the member.

During these iterations the determinant of the overall structure stiffness matrix is calculated and

loss of stability is checked. If the convergence in the axial force is obtained without loss of stability,

the joint displacements and member forces obtained in this nonlinear response are used in the

Fig. 8 Flow chart for nonlinear analysis
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computation of fitness values for this individual. It should be noted that in this algorithm the design

load is not applied incrementally in the nonlinear analysis. Instead it is applied immediately and

iterations are carried out at this load. It should also be pointed out that during the nonlinear analysis

the fixed end moments change from one iteration to another due to axial forces in the members and

rotational springs attached at the ends of members. The modified fixed end moments are calculated

by taking into account the effect of shear deformations and the effect of flexible end connection for

a frame member.

The nonlinear analysis procedure is illustrated by the flow chart in Fig. 8. Further computational

details are provided through the analysis examples presented in the following section.

4. Comprehensive analysis examples

The nonlinear iterative analysis procedure is illustrated in the following for three example

structures comprised of steel beam-column members with rigid and semi-rigid connections. The first

example is a six-story two-bay steel building framework for which analytical results found using the

computer programme are compared with other analytical results (Dincer 1991, Aksogan and Gorgun

1993). The second example is a four-story two-bay steel building framework, the linear and

nonlinear analysis of which have also been extensively studied in the literature from a variety of

different computational viewpoints (Akkaya 1991, Aksogan and Gorgun 1993). The third example

is a two-story one-bay frame for which analytical results found using the computer programme are

compared with other analytical results (Aristizabal-Ochoa 2012). This frame is made of the

pultruded FRP beam-column with bending taking place about the major axis.

The nonlinear analysis results include the values of the bending, shearing, axial elastic stiffness

and semi-rigid connections for member end sections at which elastic deformation occurs.

4.1 Example 1: A six-story two-bay steel building framework

Consider the 6-story by 2-bay steel framework subjected to different kinds of distributed service-

level design gravity span loads and the pattern of concentrated point loading shown in Fig. 9. The

structure is a building frame that supports loads shown in Fig. 9. All beams have IPN 300, 1st and

2nd floor columns have IPN 360, 3rd and 4th floor columns have IPN 300 and 5th and 6th floor

columns have IPN 180-shape sections that are oriented with their webs in the plane of the framework

and are assumed to be fully restrained against out-of-plane behaviour. Shape factor f = 5/6, Poisson’s

ratio ν = 0.3. The framework has 30 members, 21 nodes and 54 degrees-of-freedom (dof) for nodal

displacement (i.e., lateral and vertical translation and rotation dof at each of the eighteen free nodes

4-21). The members and nodes are designated by a square and a circle symbol ( , O) with a number

inscribed in it that indicates the member or node number respectively, shown in Fig. 10. Briefly

discussed in the following are the results of the study that demonstrate analytically the influence that

shear and the geometrically nonlinear have on the behaviour of the member end moments.

The analytical results presented in Tables 1 and 2 account for the combined influence that bending

and shearing have on elastic behaviour, and were found using the computer programme to include

the effect that shear deformations have on elastic behaviour. It is readily possible to conduct the

same analysis using Euler-Bernoulli beam theory, which ignores the effect of shear deformation on

elastic behaviour, by setting the beam-column member shear stiffness  in Eqs. (3) and (4).GAs ∞=
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Fig. 9 Geometry and loading of the example 1
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The analysis results found by this study are given in Tables 1 and 2 and compared with the results

of other studies (Dincer 1991, Aksogan and Gorgun 1993).

This example frame originally appeared in (Dincer 1991) and, since then, its nonlinear analysis has

been studied by a number of researchers from a variety of computational viewpoints. The results for

the method proposed herein are in close agreement with those for all other methods. Tables 1 and 2

compare the member end moments of Dincer (1991) who neglected the effect of semi-rigid

connections with those obtained from the formulations by Aksogan and Gorgun (1993) who neglected

Fig. 10 Coding and numbering of the example 1 
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Table 1 Example 1: Comparison of member end moments with rigid connections for linear frame analysis

Member

Member end moments (kNm)

Neglecting the effect of 
shear deformation (ν = 0)

Considering the effect of 
shear deformation (ν = 0.3)

Dincer
(1991)

Aksogan and 
Gorgun
(1993)

Present
study

Dincer
(1991)

Present
study

m1 m2 m1 m2 m1 m2 m1 m2 m1 m2

1 86.50 -11.12 86.50 -11.12 86.50 -11.12 88.13 -11.80 88.13 -11.79

2 114.37 43.51 114.37 43.51 114.37 43.51 114.39 43.04 114.38 43.04

3 108.96 32.78 108.96 32.78 108.96 32.78 109.19 32.05 109.19 32.05

4 -5.02 -118.33 -5.02 -118.33 -5.02 -118.33 -5.37 -118.23 -5.37 -118.23

5 -24.69 -109.62 -24.69 -109.62 -24.69 -109.62 -23.88 -108.94 -23.87 -108.94

6 16.13 0.12 16.13 0.12 16.13 0.12 17.17 0.66 17.16 0.66

7 99.50 90.51 99.50 90.51 99.50 90.51 99.07 89.77 99.06 89.77

8 76.83 61.91 76.83 61.91 76.83 61.91 76.89 61.45 76.89 61.45

9 -20.68 -119.12 -20.68 -119.12 -20.68 -119.12 -21.22 -119.16 -21.22 -119.15

10 -41.76 -115.71 -41.76 -115.71 -41.76 -115.71 -41.05 -115.21 -41.04 -115.20

11 20.57 25.46 20.57 25.46 20.57 25.46 20.56 25.45 20.56 25.47

12 70.37 73.18 70.37 73.18 70.37 73.18 70.43 73.24 70.42 73.26

13 53.80 56.63 53.80 56.63 53.80 56.63 53.76 56.55 53.75 56.55

14 -26.56 -92.49 -26.56 -92.49 -26.56 -92.49 -27.20 -92.63 -27.23 -92.66

15 -45.82 -100.85 -45.82 -100.85 -45.82 -100.85 -45.23 -100.49 -45.22 -100.48

16 1.11 -5.39 1.11 -5.39 1.11 -5.39 1.75 -4.74 1.76 -4.75

17 65.14 79.88 65.14 79.88 65.14 79.88 64.62 79.51 64.63 79.50

18 44.23 55.03 44.23 55.03 44.23 55.03 43.94 54.93 43.94 54.92

19 -11.21 -100.06 -11.21 -100.06 -11.21 -100.06 -11.86 -100.15 -11.86 -100.14

20 -14.82 -91.13 -14.82 -91.13 -14.82 -91.13 -14.40 -90.91 -14.39 -90.90

21 16.59 14.86 16.59 14.86 16.59 14.86 16.61 14.92 16.61 14.92

22 34.99 35.50 34.99 35.50 34.99 35.50 35.03 35.54 35.03 35.54

23 36.10 41.96 36.10 41.96 36.10 41.96 35.98 41.92 35.98 41.92

24 -12.98 -107.38 -12.98 -107.38 -12.98 -107.38 -13.22 -107.22 -13.22 -107.22

25 45.81 -69.53 45.81 -69.53 45.81 -69.53 45.78 -69.45 45.78 -69.45

26 -1.87 -1.56 -1.87 -1.56 -1.87 -1.56 -1.71 -1.34 -1.71 -1.34

27 26.08 31.80 26.08 31.80 26.08 31.80 25.91 31.66 25.91 31.66

28 27.57 22.99 27.57 22.99 27.57 22.99 27.53 22.95 27.53 22.95

29 1.56 -34.55 1.56 -34.55 1.56 -34.55 1.34 -34.47 1.34 -34.47

30 2.76 -22.99 2.76 -22.99 2.76 -22.99 2.81 -22.95 2.81 -22.95
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Table 2 Example 1: Comparison of member end moments with rigid connections for nonlinear frame analysis

Member

Member end moments (kNm)

Neglecting the effect of
shear deformation (ν = 0)

Considering the effect of
shear deformation (ν = 0.3)

Dincer
(1991)

Aksogan and
Gorgun 
(1993)

Present
study

Dincer
(1991)

Present
study

m1 m2 m1 m2 m1 m2 m1 m2 m1 m2

1 88.40 -10.99 88.40 -10.99 88.40 -10.99 90.12 -11.67 90.11 -11.67

2 116.28 44.24 116.28 44.24 116.28 44.24 116.38 43.78 116.38 43.78

3 110.75 33.01 110.75 33.01 110.75 33.01 111.07 32.27 111.07 32.27

4 -6.54 -119.74 -6.54 -119.74 -6.54 -119.74 -6.94 -119.68 -6.94 -119.68

5 -26.35 -111.35 -26.35 -111.35 -26.35 -111.35 -25.58 -110.72 -25.58 -110.72

6 17.52 0.86 17.52 0.86 17.52 0.86 18.61 1.43 18.61 1.43

7 101.85 92.53 101.85 92.53 101.85 92.53 101.48 91.84 101.47 91.84

8 78.35 62.90 78.35 62.90 78.35 62.90 78.46 62.46 78.45 62.47

9 -22.49 -120.89 -22.49 -120.89 -22.49 -120.89 -23.09 -120.99 -23.08 -120.98

10 -43.79 -117.89 -43.79 -117.89 -43.79 -117.89 -43.12 -117.44 -43.11 -117.43

11 21.63 26.62 21.63 26.62 21.63 26.62 21.66 26.65 21.65 26.69

12 72.14 75.01 72.14 75.01 72.14 75.01 72.26 75.14 72.25 75.15

13 54.98 57.88 54.98 57.88 54.98 57.88 54.97 57.83 54.96 57.83

14 -28.30 -94.10 -28.30 -94.10 -28.30 -94.10 -29.00 -94.29 -29.03 -94.32

15 -47.69 -102.85 -47.69 -102.85 -47.69 -102.85 -47.13 -102.54 -47.12 -102.53

16 1.68 -4.94 1.68 -4.94 1.68 -4.94 2.35 -4.25 2.36 -4.25

17 66.78 81.65 66.78 81.65 66.78 81.65 66.28 81.29 66.29 81.28

18 44.97 55.69 44.97 55.69 44.97 55.69 44.70 55.63 44.70 55.62

19 -12.80 -101.52 -12.80 -101.52 -12.80 -101.52 -13.50 -101.66 -13.50 -101.65

20 -16.38 -93.00 -16.38 -93.00 -16.38 -93.00 -15.99 -92.82 -15.99 -92.81

21 17.74 16.07 17.74 16.07 17.74 16.07 17.75 16.11 17.75 16.11

22 36.25 36.81 36.25 36.81 36.25 36.81 36.36 36.96 36.36 36.96

23 37.31 43.11 37.31 43.11 37.31 43.11 37.20 43.06 37.20 43.06

24 -14.18 -108.22 -14.18 -108.22 -14.18 -108.22 -14.42 -107.83 -14.42 -107.83

25 45.06 -70.73 45.06 -70.73 45.06 -70.73 44.68 -70.55 44.68 -70.55

26 -1.89 -1.46 -1.89 -1.46 -1.89 -1.46 -1.70 -1.05 -1.70 -1.05

27 26.36 32.09 26.36 32.09 26.36 32.09 26.19 31.89 26.19 31.89

28 27.62 23.15 27.62 23.15 27.62 23.15 27.49 23.06 27.49 23.06

29 1.46 -34.80 1.46 -34.80 1.46 -34.80 1.05 -34.57 1.05 -34.57

30 2.71 -23.15 2.71 -23.15 2.71 -23.15 2.68 -23.06 2.68 -23.06
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the effect of shear deformation and present study, which incorporates the axial shortening effect, shear

deformations, geometrically nonlinear effect and semi rigid connections. It can be seen the results are

almost in agreement for ν = 0, indicating the negligible influence of shear deformations and ν = 0.3,

indicating the influence of shear deformations on the member end moments. The extreme moment

values obtained for member 6 (a column member). Shear effect has changed the top end moment m2

for this member by 450% (increases from 0.12 kNm to 0.66 kNm) and 66% (increases from 0.86 kNm

Fig. 11 Geometry and loading of the example 2
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to 1.43 kNm), respectively, for linear and nonlinear solutions. The nonlinear effect has changed the

same end moment for this member by as much as approximately 617% (increases from 0.12 kNm to

0.86 kNm), while both the nonlinear and the shear effects have changed the end moment by as much

as approximately 1092% (increases from 0.12 kNm to 1.43 kNm) for this frame example. It should be

noticed that the superposition is not valid here.

4.2 Example 2: a four-story two-bay steel building framework

Consider the 4-story by 2-bay steel framework subjected to different kinds of service-level design

Fig. 12 Coding and numbering of the example 2
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gravity span loads and direct loads shown in Fig. 11. The structure is a building frame that supports

loads shown in Fig. 11. All member have HE 1000 M-shape sections (Akkaya 1991) that are

oriented with their webs in the plane of the framework and are assumed to be fully restrained

against out-of-plane behaviour with the following properties: section depth h = 1008 mm, flange

width bf = 302 mm, web thickness , flange thickness tf = 40.0 mm, section area

A = 44400 mm2, moment of inertia , and shape factor f = 5/6, Poisson’s ratio

ν = 0.3. The framework has 20 members, 15 nodes and 36 degrees-of-freedom (dof) for nodal

displacement (i.e., lateral and vertical translation and rotation dof at each of the twelve free nodes 4-

15). The members and nodes are designated by a square and a circle symbol ( , O) with a number

inscribed in it that indicates the member or node number respectively, shown in Fig. 12. The spring

constants are given for the respective beams being 0.5 for the outer ends and 0.6 for the inner ends.

The analysis results found by this study are illustrated in Figs. 13 and 14 and compared with the

results of other studies in Table 3 and the results of linear analysis compared with nonlinear analysis

with (ν = 0.3)/without (ν = 0) the effect of shear deformation in Tables 4, 5.

tw 21.0 mm=

I 7220 10
6

mm×=

Fig. 13 Sway displacements at each floor level in the example problem with varying spring constants k

Fig. 14 Sway displacements at each floor level in the example problem with rigid connections 
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Table 3 Example 2: Comparison of member end moments with semi-rigid connections for linear frame analysis

Member

Member end moments (kNm)

Neglecting the effect of shear deformation (ν = 0)

Akkaya (1991) Aksogan and Gorgun (1993) Present study

m1 m2 m1 m2 m1 m2

1 -13.57 103.70 -13.67 103.88 -13.67 103.88

2 18.16 119.80 18.02 119.98 18.02 119.98

3 7.48 114.40 7.31 114.48 7.31 114.48

4 15.78 35.78 15.45 36.06 15.45 36.06

5 63.29 80.12 63.29 80.54 63.29 80.54

6 53.55 66.48 52.94 66.73 52.94 66.73

7 21.18 -1.66 20.00 -0.84 20.00 -0.84

8 71.71 49.50 69.97 50.26 69.97 50.26

9 62.67 41.59 63.02 42.59 63.02 42.59

10 6.40 -20.36 7.05 -21.41 7.05 -21.41

11 58.82 27.47 59.74 26.00 59.74 26.00

12 50.26 17.40 50.80 17.83 50.80 17.83

13 -22.21 -68.35 -22.38 -68.55 -22.38 -68.55

14 -29.93 -73.96 -30.02 -74.04 -30.02 -74.04

15 -14.12 -91.25 -14.60 -91.72 -14.60 -91.72

16 -21.55 -95.14 -21.83 -95.52 -21.83 -95.52

17 -0.83 -78.06 1.41 -73.55 1.41 -73.55

18 -21.12 -80.07 -22.41 -80.85 -22.41 -80.85

19 -6.40 -40.65 -7.05 -41.25 -7.05 -41.25

20 -18.17 -50.26 -18.49 -50.80 -18.49 -50.80

The nonlinear analysis terminated when the difference between the axial forces found in two

successive iterations is less than 0.1% for each member.

To give an idea about the effect of spring constants, on the displacements, the variations of the

horizontal sway deflections of four nodes (joint nodes 4, 7, 10 and 13) of the frame with varying

spring constants for all the springs in the structure are plotted in Fig. 12. Values are given at the

joints each floor level for all the nonlinear analyses with shear effects for  (pin), 0.5, 1.0

and 109 (rigid). The difference between the linear and nonlinear deflections for both the semi-rigid

and rigid connections is less than 1 mm over the full height of the structure.

A drift factor of sway deflection = height/500 of the frame is defined by the continuous line in

Fig. 13. It can be seen that only where the semi-rigid joints are considered are the deflections less

than height/500.

Horizontal sway deflections of four nodes (joint nodes 4, 7, 10 and 13) of the frame with rigid

connections only are plotted in Fig. 14 for all the linear and nonlinear analyses with (ν = 0.3) and

without (ν = 0) shear effects. The difference between the linear and nonlinear deflections for rigid

k1 k2 0= =
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connections is less than 1 mm while the difference between the linear or nonlinear deflections with

and without shear effects for rigid connections is less than 2 mm over the full height of the

structure. It can be seem that the effect of the shear deformations is greater than the effect of the

geometric nonlinearity on the deflections for this frame example.

The extreme moment values obtained for members 7 (a column member) and 17 (a beam

member). Shear effect has increased the top end moment of member 7 by 146% (increases from

−0.84 kNm to 0.39 kNm), the nonlinear effect has reduced the left end moment for member 17 by

as much as approximately 22% (decreases from 1.41 kNm to 1.11 kNm), while both the nonlinear

and the shear effects have changed the above mentioned moments by as much as approximately

155% (from 1.41 kNm to −0.77 kNm) for this frame example.

This example frame originally appeared in (Akkaya 1991) and, since then, its nonlinear analysis

has been studied by a number of researchers from a variety of computational viewpoints. Aksogan

Table 4 Example 2: Comparison of member end moments with semi-rigid connections for linear and
nonlinear frame analysis

Member

Member end moments (kNm)

Neglecting the effect of shear deformation 
(ν = 0)

Considering the effect of shear 
deformation (ν = 0.3)

Nonlinear Aksogan and 
Gorgun (1993)

Nonlinear
Present study

Linear
Present study

Nonlinear
Present study

m1 m2 m1 m2 m1 m2 m1 m2

1 -13.75 104.68 -13.75 104.68 -15.76 108.46 -15.89 109.46

2 18.15 120.79 18.15 120.79 16.15 119.35 16.29 120.25

3 7.24 115.23 7.24 115.23 5.98 115.82 5.89 116.69

4 15.85 36.56 15.85 36.56 15.39 38.67 15.84 39.26

5 63.97 81.30 63.97 81.30 61.61 79.67 62.34 80.48

6 53.35 67.23 53.35 67.23 52.63 67.02 53.08 67.58

7 20.44 -0.78 20.44 -0.78 21.19 0.39 21.67 0.45

8 70.56 50.55 70.56 50.55 69.40 49.44 70.04 49.74

9 63.46 42.64 63.46 42.64 62.68 41.91 63.16 41.97

10 7.20 -21.55 7.20 -21.55 8.95 -20.75 9.14 -20.91

11 60.07 26.01 60.07 26.01 58.97 24.98 59.32 24.98

12 50.97 17.69 50.97 17.69 50.48 17.37 50.67 17.22

13 -22.81 -68.99 -22.81 -68.99 -22.91 -67.40 -23.38 -67.87

14 -30.46 -74.47 -30.46 -74.47 -28.43 -73.00 -28.90 -73.47

15 -15.07 -92.20 -15.07 -92.20 -15.78 -90.68 -16.29 -91.20

16 -22.32 -96.00 -22.32 -96.00 -20.36 -94.53 -20.88 -95.05

17 1.11 -73.84 1.11 -73.84 -0.44 -73.19 -0.77 -73.50

18 -22.73 -81.15 -22.73 -81.15 -21.18 -80.05 -21.53 -80.38

19 -7.20 -41.42 -7.20 -41.42 -8.91 -41.23 -9.14 -41.40

20 -18.65 -50.97 -18.65 -50.97 -17.74 -50.48 -17.92 -50.67
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Table 5 Example 2: Comparison of joint displacements with semi-rigid connections for linear and nonlinear
frame analysis

Displacement
no.

Joint displacements lateral and vertical translations (mm), rotations (radians)

Neglecting the effect of shear deformation 
(ν = 0)

Considering the effect of shear deformation 
(ν = 0.3)

Linear Nonlinear Linear Nonlinear

1 2.982 3.007 3.443 3.475

2 -0.599 -0.597 -0.597 -0.595

3 -0.001357 -0.001368 -0.001434 -0.001447

4 2.989 3.014 3.450 3.482

5 -1.326 -1.326 -1.332 -1.333

6 -0.001177 -0.001187 -0.001191 -0.001203

7 2.985 3.010 3.446 3.478

8 -0.985 -0.986 -0.980 -0.981

9 -0.001237 -0.001249 -0.001268 -0.001281

10 8.494 8.568 8.477 9.567

11 -1.029 -1.026 -1.025 -1.022

12 -0.001595 -0.001608 -0.001702 -0.001717

13 8.425 8.499 8.408 9.499

14 -2.434 -2.434 -2.447 -2.447

15 -0.0013760 -0.001388 -0.001400 -0.001413

16 8.399 8.473 9.380 9.471

17 -1.679 -1.682 -1.671 -1.674

18 -0.001396 -0.001409 -0.001434 -0.001449

19 13.783 13.898 15.233 15.371

20 -1.301 -1.298 -1.295 -1.291

21 -0.001354 -0.001363 -0.001462 -0.001472

22 13.652 13.767 15.101+ 15.240

23 -3.099 -3.099 -3.116 -3.116

24 -0.001148 -0.001156 -0.001169 -0.0012

25 13.584 13.699 15.033 15.172

26 -2.075 -2.078 -2.064 -2.068

27 -0.001160 -0.001169 -0.001194 -0.001204

28 17.851 17.990 19.632 19.798

29 -1.365 -1.361 -1.358 -1.353

30 -0.001026 -0.001031 -0.001119 -0.001125

31 17.567 17.706 19.353 19.519

32 -3.305 -3.305 -3.323 -3.324

33 -0.000759 -0.000763 -0.000777 -0.000782

34 17.441 17.580 19.228 19.395

35 -2.181 -2.184 -2.170 -2.174

36 -0.000780 -0.000785 -0.000812 -0.000818
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and Gorgun (1993) conducted nonlinear analysis of the frame with semi-rigid connections

neglecting shear deformations (ν = 0). The lateral and vertical deflections and rotation behaviour

found for these various analyses are given in Table 5. The results for the method proposed herein

are in close agreement with those for all other methods. The slight discrepancies between the

methods are likely mainly due to different ways in which the member fixed end forces are

considered. It is worth noting that the structural model for the proposed method involved

significantly the nonlinear geometric effects, shear effects, and flexible beam-to-column connections

than the other methods.

Fig. 15 Example 3: First- and second-order analysis of an unbraced frame with semi-rigid connections: (a)
Structural model; (b) Degrees of freedom (adapted from Aristizabal-Ochoa 2012)
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4.3 Example 3: Second order analysis of a plane frame made of beams and columns
with semi-rigid connections

Determine the second-order member forces of each member of the frame shown in Fig. 15

(Aristizabal-Ochoa 2012). This frame is made of the pultruded FRP beam-column with bending

taking place about the major axis. Assume that: , ;

; elastic moduli , and . Include the effects

of shear deformations and also the effects of the flexural moments on the axial stiffness in the

analysis. The framework has 6 members, 6 nodes and 12 degrees-of-freedom (dof) for nodal

displacement (i.e., lateral and vertical translation and rotation dof at each of the four free nodes C-

F). The spring constants are given for the respective members being 1.75 for the beam ends and

6.75 for the column down ends.

To facilitate comparison with other published results for this example (Aristizabal-Ochoa 2012),

A 5800 mm
2

= EI 7.85 10
8

kN-mm
2×=

GAs 5340 kN= E 18.863 kN/mm
2

= G 2.671 kN/mm
2

=

Table 6 Example 3: Comparison of member end moments with semi-rigid connections for the first-order
elastic analysis

Member

Member end moments (kNm)

First-order elastic analysis

Aristizabal-Ochoa (2012) Present study

m1 m2 m1 m2

1 15.9560 4.6638 16.4602 4.6059

2 1.2732 2.7759 1.2827 2.8219

3 16.7500 9.5043 16.5340 9.2749

4 10.7720 15.1790 10.7774 15.1180

5 -5.9371 -14.5950 -5.8886 -20.0523

6 -2.7759 -15.1790 -2.8219 -15.1180

Table 7 Example 3: Comparison of member end moments with semi-rigid connections for the second-order
elastic analysis

Member

Member end moments (kNm)

Second-order elastic analysis
(First Iteration)

Second-order elastic analysis
(Second Iteration)

Aristizabal-Ochoa
(2012)

Present study
Aristizabal-Ochoa

(2012)
Present study

m1 m2 m1 m2 m1 m2 m1 m2

1 19.3610 5.9407 19.5320 6.0656 19.3610 5.9277 19.5564 6.0591

2 3.1824 5.2304 2.8463 4.9060 3.1927 5.2348 2.8500 4.9074

3 20.076 10.950 19.2536 10.6313 20.060 10.962 19.2325 10.6343

4 12.254 17.315 12.4380 17.2401 12.245 17.308 12.4357 17.2367

5 -9.1231 -23.204 -8.9119 -23.0693 -9.1205 -23.207 -8.9090 -23.0700

6 -5.2304 -17.315 -4.9060 -17.2401 -5.2348 -17.308 -4.9074 -17.2367
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the analysis results found by this study are given in Tables 6-8 and compared with the published

results of other study (Aristizabal-Ochoa 2012) for the first-and second-order elastic analysis for the

first and second iterations.

The member end moments of each member of the frame showing the final end actions obtained

from the first-order elastic analysis are given in Table 6. In the second-order elastic analysis, both

the applied axial loads and the axial loads resulting from frame action given in Table 6 are

considered. The member final moments of the 12 degrees-of-freedom (dof) system of each iteration

are summarised (kiloNewton and meters are utilized throughout) and given in Table 7. Since the

maximum difference in the displacements between the first- and second-order elastic analysis is

small (2.69%, the lateral translation of the top right corner (joint node F) of the frame) further

iteration were consider unnecessary. Notice that the rotations, vertical and lateral deflections, and

end bending moments increased significantly (over 17%, 3% and 21%, and 14% of their primary

values, respectively) caused by the geometric nonlinear effects mentioned in the introduction.

This example frame originally appeared in Aristizabal-Ochoa (2012). The lateral and vertical

deflections, and rotation behaviour found for these various analyses are given in Table 8. The results

for the method proposed herein are in close agreement with those for all other methods. The slight

discrepancies between the methods are likely mainly due to different ways in which the modified

stiffness coefficients and member fixed end forces are considered. It is worth noting that the

structural model for the proposed method involved significantly fewer beam -column elements and

nodes than the other methods.

Table 8 Example 3: Comparison of joint displacements with semi-rigid connections for the first- and second-
order elastic analysis

Degrees of 
Freedom

Joint displacements
Rotations (radians), vertical and lateral translations (m) 

First-order
elastic analysis

Second-order elastic analysis
(First Iteration)

Second-order elastic analysis
(Second Iteration)

Aristizabal
Ochoa (2012)

Present study
Aristizabal

Ochoa (2012)
Present study

Aristizabal
Ochoa (2012)

Present study

Θ1 -0.020630 -0.021129 -0.026878 -0.025486 -0.026867 -0.025479

∆2 -0.002 -0.001439 -0.002 -0.001358 -0.0016 -0.001358

∆3 0.053 0.054484 0.073 0.066206 0.073 0.066203

Θ4 -0.017756 -0.018188 -0.022796 -0.021382 -0.022803 -0.021385

∆5 -0.003 -0.002601 -0.003 -0.002487 -0.003 -0.002487

∆6 0.115 0.117700 0.157 0.144576 0.157 0.144572

Θ7 -0.016215 -0.016211 -0.021721 -0.020550 -0.021724 -0.020553

∆8 -0.002 -0.002126 -0.003 -0.002207 -0.003 -0.002206

∆9 0.053 0.054484 0.073 0.066214 0.073 0.066213

Θ10 -0.007795 -0.007917 -0.011130 -0.010881 -0.011514 -0.010874

∆11 -0.004 -0.003569 -0.004 -0.003683 -0.004 -0.003683

∆12 0.115 0.117424 0.157 0.144304 0.157 0.144300
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5. Conclusions

The first and second order modified stiffness matrix and fixed end moments of a Timoshenko

beam-column member with semi-rigid beam-to-column end connections including the combined

effects of bending plus shear deformations and shear component of the applied axial forces are

derived in a classical manner. The proposed method herein is based on the modified stability

functions for beam-columns with semi-rigid connections. The validity and effectiveness of the

modified proposed equations are verified against well documented solutions on plane frames

(Akkaya 1991, Dincer 1991, Aksogan and Gorgun 1993, Aristizabal-Ochoa 2012).

The main advantages of the proposed method: (1) the method attempts at including shear

deformation into a beam-column element in order to then analyse plane frames with the effects of

semi-rigid connections. The effects of semi-rigid connections are condensed into the stiffness matrix

coefficients and into the modified fixed end moments of each element for zero (the first-order

elastic analysis), compression and tension axial force (the second-order elastic analysis) without

introducing any additional degrees of freedom. It can be understood that using such elements would

severely reduce the computational time when analysis large frame structures. The second-order

elastic analysis of structures made of Timoshenko beam-columns is cumbersome. This is due to the

combined effects of shear distortions and shear forces induced by the axial forces along each beam-

column element as they deflect laterally along their span that must be taken into account in the

second order analysis. Current Finite Element Methods and computer programs do not take into

account these two effects. However, commercially available finite element software has the

capability to deal with: shear deformation in beams, deep beam analysis and nonlinear analysis. (2)

the matrices are defined in terms of the elastic axial stiffness and the “modified” stability functions.

(3) the modified stiffness matrices and fixed end forces for various span loadings can be

incorporated into computer programs without major difficulties making the method practical and

versatile. Different types of span loadings are considered and most of the span loadings not being

found in the literature for zero, compression and tension axial forces. (4) the proposed method is

more accurate than any other method available and capable of capturing the phenomena of buckling

under axial forces with the above mentioned effects.

The modified stiffness matrices are limited to the elastic stability and second-order analyses of

framed structures with semi-rigid connections made of Timoshenko beam-columns of various cross

sections having different shape factor. In framed structures in which the external loads are applied

along their beam-column members, the process of determining the induced axial forces in each

beam-column member in a second-order static analysis is iterative requiring more than one set of

calculations and checks. The validity of both matrices and fixed end moments is verified against

available solutions of stability analysis and nonlinear geometric elastic behaviour of framed

structures with semi-rigid connections using a single segment for each beam and column member

without introducing additional degrees of freedom. Three examples are included to demonstrate the

effectiveness of the proposed matrices and fixed end forces.

The analytical results indicate that the stability and the nonlinear response of framed structures are

not only affected by the magnitude of the axial force in its members, the magnitude and location of

the restraints against horizontal drift, and the degree of the semi-rigidity of the connections, but also

by the reduction in the axial stiffness of each member caused by the bending moments and shear

deformations along their spans. Shear deformations and the flexibility of the semi-rigid connections

increase the lateral deflections of the framed structures and reduce their critical axial loads. The
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effects of shear deformations, semi-rigid connections and second-order P-D effects must be

considered in the analysis of the beam-column with relatively low effective shear areas or low shear

modulus resulting in members with shear stiffness GAs of the same order of magnitude as EI/L2.

Significant increases in the modified end bending moments and in the horizontal deflections are

caused by the geometric nonlinear effects. The second-order effects should not be neglected,

particularly in slender framed structures.

It is noticed from the design examples that semi-rigid connection flexibility affects the distribution

of forces in the frame and causes increase in the drift of the frame. This in turn necessitates the

consideration of P−∆ effect in the frame analysis. It required three to five iterations in the design

examples considered to obtain the nonlinear response of frame which clearly indicates the

significance of geometric nonlinearity in the analysis and design of semi-rigid steel frames. It is also

noticed that consideration of P−∆ effect and shear deformation yields a heavier frame in the case of

semi-rigid as well as rigid frame. The analysis examples demonstrate that the proposed nonlinear

analysis method based on bending, shearing and axial stiffness approximately simulates the elastic

behaviour of steel structures. Comparisons with results found by other methods for the frame

examples determined that the proposed method can effectively predict the member end forces of

steel frameworks, achieve more accurate results than the conventional method.

Compared to other approaches, the primary advantages of the proposed method are its simplicity,

practicality and efficiency. The proposed stiffness coefficients simplify the means to account for

geometric nonlinearity, effect of shear deformation, and semi-rigid connections. Finally, studies have

shown that the proposed method can be readily and effectively implemented for the advanced

analysis and design of steel frames and especially, nowadays, widely used precast reinforced

concrete structures.
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