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Abstract. The stiffness of a suspension system is provided by the bushings and the stiffness of the
wheel center controls the suspension's elasto-kinematic (e-k) specification. So the stiffness of the wheel
center is very important, but the stiffness of the wheel center is very hard to measure. The paper give a
new method that we can use the stiffness of the bushings to calculate the equivalent stiffness of the wheel
center, which can quickly and widely be used in all kinds of suspension structure. This method can also
be used to optimize and design the suspension system. In the example we use the method to calculate the
equivalent stiffness of the wheel center which meets the symmetric and positive conditions of the stiffness
matrix.
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1. Introduction

The suspension is a structure which connect the vehicle's frame (or body) with the axle (or the

wheel). The main role of the suspension is passing all the forces and torques between the wheel and

the body, such as the supporting force, braking force, driving force and cornering force, easing the

impact force which is caused by the uneven road and passed by the body, attenuating the vibration

which caused by the impact force, ensuring the occupant comfort and reducing the dynamic load of

the vehicle. Therefore the suspension is very important for a vehicle. There are so many researchers

investigating the suspension characteristics (Fialho and Balas 2002, Long et al. 2011). A vehicle

suspension is shown in Fig. 1.

The suspension controls the vibration of the vehicle. Many researchers have studied the vibration

control issues (Li et al. 2004, Li and Liu 2011, Yun and Li 2011), and some researchers have

investigated the suspension structure optimization (Chen and Huang 2005, Nguyen and Choi 2009,

Crews et al. 2011, Kang et al. 2011). Some methods have been found to optimal the parameters of

suspension with constant harmonic excitations (Metallidis et al. 2003, Verros et al. 2005, Georgiou

et al. 2007, Crews et al. 2011). These researchers use the equivalent stiffness of the suspension to

analyze the vibration of vehicle.

The suspension system also controls the elasto-kinematic performance and the handling. Gerrard

considers the suspension system is a single elastic system connecting the wheel carrier to the ground
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and the compliant behavior of the elastic system can be represented by a single stiffness matrix. He

finds the Equivalent Elastic Mechanism (EEM) method to analysis and design the compliant

suspension linkages (Gerrard 2005). Nishimura and Nozawa use the EEM theory to analysis and

design the suspension system and the results match with the actual measurement (Nishimura and

Nozawa 2007). We can also use this method to calculate the toe angle, castor angle and camber angle

which determine the good or bad vehicle handling (Gerrard 2005). So it's very important to know the

equivalent stiffness matrix of the wheel center.

There are so many articles about the analysis of the stiffness matrix, such as JOSIP find that there

is a normal form for a generic compliance matrix when the stiffness assumes a normal form (JOSIP

LONCARIC 1987), Li and Schimmels analyze the stiffness of a 3-PUU parallel kinematic machine

through decomposition of the stiffness matrix (Huang and Schimmels 2000, Li and Xu (2008), and

Lipkin use the stiffness matrix to find the compliant axes (Patterson and Lipkin 1993). But until

now all the stiffness matrix used in these articles is experimentally measured or simulated in

software, there is no such a method to solve the equivalent stiffness of a complex structure. 

The equivalent stiffness of the wheel center is very important for the suspension system. As we

know that the stiffness of the wheel center is provided by the bushings which connect the vehicle

frame with the suspension and the stiffness of the bushing can be easily measured. We can change

the stiffness of the suspension system through changing the stiffness of the bushing or the location

of the bushing. But until now we don't know the relationship between the stiffness of the wheel

center and the stiffness of the bushings. The paper will give such a method which will find the

relationship between the stiffness of the wheel center and the stiffness and the location of the

bushings. We also can use the method to optimize the stiffness of the suspension system.

The paper describes a method which calculates the stiffness of the wheel center by the bushing's

stiffness. We can use this method to quickly calculate the stiffness of the wheel center from the

stiffness of the bushings. This method can not only be used in the automotive industry but also be

used in the other machinery industry.

In this paper, first we give the method to calculate the equivalent stiffness of the wheel center. We

start from one bushing to Multi-bushings and we get a recursive formula. Second, we provide a

example of practical application of the method. 

Fig. 1 Vehicle suspension
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2. Calculating the equivalent stiffness matrix of a suspension

First, we will describe the assumptions throughout this paper:

(1) The linkages of the suspension is rigid;

(2) The stiffness of the suspension systems provides only by the bushings;

(3) The position of the linkage is known;

(4) All the unknown force direction are set to coordinate with the positive direction of the Global

Co-ordinate System (GCS);

(5) We only consider the case of small rotations displacement and assume that all stiffness is

linear.

(6) The linkages connect directly the wheel center to the bushings.

These assumptions do not introduce significant error when we consider typical loads applied in

the wheel center.

Suspensions typically have numerous bushings and linkages that connect the wheel carrier with

the vehicle body. In other words, we are able to consider the suspension to be a simple system

connecting the wheel carrier to vehicle body with the stiffness. So we can express a suspension

system by its stiffness K, which describes the relationship between force F and displacement X at

the wheel carrier

F = KX (1)

First we consider the simplest case:

2.1 One bushing and one linkage

There is only a bushing and a linkage, as illustrated in Fig. 2. Point 0 is the wheel center, there is

one bushing at the point 1 and the bushing fixed on the wheel carrier. θ1 is the angle between the

rod 0-1 projection in 0-xy plane and the positive direction of x-axis and β1 is the angle between the

rod 0-1 and the positive direction of z-axis. The length of the rod 0-1 is l1 and the length of the

bushing is neglected, the stiffness of the bushing is K1. We assume that the wheel carrier don't

move. There is a force ( ) at the point 0.

Using the theoretical mechanics knowledge we can calculate the force of the bushing, written in

matrix form

F Fx  Fy  Fz  Mx  My  Mz( )
T

=

Fig. 2 One bushing and one linkage structure
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(2)

Using the formula (1) we can calculate the deformation (or displacement) of bushing, namely the

displacement of point 1 

(3)

Using the rigid body kinematics knowledge and the method described in Appendix I, we can

calculate the displacement of the point 0, namely the displacement of the wheel center. Written in

matrix form

(4)

Based on the assumptions (5), we have the following equations

(5)

Therefore, we can write the formula (4) into the following simplified form

(6)

Comparing Eqs. (2) and (6), we will find the following equation: A = DT

Combining Eqs. (2), (3) and (6) we get the following equation

(7)

So the compliance matrix (C) of the wheel center can be received

(8)
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Inversing the compliance matrix (C) we can obtain the equivalent stiffness ( ) of the wheel

center 

(9)

2.2 Two bushings and two linkages

There are two bushings and two linkages, as illustrated in Fig. 3. Point 0 is the wheel center, there

are two bushings which fixed on the wheel carrier at the point 1 and at the point 2. The length of

the rod 0-1 is l1 and the length of the rod 0-2 is l2. The length of the bushings is neglected and the

stiffness of the bushings is K1 and K2, respectively. θ1 is the angle between the rod 0-1 projection in

0-xy plane and the positive direction of x-axis and β1 is the angle between the rod 0-1 and the

positive direction of z-axis. θ2 is the angle between the rod 0-2 projection in 0-xy plane and the

positive direction of x-axis and β2 is the angle between the rod 0-2 and the positive direction of z-

axis. We assume that the wheel carrier don't move. There is a force ( )

at the point 0.

Setting the displacement of the point 0 is 

Using the formula (6), we can calculate the displacement of the bushing 1 and bushing 2

(10)

(11)

where

K0

1

K0

1
A

1–
K1D

1–
=

F Fx  Fy  Fz  Mx  My  Mz( )
T

=

d0: d0 d0x  d0y  d0z  θ0x  θ0y  θ0z( )
T

=

 

 

 

Fig. 3 Two bushings and two linkages structure
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Using the formula (1), we can calculate the force of the bushing 1 and bushing 2

(12)

(13)

Combining Eqs. (10)-(13), we can find the relationship between F1 and F2

(14)

In the Global Co-ordinate System calculating the force and moment balance equations and writing

in matrix form

(15)

where

Combining Eqs. (14) and (15) we have the following equation 

(16)
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So we can calculate F2

(17)

where

(18)

Combining Eqs. (11), (13) and (17) we can find the relationship between the force of wheel center

and the displacement of the wheel center as the following equation

(19)

We can write the Eq. (19) in the following form

(20)

So the equivalent stiffness of the wheel center ( ) is

(21)

2.3 Three bushings and three linkages

Three bushings and three linkages, as illustrated in Fig. 4. Point 0 is the wheel center, there are

three bushings at the point 1, point 2 and point 3 which all fixed on the wheel carrier. The length of

the rod 0-1 is l1, the length of the rod 0-2 is l2 and the length of the rod 0-3 is l3. The length of the

bushings is neglected. the stiffness of the bushings is K1, K2 and K3, respectively. θ1 is the angle

between the rod 0-1 projection in 0-xy plane and the positive direction of x-axis and β1 is the angle

between the rod 0-1 and the positive direction of z-axis. θ2 is the angle between the rod 0-2

projection in 0-xy plane and the positive direction of x-axis and β2 is the angle between the rod 0-2

and the positive direction of z-axis. θ3 is the angle between the rod 0-3 projection in 0-xy plane and

the positive direction of x-axis and β3 is the angle between the rod 0-3 and the positive direction of

 

 

 

 

K0

2

 

Fig. 4 Three bushings and three linkages structure
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z-axis. We assume that the wheel carrier don't move. There is a force ( )

at the point 0.

Setting the displacement of the point 0 is 

Using the formula (6), we can calculate the displacement of the bushing 1, bushing 2 and bushing 3 

(22)

(23)

(24)

where

Using the formula (1), we can calculate the force of the bushing 1, bushing 2 and bushing 3 

(25)

(26)

(27)

F Fx  Fy  Fz  Mx  My  Mz( )
T

=

d0: d0 d0x  d0y  d0z  θ0x  θ0y  θ0z( )
T

=
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Combining Eqs. (22), (23), (25) and (26), we can find the relationship between F1 and F2

(28)

Similarly, combining Eqs. (22), (24), (25) and (27), we can find the relationship between F3 and F2

(29)

In the Global Co-ordinate System calculating the force and moment balance equations and written

in matrix form

(30)

where

Combining Eqs. (28)-(30) we have the following equation

(31)

So we can calculate F2

(32)
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where

(33)

Combining Eqs. (23), (26) and (32) we can find the relationship between the force of wheel

center and the displacement of the wheel center as the following equation

(34)

We can write the Eq. (34) in the following form 

(35)

So the equivalent stiffness of the wheel center ( ) is

(36)

Comparing the Eqs. (21) and (36), we will find the following relationship:

(37)

2.4 Multi-bushings and multi-linkages

Using the mathematical induction we can calculate the stiffness of the wheel center with N

bushings and linkages. We assume that we already calculate the equivalent stiffness of the wheel

center with N-1(N > 2) bushings and linkages is , so we can know the EN-1. There is another

bushing and linkage connecting the wheel center with the wheel carrier, the length of the rod 0-N is

lN and the stiffness of the bushing is KN.

Setting the displacement of the point 0 is 

Using the formula (6), we can calculate the displacement of the bushing N and the bushing 2 

(38)

(39)

where

 

 

 

K0

3

 

 

K0

N 1–

d0: d0 d0x  d0y  d0z  θ0x  θ0y  θ0z( )
T

=
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Using the formula (1), we can calculate the force of the bushing N and bushing 2

(40)

(41)

Combining Eqs. (38)-(41), we can find the relationship between FN and F2

(42)

In the Global Co-ordinate System calculating the force and moment balance equations and written

in matrix form

(43)

where 

where,  is the angle between the rod 0-N projection in 0-xy plane and the positive direction of x-

axis and βN is the angle between the rod 0-N and the positive direction of z-axis.

Combining Eqs. (42) and (43) we have the following equation

(44)

So we can calculate F2 

(45)

where

(46)

 

 

 

 

 

 

θN
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Combining Eqs. (39), (41) and (45) we can find the relationship between the force of wheel

center and the displacement of the wheel center as the following equation

(47)

So the equivalent stiffness of the wheel center ( ) is

(48)

where, ( ) is the equivalent stiffness of the wheel center and N is the number of the rod.

3. Numerical examples

We apply the above method to calculate the equivalent stiffness of the wheel center. There are

three bushings and three linkages. The geometric parameters of the linkages are elaborated in

Table 1. The stiffness of the bushings are elaborated in Table 2.

Taking the above data into the formula (36), we can calculate the equivalent stiffness of the wheel

center ( )

 

K0

N

 

K0

N

K0

3

Table 1 The geometric parameters of the linkages

Bar number
θN
 (o)

βN

 (o)
The length of the bar

(lN) (m)

0-1 0 0 0.3

0-2 30 30 0.5

0-3 60 60 0.7

Table 2 The stiffness of the bushings

Bushing number
(N)

The stiffness of the bushing N (KN) (N/m & N m/rad)

1

[628, -475, -3, 27330, -32550, -90046;
-475, 15273, 347, 271759, -63999, 261819;

-3, 347, 614, 154320, 295744, 36154; 27330, 271759, 154320, 
184432089, 44877463, 14545450;

-32550, -63999, 295744, 44877463, 160408083, -6070126;
-90046, 261819, 36154, 14545450, -6070126, 596847763]

2
[9.0891e7, 0, 0, 0, -1.0162e7, 0; 0, 9.0891e7, 0, 1.0162e7, 0, 0;

0, 0, 22.7228e7, 0, 0, 0; 0, 1.0162e7, 0, 0.1137e7, 0, 0;
-1.0162e7, 0, 0, 0, 0.1137e7, 0; 0, 0, 0, 0, 0, 0.0001e7]

3
[9.0891e7, 0, 0, 0, -1.0162e7, 0; 0, 9.0891e7, 0, 1.0162e7, 0, 0;

0, 0, 22.7228e7, 0, 0, 0; 0, 1.0162e7, 0, 0.1137e7, 0, 0;
-1.0162e7, 0, 0, 0, 0.1137e7, 0; 0, 0, 0, 0, 0, 0.0001e7]
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We can find that the equivalent stiffness matrix of the wheel center is a symmetric and positive

matrix. Find the eigenvalues of the equivalent stiffness of the wheel center (K3)

Comparing the eigenvalues of the stiffness of the bushings and the equivalent stiffness of the

wheel center we find that the eigenvalues of the equivalent stiffness of the wheel center is much

bigger than the eigenvalues of the stiffness of the bushings. As we know that the more the rod for a

statically indeterminate structure, the more rigid of the structure. So the calculating result consistent

with the real situation.

4. Conclusions

The paper gives a method to use the stiffness of bushings to calculate the equivalent stiffness of

the wheel center. Comparing the Ai and Di we can have the following equation

 (49)

From the formula (48) we can find that the equivalent stiffness of the wheel center is a symmetric

matrix which meets the conditions of the stiffness matrix of a structure. We find the relationship

between the stiffness of the wheel center and the stiffness of the bushings. So using this method we

can easily calculate the equivalent stiffness of the wheel center. We also can use this method to

optimize the suspension system. We can optimize the stiffness of the suspension through changing

the stiffness and the location of the bushings. So this method is very useful for the design of the

suspension.
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Appendix I

The length of rod is l. θ is the angle between the rod 0-1 projection in 0-xy plane and the positive direction
of x-axis and β is the angle between the rod 0-1 and the positive direction of z-axis as Fig. I. When there is a
displacement of the point 0, what is the displacement of the point 1?

ssuming the displacement vector at the point 1 is d0

Without loss of generality, we assume that the point 0 is origin point of the coordinate system, so we can
know the coordinate at the point 1 is  

 (I1)

When there is a rotation angle (θz) around the z-axis at the point 0, the coordinate at the point 1 is

 (I2)

Then when there is a rotation angle (θx) around the x-axis at the point 0, the coordinate at the point 1 is

(I3)

where γ is the angle between the rod 0-1 projection in the 0-yz plane and the y-axis positive direction; where 

Finally when there is a rotation angle (θy) around the y-axis at the point 0, the coordinate at the point 1 is

(I4)

where η is the angle between the rod 0-1 projection in the 0-zx plane and the z-axis positive direction; where 

At this time the translation vector at the point 1 is 

 

 

 

 

 

 

 

Fig. I The rod in the 3-dimensional space
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(I5)

Simplifying the formula (I5), we can have the translation vector:

(I6)

And the rotation vector is

(I7)

So we can have the displacement vector is

(I8)

 

 

 

 




