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Abstract. In recent years, the need for optimal design of structures under time-history loading aroused
great attention in researchers. The main problem in this field is the extremely high computational demand
of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a
new framework is developed to solve the size optimization problem of steel truss structures subjected to
ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy
algorithm is employed for the optimization procedure, while a generalized regression neural network is
utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history
analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is
investigated via two design examples, comprising of a tower truss and a footbridge truss.

Keywords: size optimization; space truss structure; time-history analysis; the covariance matrix adapta-
tion evolution strategy (CMA-ES); generalized regression neural network (GRNN); wavelet analysis (WA)

1. Introduction

In the last two decades, advanced analysis procedures have been presented in order to reliably

estimate the actual behavior of complex structures under strong earthquakes. One of the most

comprehensive methods for seismic assessment of structures is achieved through a step-by-step

time-dependent procedure that determines the history of response of structures subjected to

earthquake loading. Such procedures are known as time-history analysis methods, which are

becoming more popular among researchers, since in these procedures, nearly all sorts of

complicated material and geometry can be directly included in the analysis. Although, the model

complexity is not considered as an obstacle, however extensive computational demand has

prohibited the widespread application of such analyses in practice. This problem will be resonated

when these methods are applied to iterative procedures such as optimization. High analysis time

prevents designers from thoroughly investigating the design search space that results in

uneconomical designs (Kocer and Arora 1999, 2002). 

During the recent years, extensive studies have been performed on finding methods to reduce the
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computational burden of time-history analyses, which are classified in two general categories.

Firstly, studies on developing meta-models to quickly and precisely predict the time-history

response of structures. Secondly, studies on producing surrogate records for original earthquake

records that have larger time steps but have almost the same effects on the structures. Radial basis

function (RBF) networks, emerged as a variant of artificial neural networks, have been successfully

implemented as a reliable meta-model for predicting the response of structures under time-history

loading. Fast training, reasonable accuracy and simplicity make RBF network a powerful tool for

decreasing computational cost of time-history analysis in iterative procedures (Salajegheh et al.

2008, Gholizadeh et al. 2009). In the field of producing surrogate records, wavelet analysis has

been shown to be much effective. Wavelet transform can divide an earthquake signal into two parts:

Low frequency approximation and high frequency detail part. Low frequency part is the most

influential part of the original signal on the response of structures. It can also be effectively used in

dynamic analysis of structures to decrease the number of points of earthquake record involved in

the time-history loading (Salajegheh et al. 2005, Gholizadeh et al. 2011).

The aim of this study is to propose a framework for size optimization of large-scale truss

structures under time-history loading within an acceptable computational time. To achieve this goal,

both introduced strategies for computational efficiency of time history analyses are employed in the

process of the optimization.

The meta-heuristic developed here, belongs to a subclass of evolutionary algorithms. The CMA

evolution strategy is a stochastic method for continuous optimization of non-linear, non-convex

problems. In an ES, new candidate solutions are sampled according to a multivariate normal

distribution. Pair-wise dependencies between the variables in this distribution are described by a

covariance matrix. The CMA is a method to update the covariance matrix of this distribution (Talbi

2009). Self-adaptation is an important feature of the CMA-ES. Self-adaptation in its purest meaning

is a method to adjust setting of the strategy parameters. It is called self-adaptive because the

algorithm controls the setting itself. Self-Adaptation aims at biasing the distribution towards

promising regions of the search space while maintaining sufficient diversity of the search (Kaveh et

al. 2011b).

After this opening section, the paper is organized as follows: Section 2 explains the concept of

time-history analysis. In section 3, the objective function and constraints of the optimization

problem are formulated. Section 4 briefly introduces the CMA-ES. In section 5, the strategy

employed for the fitness approximation is presented. In section 6, the main ideas behind using

wavelet analysis are illuminated. The proposed framework is presented in section 7. Section 8

studies some test problems to verify the efficiency of the proposed algorithm and finally the paper

is concluded with section 9.

 

2. Time-history analysis

Time-history analysis of a structure under a particular earthquake is a step-by-step procedure that

determines the dynamic response of the structure over time during and after application of the

ground acceleration. To obtain the time-history response, the equation of motion of the structure

must be solved, given by

  (1)MX
··

t( ) CX
·

t( ) KX t( )+ + Mlx··g t( )–=
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where M is the mass matrix, C is the damping matrix and K is the stiffness matrix.  and

 are the acceleration, velocity and displacement vectors of the structure, respectively. These

vectors are of size n, where n is the number of degrees of freedom of the structure. l is the unit

vector and  is the ground acceleration (Chopra 1995).

There are two main ways to establish the mass matrix, namely consistent and lumped mass

methods. The consistent mass matrix is based on the approximation for the kinetic energy. That is,

while the approximation for the strain energy leads to the stiffness matrix, the use of the same shape

functions in the approximation of the kinetic energy, leads to the consistent mass matrix. As a

result, the consistent mass matrix provides an accurate representation of the inertial properties of the

element. The simpler form of mass matrix is the lumped format that is obtained by placing

concentrated masses at nodal points in the directions of the assumed degrees of freedom and hence

the resulting element mass matrix is a diagonal matrix. The concentrated masses refer to

translational and rotational inertia of the element and are calculated by assuming that the material

within the mean locations on either side of the particular displacements behaves like a rigid body

while the remainder of the element does not participate in the motion. Thus, this assumption

excludes the dynamic coupling that exists between the element displacements and leads to natural

frequencies that may be higher or lower than the exact ones, whereas by the consistent mass matrix,

natural frequencies are bounded below by the exact values (Rao 2004).

In this study, structures are modeled using the consistent mass method. For constructing the

damping matrix, Rayleigh damping model (Chopra 1995) is applied by assuming the damping ratio

of 5% for the first two modes of free vibration of the structures.

The state-space representation of the equation of motion provides a convenient and compact way

to model and analyze the corresponding dynamic system, which transforms the second-order

differential equation to a first-order differential equation that has closed-form solution. Eq. (1) in the

state space is reformulated as (Ogata 2010) 

 (2)

where 

 is the 2n × 1 state vector,

 is the 2n × 2n system matrix,

 is the 2n × 1 location vector.

Solution of Eq. (2) is obtained as

 (3)

where  represents the initial conditions at time t = 0. 
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Since for the design procedure only the maximum response of the structure is needed, in order to

have an optimal design, the effective duration of the ground motion can be used in the analysis

instead of considering the entire earthquake record. The effective duration of a ground motion

determines the start and end of the strong shaking phase that is the time interval between the

accumulation of 5% and 95% of ground motion energy, where ground motion energy is defined by

the Arias Intensity (Towhata 2008). The end of the duration indicates the time that the maximum

response will occur definitely until then, therefore in order to achieve an optimal design, the record

needs to be analyzed up to this time and further analysis is not necessary. The effective duration of

an earthquake record can easily be computed by the available software like SeismoSignal®. In this

paper, the concept of the effective duration is applied to optimize the design process with the

difference that here the start of the duration is considered to be from the start of the corresponding

earthquake record.

 

3. Optimization problem

Truss optimization is one of the most active fields in structural mechanics (Kaveh and Talatahari

2008, 2009, 2010). Size optimization of truss structures looks for optimum values of member cross-

sectional areas that minimize the structural weight. This optimal solution should also satisfy the

inequality constraints that limit design variable sizes and structural response. The objective function

of size optimization can be expressed as 

Minimize    (4)

where W(A) is the weight of the structure; m is number of members making up the structure; γi, Li

and Ai are material density, length and cross-sectional area of member i, respectively (Ai chosen

between Amin and Amax).

The constraints are as follows

(5)

where m and n are the number of members and nodes, respectively.  and  represent the

member stress and nodal displacement at time t determined by time-history analysis. allowable

denotes the upper bounds. 

According to (AISC 1995), the stress limitation for tension members is , in

which Fy is the yield stress of steel. For compression members this limitation is given by 
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E is the modules of elasticity, 

, the slenderness ratio of member i where k and ri are the effective length factor and the

radius of gyration, respectively, 

 is the slenderness ratio dividing the elastic and inelastic buckling regions.

All structures before being exposed to ground motions have to resist the static loads imposed on

them including their own self-weight. It means to achieve the ultimate response of a structure, the

member stresses and nodal displacements calculated by static analysis must sum up to those of

calculated by dynamic analysis. In this paper, the standard matrix stiffness method is used to

perform the static analysis.

4. Optimization algorithm: the CMA-ES

 

In this section, a brief description of the CMA-ES is presented. For more information on the

terminology and details, interested readers may refer to (Hansen 2011). A summary of the algorithm

together with a table of the default strategy parameters and their values are provided in Appendix

A. 

 

4.1 Basic equation: sampling

In the CMA-ES, a population of new search points (individuals, offspring) is generated by

sampling a multivariate normal distribution. At each generation, the basic equation for sampling is 

     (7)

where

 is a multivariate normal distribution with zero mean and covariance matrix , 

, k-th offspring from generation g + 1,

, mean value of the search distribution at generation g,

, overall standard deviation, step-size, at generation g,

, covariance matrix at generation g,

, population size, number of offspring.

To define the complete iteration step, the remaining question is how to define ,  and

 for the next generation g + 1. The next three subsections deal with these questions. For sake

of brevity, formulas of Appendix A are not repeated again and they are only addressed by their

number.

4.2 Selection and recombination

The new mean  of the search distribution is a weighted average of µ selected points from

the sample, Eq. (11), where  is the parent population size. The selected points are the best

individuals out of  from Eq. (7).
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4.3 Adapting the covariance matrix

The CMA-ES is based on two adaptation principles, which make it an efficient procedure for

multimodal continuous problems. Firstly, a maximum-likelihood principle, based on the idea to

increase the probability of successful candidate solutions and search steps. For this purpose, the

algorithm updates the covariance matrix of the distribution such that the likelihood of already

applied successful steps is increased. Rank-µ-update performs this principle. 

Secondly, an evolution path principle, based on memorizing the time evolution path of the

distribution mean. A sequence of successive steps, the strategy takes over a number of generations,

is called an evolution path, Eq. (14). These paths contain substantial information about the

correlation between consecutive steps. The evolution paths are exploited in two ways. One path is

used for the covariance matrix adaptation procedure and facilitates a possibly much faster variance

increase of favorable directions. Rank-one-update performs this. The other path is used to conduct

an additional step-size control that effectively prevents premature convergence yet allowing a faster

convergence (see Section 4.4). The final CMA update of the covariance matrix combines the

advantages of the rank-µ-update and the rank-one-update, Eq. (15).

Fig. 1 demonstrates the concept behind the covariance matrix adaptation in the CMA-ES. As the

generations progress, the algorithm approaches to the global optimum while simultaneously the

distribution shape adapts to an ellipsoidal landscape and the search is directed along an evolution

path.

4.4 Step-size control

The covariance matrix adaptation, introduced in the previous section, does not explicitly control

the “overall scale” of the distribution. Step-size control defines how much the distribution ellipsoid

should be elongated or shortened, to achieve an optimal scale. The evolution path is utilized to

control the step-size.

The length of an evolution path is exploited, based on the following reasoning. Whenever the

evolution path is short, single steps cancel each other out as is shown in Fig. 2(a). Hence, these are

called anti-correlated. If steps annihilate each other, the step-size should be decreased. Whenever the

Fig. 1 Estimation of the search distribution for the second generation. (a) producing the first population by
sampling of N (0, I), (b) selection of the new parents and updating the covariance matrix; solid lines
determines the selected steps, (c) search distribution of the next generation (dashed ellipsoid). Contour
lines (grayed) indicate that the strategy should move toward the upper right corner
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evolution path is long, the single steps are pointing to similar directions and they are called

correlated, Fig. 2(b). Since the steps are similar, the same distance can be covered by fewer but

longer steps into the same direction. Consequently, the step-size should be increased. When the

step-size approaches zero, the population converge to an optimum solution.

To decide whether the evolution path is long or short, the length of the path is compared to its

expected length under random selection, which is equal to the expectation of the Euclidean norm of

a N (0, I) distributed random vector. If selection biases the evolution path to be longer than

expected, σ is increased, and vice versa, Eq. (13). To calculate the step-size, a conjugate evolution

path is constructed, Eq. (12), because the expected length of the evolution path from Eq. (14)

depends on its direction.

The CMA-ES does not require a tedious parameter tuning for its application. In fact, the choice of

strategy internal parameters is not left to the user. Finding good strategy parameters is considered as

a part of the algorithm design, and not part of its application. For the application of the CMA-ES,

only an initial solution, an initial step-size, and the termination criteria need to be set by the user.

 

 

5. Fitness approximation strategy 

In the present optimization problem, fitness function evaluation is the most time-consuming part

of the solution algorithm. If all of the required fitness function evaluations are performed by time-

history analysis, it may need many hours even for small structures. The solution of this problem is

the use of computationally efficient approximations of the fitness function, a remedy utilized for

solving optimization problems with extremely expensive objective functions.

In many real-world problems, due to the lack of data and the high dimensionality of the input

space, it is very difficult to obtain a perfect global functional approximation (meta-model) of the

original fitness function. To tackle this problem, two main tactics can be adopted. Firstly, the quality

of the approximate model should be improved as much as possible, given a limited number of data.

Several aspects are important to improve the model quality, such as selection of the model, use of

the active data sampling and weighting, selection of training method, and selection of error

measures. Secondly, the approximate model should be used together with the original fitness

Fig. 2 Two evolution paths of six steps from various situations. The length of the evolution paths is
remarkably different and is exploited for step-size control 
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function. In the most cases, the original fitness function is available, although it is computationally

very expensive. Therefore, it is very important to use the original fitness function efficiently. This is

known as model management in conventional optimization or evolution control in evolutionary

computation (Jin 2005). In the next subsections, these two concerns are reviewed in our specific

optimization problem.

5.1 Meta-model selection and training

Neural networks are adaptive statistical models, which can be trained and utilized for predicting

the response of a function. A neural network consists of an interconnected group of simple

processing elements called artificial neurons, which exhibit complex global behavior determined

by pattern of connections between them. Advanced neural networks have shown to be effective in

modeling most complicated non-linear relationships between inputs and outputs (Galushkin 2010).

RBF neural networks have been successfully applied as a reliable meta-model for predicting the

time-history response of structures. The obtained results demonstrate that with respect to the model

precision and the required computational time, the RBF networks perform well (Salajegheh et al.

2008, Gholizadeh et al. 2009). In this study, the generalized regression neural networks are

exploited for predicting the results of time-history analyses in the optimization process. GRNN is an

advanced variant of RBF networks that is also known as normalized RBF network. GRNN has a

radial basis layer and a special extra linear layer that performs normalization on the output set.

Normalization yields accuracy improvement even more as input dimensionality increases (MATLAB

2011).

Selection of the input data should be done in a manner that firstly it can represent the considered

structure properly, and secondly the trained network by these input data should be able to predict

the time-history response of the structure with an acceptable precision. In this study, several

alternatives for the input data are verified as well as the member’s cross-sectional areas, the natural

frequencies, the gyration radius of members and the slenderness ratio of members. Among these,

the member’s cross-sectional areas result in the most accurate estimates of the structural response. 

Since the response of a structure includes nodal displacements and member stresses, two different

output sets must be considered. Consequently, two distinct GRNNs with the same input data are

constructed to predict each response. The first set covers the maximum displacement of nodes

between three dimensions of the coordinate system. The second set contains the critical member

stresses. To define the critical stress for a member, its maximum tensile and compressive stresses

should be divided by the member’s tensile and compressive capacities, respectively; the largest

value determines the critical member stress.

Since in our problem the design search space is extremely large, the trained network with these

widely ranged input data has low precision in estimating the response. When the input data of the

GRNN are mostly similar, its estimate of the response to an arbitrary design is more accurate. In

order to improve the quality of the meta-model, in this study, a concept of nearest data selection is

applied (Kaveh et al. 2011a). In this approach, all the solutions, which are evaluated by the original

fitness function, are stored in an archive. In the process of fitness approximation, when the

optimization procedure generates a new solution, first, its k nearest neighbors in the archive (in the

design search space) is determined and then a new GRNN is constructed and trained by these

similar solutions. Finally, the trained network is used for estimating the fitness of the given solution.

It should be noted that the value of k should be determined in a way that first, the trained network
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should be able to estimate the response precisely; second, the network should not be over trained.

The distance between two different solutions is defined as follows

  (8)

where A is the vector of member’s cross-sectional areas and  is the norm of A. In this study, the

value of k is set to 15.

5.2 Evolution control

Application of approximate models in the evolutionary optimization procedures is not as

straightforward as one may expect. One important point is that it is very difficult to construct a

meta-model that is globally accurate due to the high dimensionality, ill distribution, and limited

number of training samples. There are three major concerns in using meta-models for the fitness

approximation. Primarily, it should be ensured that the evolutionary algorithm converges to the

global optimum or a near optimum of the original fitness function. Secondly, the computational cost

should be reduced as much as possible. Thirdly, in the process of evolutionary optimization, the

range of the solutions may change significantly and the model trained by the initial data may

converge to a false optimum. Therefore, it is quite essential in most cases that the approximate

model be used together with the original fitness function. The issue of incorporation of these two

functions in the process of optimization is regarded as model management (Jin 2005).

Usually, model management in evolutionary computation is performed using two main

approaches, one is individual-based and the other is generation-based evolution control. By

individual-based control, it is meant that in each generation, some of the solutions use the meta-

model and others employ the original function for fitness evaluation. While in generation-based

control, in some specified generations all of the solutions are evaluated by the original fitness

function (Hagan 1996).

The decision about the evolution control should be made based on the properties of the problem

under consideration. In our specific problem, the following method is employed:

• In the first 15 generations of the optimization process, all solutions are evaluated by the original

fitness function. All of these solutions are stored in an archive, regardless of whether they are

acceptable due to the constraints or not. For each solution, the member’s cross-sectional areas

and the result of time-history analysis are recorded in the archive. 

• In each generation, µ/2 of the solutions are evaluated by the original fitness function and the

others by the meta-models. In this way gradually some solutions of the new regions of the

search space is added to the archive.

• After each 20 generations, in one generation all of the generated solutions are evaluated by the

original fitness function. In this way, it is insured that the evolutionary computation converges to

the main global optimum of the search space.

In the above mentioned method, all the solutions evaluated by the original fitness function are

added to the archive and the meta-models utilize the provided data in this archive for training the

GRNNs.
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6. Wavelet analysis

Wavelet analysis is an advanced mathematical set of tools and techniques for signal-processing,

which has aroused great attention in many fields of science and engineering. By WA we can

denoise a signal from high-frequency components to understand the behavior of the primary signal

better (see Fig. 3(a)). The theory and methods of WA are widely available in literature. In this

paper, only the application of WA in our problem is explained. The interested reader may refer to

(Strang and Nguyen 1996) for further information.

Wavelet transform is exploited for dividing data, functions and signals into different frequency

components, where each of them is studied with a resolution matched to their scale. Wavelet

transform can be simply attained by a tree of filter banks as shown in Fig. 3(b). In this figure,

“downsampling” is an operation that keeps the even indexed elements of the input signal. The key

scheme for filter banks is to cut up a signal into two parts; the first is the low-frequency and the

other is the high-frequency part. This scheme is achieved by a set of filters (a low- and a high-pass

filter), which separate a signal into different frequency bands. The low-pass filter removes the high-

frequency bands of the signal and produces an approximate description of the primary signal. By

Fig. 3 (a) A signal processing example using WA, (b) general algorithm for discrete wavelet transforms 
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utilizing the high-pass filter, the low-frequency components of the signal are removed, and a signal

including the details of the main signal is achieved. In other words, by constructing a filter bank

with these two filters, the primary signal is separated into an approximation and a detail signal.

Output of the filter bank is two sets of coefficients, (cA) and (cD) that include the low- and high-

frequency contents of the main signal, respectively. In Fig. 3(a), the length of each filter is equal to

2N that N is the order of the wavelet function used as the filter. If n = length ( ), the signals F

and G will be of length n + 2N – 1. And then the coefficients cA and cD are of length equals floor

, almost half of the primary signal length (MATLAB 2011).

Response of a structure under a given ground motion is mostly affected by the low-frequency

content of the earthquake record. This content can be efficiently used in time-history analysis as a

surrogate for the original record in order to decrease the number of points that are involved and

then reduce the computational demand of the time-history analysis. The decomposition process can

be repeated for the low-frequency content to achieve the desired scale of the earthquake record.

This multilevel decomposition is called the wavelet decomposition tree (Gholizadeh et al. 2011). In

this study, the decomposition process proceeds in three levels, as shown in Fig. 4, i.e., the

approximate version of the earthquake record in the last step (cA3) is utilized in the time-history

analysis. Therefore the number of points involved is decreased to 0.125 of the primary record. It

should be noted that when cA3 is applied for the analysis, the time-step needs to be updated by

(9)

The decomposition process is invertible and the primary record can be reconstructed by

convolving the obtained approximation and detail coefficients. This process is known as inverse

wavelet transform that simply can be defined by reversing the trajectory of the wavelet transform

algorithm. For computing the actual response of the structure under the original earthquake record,

the reverse process is required. To achieve this, the dynamic response of the structure to the

surrogate record is taken as the approximation coefficients of the last level and the detail

coefficients of all levels are considered to be zero. 

In our problem, WA is needed to be performed once before the start of the optimization

procedure. In the phase of preparing the input data for optimization, WA produces a surrogate

record for the given ground motion. This record is then used in all time-history analyses of the

program instead of the original earthquake record. In the present study, Daubechies wavelet family

(Db1 to Db6) is operated as the filter, i.e., the earthquake record is decomposed by each of these six

wavelet functions and then the best approximation record is exploited in the optimization. The

x··g t( )

n 1/2–( ) N+

dt dt
length x··g( )

length cA3( )
----------------------------×=

Fig. 4 A three-level wavelet decomposition of earthquake record x··g t( )
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quality is tested with the use of the RRMSE (relative root mean squared error), and the R2

(coefficient of determination) measures, as follows 

    (10.a)

        (10.b)

where  and  are the ith component of the exact and approximate vectors, respectively. The

mean value of exact vector and the dimension of vectors are expressed by  and n, respectively.

7. The proposed framework

Now, all of the introduced components in previous sections are incorporated in a simple

framework, which makes the size optimization of space trusses subjected to time-history loading

feasible. In this problem, all constraints are classified into two main groups:

• Initial constraints: Firstly, the cross-sectional areas of members of the newly generated design

should be restricted to the permissible range. This can be done by selecting the upper or lower

bounds for the violated areas. Secondly, the structural response of the new design under static

loading must fulfill the requirements of the building code, before being subjected to the ground

motion (see Sect. 3). If this constraint is violated, the design is omitted and a new one is generated.

• Final constraints: This group contains the checking of the nodal displacements and member

stress ratios as mentioned in Section 3. In this step, ultimate response of the structure, a

summation of the results of time-history and static analyses, is checked.

The main procedure, which is based on the CMA-ES algorithm, is as follows. The relevant

sections to each step are noted in brackets:

Main procedure { 

    1. Set parameters. 

    2. Until termination criterion met

       2.1. Sample new population of search points [Sect 4.1].

             2.1.1. Sample a new individual.

             2.1.2. Evaluate the new individual.

       2.2. Step-size control [Sect 4.4].

       2.3. Covariance matrix adaptation [Sect 4.3].

}.

The first step is performed as follows: 

Set parameters {

    1. Set the CMA-ES user defined parameters.

    2. Structural modeling.

    3. Define the effective duration of the given earthquake record.

    4. Perform WA on the effective duration [Sect 6].

}.
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Evaluation of the generated population is expressed by:

Evaluate {

    1. Prepare the input data for structural analysis.

    2. Check the initial constraints.

    3. If evolution control conditions are fulfilled then [Sect 5.2]

       3.1. Perform time-history analysis for the given ground motion [Sect 2].

3.1.1. Store the obtained solution to the archive (member’s cross-sectional areas, nodal

displacements, critical member stresses).

3.1.2. Check the final constraints.

                    3.1.2.1. If the constraints are not violated then λ = λ +1.

       else

     3.2. Select k nearest solutions in cross-sectional areas of the archive and train the required

GRNNs by these input data [Sect 5.1].

       3.3. Estimate the structural response by the trained GRNNs.

             3.3.1. Check the final constraints.

                     3.3.1.1. If the constraints are not violated then λ = λ +1.

}.

8. Design examples

In this section, the proposed framework is implemented in MATLAB® and some test problems are

optimized. The structural analysis is completely executed by MATLAB®. As mentioned before, the

direct stiffness method is used to perform the static analysis and for time-history analysis, all

structures are modeled and solved in the state-space formulation. In order to validate the analysis

code, all instances are verified by SAP®. For constructing a GRNN and wavelet decomposition of

an earthquake record, neural network and wavelet toolboxes of MATLAB® are employed,

respectively. The earthquake records have been selected from the PEER Strong Motion database

(PEER 2012). The effective duration of each record is calculated by SeismoSignal®. In all the

examples, the value of maximum allowable cross-sectional areas is taken to determine the start

point in the search space for initializing the optimization procedure. The CPU-time consumption of

the program is calculated for each case. All recorded times are obtained using an Intel® Core™ i7

@ 2.0 GHz processor equipped with 8 GBs of RAM.

8.1 A footbridge truss

The first design example is an actual-size footbridge truss consisting of 220 members and 68

nodes, shown in Fig. 5. As indicated in this figure, 44 member groups are considered. The effect of

the superstructure dead loads on the truss, including the weight of the concrete deck, asphalt and

sidewalks, is considered by a set of masses of weight 2500 lb (1134 kg) lumped at each top node.

The material and cross-sectional properties are as follows: the modulus of elasticity and the yield

stress of the steel are taken as 10000 ksi (68943 MPa) and 35 ksi (241.3 MPa), respectively. The

material density is 0.3 lb/in3 (8304 kg/m3). The radius of gyration of each member (ri) is expressed

in terms of its cross-sectional area as ri = , where a and b are the constants depending on the

types of sections adopted for the members. In this example, pipe sections of a = 0.799 and

aAi

b
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b = 0.669 are utilized. Minimum cross-sectional area of all members is considered as 0.5 in2 (3.226

cm2) and the maximum as 10 in2 (64.516 cm2). Maximum displacement limitation of 2 in (5.08 cm)

is imposed on every node in all directions. 

This structure is subjected to the Loma Prieta ground motion with peak ground acceleration of

1.7 g in the y-direction, as shown in Fig. 6(a). The effective duration of this record stops at second

16.245, which leads to 3249 points with a time step of 0.005 sec, Fig. 6(b). In order to select a

wavelet function for performing WA on the effective duration, 50 models of the structure are

generated randomly and analyzed using the Daubechies wavelet family (Db1-Db6). Then the quality

of each wavelet function for each model is evaluated by the RRMSE and R2 measures. The mean

values of the errors are reported in Table 1. As it can be seen, the Db3 outperforms other functions,

i.e., produces the nearest results to the desired structural responses. Implementation of Db3 for

wavelet decomposition reduces the number of points to 410 with a time step of 0.0396 sec,

Fig. 5 A footbridge truss: topology and member grouping 
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Fig. 6 Loma Prieta ground motion (station: Gilroy Array #7, 1989, PGA = 1.7 g). (a) original record, (b)
original record in the effective duration, (c) filtered record

Table 1 Performance evaluation of the Daubechies wavelet family for the footbridge truss

Displacement estimation error Member stress estimation error

RRMSE R2 RRMSE R2

Db1 0.0320 0.9975 0.0852 0.9872

Db2 0.0267 0.9981 0.0564 0.9945

Db3 0.0231 0.9985 0.0517 0.9944

Db4 0.0320 0.9972 0.0595 0.9936

Db5 0.0393 0.9958 0.0696 0.9915

Db6 0.0426 0.9950 0.0707 0.9915
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Fig. 6(c). This filtered record is a surrogate for the original earthquake record that is used instead of

it throughout the optimization. 410 is obtained as follows: 1627 = floor  at level 1, 816 =

floor  at level 2 and 410 = floor  at level 3 (see Sect. 6).

3249 1–

2
--------------------⎝ ⎠
⎛ ⎞ 3+

1627 1–

2
--------------------⎝ ⎠
⎛ ⎞ 3+

816 1–

2
-----------------⎝ ⎠
⎛ ⎞ 3+

Table 2 The optimal design achieved for the footbridge truss

Optimal cross-sectional areas (in2)

Group No. Area Group No. Area Group No. Area Group No. Area Group No. Area

1 1.4140 10 2.8925 19 6.1497 28 1.8105 37 3.2134

2 1.9246 11 2.3478 20 4.4274 29 0.8222 38 2.8068

3 2.8063 12 2.0725 21 4.0988 30 0.5606 39 2.4567

4 4.2512 13 1.1088 22 3.0404 31 3.3227 40 2.0864

5 3.0668 14 1.3568 23 3.3237 32 2.9906 41 1.3771

6 1.7862 15 1.5787 24 2.4963 33 3.4147 42 0.9927

7 1.1837 16 1.4362 25 3.6890 34 1.9357 43 0.6369

8 3.9350 17 3.7705 26 3.3017 35 1.9771 44 0.5000

9 3.8811 18 2.7488 27 2.3377 36 1.9272

Structural weight = 33987 lb (15416 kg)

Fig. 7 Obtained (a) stress ratios, (b) displacement ratios for the footbridge truss 
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Due to the stochastic nature of the solution algorithm, this problem is solved 5 times. The value

of initial step-size in all runs is set to 1.75 and the termination criterion is met when the step-size

approaches 0.05.The best found design is reported in Table 2. Fig. 7 shows the obtained stress

ratios, calculated by dividing the critical member stress by the allowable capacity, and the obtained

displacement ratios, computed by dividing the nodal displacement by the allowable value. The

convergence history of the algorithm is displayed in Fig. 8.

In order to provide a measure to assess the performance of the proposed fitness approximation

strategy, this example is solved again by evaluating the original fitness function instead of fitness

approximation during the entire optimization procedure. The obtained results are compared as

illustrated in Table 3. 

As can be seen from Table 3, by implementing the developed fitness approximation strategy a

significant improvement in computational effort is achieved, at the expense of only a small loss of

accuracy. It should be noted that without use of the employed WA, the solution process would have

required roughly eight times more time, e.g., for design B 173 hours will be needed. 

8.1 A tower truss

The second design example, shown in Fig. 9, is a tower truss consisting of 314 members and 84

nodes, where all members are categorized into 45 groups employing the symmetry of the structure.

Fig. 8 Convergence history of the CMA-ES for the footbridge truss  

Table 3 Performance evaluation of the proposed fitness approximation strategy for the footbridge truss

Optimization method

Design A:
With use of meta-model

Design B:
Without use of meta-model

Structural weight 33987 lb (15416 kg) 32154 lb (14494 kg)

Computation time 438 mins (7.30 hours) 1295 mins (21.58 hours)

Number of original fitness function evaluation 2842 7393

Number of fitness function approximation 4734 0

Total number of fitness function evaluation 7576 7393

Quality improvement 0% 5.39%

Time improvement 66.18% 0%
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The material properties and the geometry of sections are considered as in the previous example. The

range of cross-sectional areas varies from 0.5 to 15 in2 (3.226 to 96.774 cm2) and the nodal

displacements are bounded to 8 in (20.32 cm).

This structure is subjected to the Coalinga ground motion with peak ground acceleration of 2.0 g

in both the x- and y-directions, displayed in Fig. 10(a). The effective duration of this record stops at

second 9.51, which leads to 1902 points with a time step of 0.005 sec, Fig. 10(b). Performance

evaluation of the Daubechies wavelet family, which is obtained by analyzing 50 randomly generated

models of the structure, is presented in Table 4. As it can be seen, the Db2 outperforms other

functions. Implementation of Db2 for wavelet decomposition reduces the number of points to 240

with a time step of 0.0396 sec, Fig. 10(c). 

Fig. 9 A tower truss: topology and member grouping 
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Fig. 10 Coalinga-05 ground motion (station: Oil city, 1983, PGA = 2.0 g), (a) original record, (b) original
record in the effective duration, (c) filtered record 

Table 4 Performance evaluation of the Daubechies wavelet family for the tower truss

Displacement estimation error Member stress estimation error

RRMSE R2 RRMSE R2

Db1 0.0391    0.9966 0.0480 0.9950    

Db2 0.0232 0.9988 0.0279 0.9983    

Db3 0.0342 0.9974 0.0475 0.9951

Db4 0.0356 0.9972 0.0522 0.9941

Db5 0.0548 0.9933 0.0637 0.9913

Db6 0.0722    0.9883 0.0757 0.9877
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This example was solved 5 times and the value of initial step-size was set to 2 in all the runs. The

best found solution is reported in Table 5. Fig. 11 demonstrates the obtained stress and displacement

ratios. The convergence history is shown in Fig. 12.

The performance of the proposed fitness approximation strategy is evaluated as is provided in

Table 6. As it can be observed, the achievement of the previous example can be accomplished in

Table 5 The optimal design achieved for the tower truss

Optimal cross-sectional areas (in2)

Group No. Area Group No. Area Group No. Area Group No. Area Group No. Area

1 2.0912 10 3.3100 19 6.3445 28 3.6660 37 5.24849

2 1.2039 11 2.2384 20 3.3805 29 6.3279 38 2.66310

3 8.9772 12 5.1180 21 5.3277 30 4.9212 39 11.1094

4 3.2545 13 4.4017 22 2.2399 31 6.7704 40 4.03505

5 8.3155 14 6.8504 23 6.4469 32 3.3951 41 5.27015

6 6.0712 15 6.1707 24 3.6142 33 11.7020 42 3.22022

7 2.8874 16 9.1762 25 3.4791 34 2.37664 43 7.61367

8 4.7540 17 1.7435 26 2.2465 35 7.77521 44 4.43820

9 6.8169 18 8.8065 27 7.0078 36 3.83677 45 7.29304

  Structural weight = 72006 lb (32661 kg)

Fig. 11 Obtained (a) stress ratios, (b) displacement ratios for the tower truss 
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solving the optimal design of more complex structures, where the calculation of the original fitness

function is much more time consuming.

9. Conclusions

A new framework is proposed for optimal design of large-scale truss structures subjected to time-

history loading. Minimizing the structural weight through a size optimization procedure is

considered as the objective. The CMA-ES is employed as the optimization algorithm. Three

methods are implemented for reducing the computational effort of time-history analyses during the

optimization process. Firstly, the effective duration of the ground motion is utilized instead of

considering the entire earthquake record, since for the design procedure only the maximum response

of the structure is needed. The effective duration indicates the time that the maximum response will

occur definitely until then. Therefore, the record needs to be analyzed up to this time and further

analysis is not required.

Secondly, a WA is applied to decrease the number of involved points of earthquake record up to

0.125 of the effective duration through a three-level wavelet decomposition process. In order to

select a wavelet function for performing WA, 50 models of the structure are generated randomly

and analyzed using the Daubechies wavelet family (Db1-Db6). Then the quality of each wavelet

function for each model is evaluated by the RRMSE and R2 measures. The one that averagely

Fig. 12 Convergence history of the CMA-ES for the tower truss

Table 6 Performance evaluation of the proposed fitness approximation strategy for the tower truss

Optimization method

Design A:
With use of meta-model

Design B:
Without use of meta-model

Structural weight 72006 lb (32661 kg) 68783 lb (31199 kg)

Computation time 719 mins (11.98 hours) 2205 mins (36.75 hours)

Number of original fitness function evaluation 2858 8352

Number of fitness function approximation 5733 0

Total number of fitness function evaluation 8591 8352

Quality improvement 0% 4.48%

Time improvement 67.39% 0%



400 A. Kaveh, M. Fahimi-Farzam and M. Kalateh-Ahani

outperforms others is selected as the filter. Based on our findings, there is no specific wavelet

function that always results in minimum errors for all types of structures, contrary to what has been

employed by some researchers in the past. We have found that performance of the wavelet functions

depends on the topology and properties of the given structure, in addition to the time-frequency

characteristics of the applied earthquake record.

Finally, a specific fitness approximation strategy is developed for predicting the time-history

response of structures. For this purpose, a GRNN is used as the meta-model and a special evolution

control scheme is developed. In order to improve the quality of the estimations, a concept of nearest

data selection is applied. In this approach, all the solutions, which are evaluated by the original

fitness function, are stored in an archive. In the process of fitness approximation, when the

optimization procedure generates a new solution, first, its k nearest neighbors in the archive are

determined and then a new GRNN is constructed and trained by these similar solutions.

This framework is operated for the design of two practical structures: a footbridge truss and a

tower truss. It is demonstrated that by the use of the proposed framework a significant improvement

in computational effort can be achieved, at the expense of only a small loss of accuracy. Also, the

obtained results confirm that optimal design of similar structural problems can be performed for

much larger structures within acceptable amount of computational time.
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Appendix A. Summary of the CMA-ES algorithm

Set parameters

Set parameters  and d
σ to their default values according to Table 4.

Set evolution paths , and covariance matrix  = I.

Choose distribution mean  and step-size , problem dependent.

Until termination criterion met

Sample new population of search points

(10)

Selection and recombination

(11)

Step-size control

(12)

(13)

Covariance matrix adaptation
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Table 4 Default strategy parameters

Selection and recombination

 

(16)
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Step-size control
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Covariance matrix adaptation
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