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Abstract. An eigenspace projection clustering method is proposed for structural damage detection by
combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data
selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural
damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure
are used as initial data, median values of the projections are considered as damage features, and the fuzzy
c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method
has been validated using a three-story frame structure built and tested by Los Alamos National
Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel
principal component analysis (KPCA), are compared for better extraction of damage features, further six
kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that
the distance selection depends on the distribution of features. For the optimal choice of projections, it is
recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the
Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount
of data need to be processed due to its higher correct decisions and less computational costs.

Keywords: structural damage detection; eigenspace projections; fuzzy clustering; principal component
analysis; kernel principal component analysis 

1. Introduction

Structural Health Monitoring (SHM) is a fast-developing, interdisciplinary field of research due to

the fact that SHM is heavily stimulated by the engineering problems of maintenance and safe

operation of technical infrastructure (Sohn et al. 2003, Alvandi and Cremona 2006, Farrar and

Worden 2007, Koiakowski 2007, Yan et al. 2007, Gul and Catbas 2009, Nguyen and Golinval 2010,

Yu and Xu 2011). One of core problems of SHM is the damage identification, which can be divided

into five levels (Rytter 1993): 1) detection of damage existence; 2) localization of damage; 3)
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identification of damage type; 4) quantification of damage extent; and 5) damage prognosis. The

first level, also the lowest level of detection, is to ascertain if damage is present or not based on

measured dynamic characteristics of a structure to be monitored (Sohn et al. 2003, Sohn 2007),

which is the most fundamental issue in the SHM field (Worden et al. 2000). 

The process of SHM can be considered as one of statistical pattern recognition problems (Farrar

et al. 2000). Therefore, many algorithms in pattern recognition fields can be applied to solve the

SHM problems (Farrar and Worden 2007). Generally speaking, in order to distinguish between the

normal condition of the structure and the damaged conditions, one must at least answer two

questions: 1) How to extract the features that are insensitive to environmental changes but sensitive

to damage from the responses? 2) How to distinguish the damaged and non-damaged state based on

the features extracted. These questions are corresponding to the last two portions mentioned by

Farrar et al. (2000). 

The first one is how to extract the damage sensitivity features. In last decades, the most common

features used in vibration-based damage detection are the modal parameters, such as the natural

frequency, modal shape, and their derivatives, but these features are insensitivity to slight damages,

and modal identification can be a time-consuming task and the curve fitting process itself always

adds some unavoidable errors. Therefore, the direct use of measured raw data for damage detection

(e.g., frequency response functions - FRFs) may represent in most cases a considerable advantage.

The measured raw data must be compressed without losing much useful information before

performing the damage detection, due to the more redundant information and the less noise

immunity. Principal component analysis (PCA) is a well-known tool for feature extraction and

dimensionality reduction, which has been widely applied to the damage detection (Zang and

Imregun 2001, da Silva et al. 2008, Oh and Sohn 2009, Trendafilova et al. 2008). However, the

PCA mostly are taken as data compression tool and rarely used to directly extract the damage

features of structures (Yu et al. 2010). This study suggests another use of PCA, which does not

reduce the dimension of the FRF data, but project the raw FRF data on the eigenvectors space of

covariance of the raw FRF data in reference state. The median values of all their projections are

considered as the damage-sensitive features as described by the authors (Yu et al. 2010). 

In further recognition stage, another question is how to find a critical threshold value that can

distinguish undamaged and damaged condition. There are many approaches to determine the critical

values, such as statistical process control methods (Fugate et al. 2001), Monte Carlo method

(Worden et al. 2000), fuzzy clustering (da Silva et al. 2008), sequential probability ratio test (Oh

and Sohn 2009) etc. The statistical process control methods referred to as control chart (e.g., X-bar,

S control chart) were used to monitor the mean, the variance or some other function of the features,

and the control limits were determined under certain confidence by assuming the distribution of the

features to be the normal distribution (Fugate et al. 2001). Monte Carlo method means large

computation cost. The sequential probability ratio test is based on the premise that damage will

increase a standard deviation of the residual error beyond a specified threshold (Oh and Sohn 2009).

Fuzzy clustering can categorize the features into two groups, damaged and undamaged states,

without using a specified threshold value (da Silva et al. 2008). Also other simple discriminant

analysis (Trendafilova et al. 2008) may be used to classify the features. Here, fuzzy clustering

algorithm is used for the recognition objective since the features developed there do not exhibit the

property of normal distributions. 

In this paper, we present an integrated procedure for damage detection, which combines the data

normalization, projection algorithm, and fuzzy clustering techniques. The effectiveness of the
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method is evaluated by using an experimental data of three-story frame structure built and tested by

Los Alamos National Laboratory, USA. Further, two projection algorithms and six kinds of

distances used in the fuzzy c-means (FCM) algorithm are compared and discussed. 

Fig. 1 Damage detection diagram
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2. Background of method 

The integrated procedure for damage detection are summarized into the diagram in Fig. 1, which

can be divided into five steps, i.e., data collection, data normalization, projection, data reduction,

and clustering. In this section, the five steps are described as follows.

2.1 Data collection on frequency response functions (FRFs)

The basic premise of vibration-based damage detection is that damage will alter the modal

parameters of a structure, which will in turn reflect in the responses of the structure. It has been

widely considered that using directly FRFs has more advantages than using indirectly modal

parameters in damage detection process, due to the more raw information of FRFs. Thus, in this

paper, the FRF data are considered as the initial data. 

Assuming a structure under investigation can be modeled as an n-DOF finite element model. In

the frequency domain the dynamic equation can be expressed in the form 

(1)

where M, C and K are the mass, damping and stiffness matrices respectively, and are symmetric.

X(ω) and F(ω) are the Fourier transforms of the displacement and the forces vectors, respectively,

and ω is the excitation frequency. The above equation can be written in terms of FRFs, in the

following form

(2)

where H(ω) is the FRF defined as follows

(3)

The response of the structure to a harmonic load can be expressed as 

(4)

where Hij(ω) is the displacement FRF of the i-th DOF when subjected to the applied unit force at

the j-th DOF. The k-th mode shape, natural frequency and damping ratio are represented as ϕk, ωk,

ξk respectively. In Eq. (4), it can be seen that one column of FRFs matrix H contains all modal

parameters. Thus, in fact, it is enough to measure one column of FRFs for structural modal

parameters in damage state.

2.2 FRFs data normalization

Let h = [h1, h2,…, hp] ∈ Rn×p, hi = [hi(1), hi(2),…, hi(n)]T, i = 1, 2,…, p, denote amplitudes of FRF

data with p spectral lines at all n measurement points. In order to eliminate the effects caused by

environmental and operational variations from the measured FRFs, the data standardization
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procedure are performed as follows (da Silva et al. 2008)

(5)

 (6)

 (7)

where  and  are the mean, variance and standardized version of hi(k) sequence

respectively.

2.3 FRFs data projection

Although the FRFs contain more raw information about a structure, considering the cost of

computation and effect of noise, it is impossible to use full-size FRF data in a damage detection

process. Thus, some measures must be made, such as data reduction and feature extraction. In this

section, two projection algorithms, namely principal component analysis (PCA) and kernel principal

component analysis (KPCA), are adopted before extracting the damage features. The basic theory is

described as follows.

2.3.1 Principal component analysis 

PCA is a powerful technique for feature extraction and data dimensionality reduction. It is

mathematically (Jolliffe 2002) defined as an orthogonal transformation of raw data to a new

coordinate system such that the greatest variance by any projection of the data comes to lie on the

first coordinate (called the first principal component), the second greatest variance on the second

coordinate, and so on. PCA is theoretically the optimum transform for given data in least square

terms. 

According to the distribution characteristic of FRF data, it can be concluded that there are

strongly correlation between the FRF data at different measurement points. Using the whole FRFs

data is not possible. In this scheme, PCA attempts to extract the features from the original data by a

linear orthogonal projection. 

The covariance matrix of  can be computed by 

(8)

Then, the PCA can be performed by solving the eigenvalue problem as following

(9)
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corresponding eigenvector, respectively. The k-th principal component of the test sample point htest,

which is the standardized version of h in unknown state, is the projection of h
test on the k-th
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eigenvector wk, which can be computed by

(10)

In this paper, the eigenvectors are obtained from the normalized FRF data in reference state, and

the test points comes from the normalized FRFs data, either in healthy state or in damage state.

2.3.2 Kernel principal component analysis 
KPCA, proposed by Schölkopf (1998), is an extension of PCA using techniques of kernel

methods. It also can be derived by extension of least-squares support vector machine (Oh and Sohn

2009, Nguyen and Golinval 2010). 

Firstly, the data point are mapped into another feature space

(11)

In this space, standard PCA is performed. The covariance matrix C2 of  is computed by

(12)

which can be diagonalized with nonnegative eigenvalues satisfying

(13)

where , Λ = diag[λ1, λ2, …, λn] is a diagonal matrix

constructed from the eigenvalues of C2, V = [v1, v2,…, vn] ∈ Rn×n is a matrix composed of the

corresponding eigenvectors, each column of V lies in the span of   and can be

expressed as (Schölkopf 1998) 

(14)

where A ∈ Rp×n is the coefficient matrix, whose ij-th element is aij. Substituting Eq. (12) and (14)

into Eq. (13), multiplying both sides with , and rewriting the expression as another

eigenvalue problem

(15)

(16)

It can be seen that Λ and A are the eigenvalues and corresponding eigenvectors matrix of K/(p−1)

∈ Rp×p. K is the kernel matrix, whose ij-th element is the inner-product kernel . In this

paper, the polynomial kernel  is utilized. Here d is the degree of polynomial,

which is set to be 2. The eigenvectors matrix V is normalized as I = V
T
V while the coefficient

matrix A is normalized and translated into AT
A = Λ−1/(p − 1).
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The k-th nonlinear principal component of a test point  can be extracted in the form

  (17)

In summary, the following steps were necessary to compute the principal components (PCs): first,

compute the kernel matrix K defined by Eq. (16); second, compute its eigenvectors A and

normalize them; third, compute projections of a test point onto the eigenvectors by Eq. (17). In fact,

the mapping ψ does not need to be computed explicitly since the whole procedures only need

kernel matrix K, which can be implicitly obtained. 

Care must be taken into consideration regarding the fact that whether  has zero-mean in its

original space or not, it is not guaranteed to be centered in the feature space. Since centered data is

required to perform an effective PCA, the centralized version of K can be computed by (Schölkopf

1998) 

(18)

where 1p denotes a p-by-p matrix for which each element takes value 1/p. 

2.4 Damage sensitivity features extracted from projections

It is impossible to use all projections obtained previously in the damage detection process.

Damage sensitivity index should be extracted further from the PCs. Recently, the median values of

PCs are proposed in reference (Yu et al. 2010), and the results show that it can reflect the structural

state. By definition

(19)
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(21)
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where αk and βk denote the median values of the k-th principal component obtained by PCA and by

KPCA respectively. The superscripts in Eqs. (21)  and (22), i.e. test and ref, denote the median values

in the testing states and the reference state respectively. If no damage occurred, the damaged index

(γpca, γkpca) theoretically equal to unity, otherwise, it should be greater or smaller than unity. In fact,

the damaged index cannot absolutely equal to unity, even in healthy state, due to the effect of

environmental factors. The damage detection can be performed correctively according to the whole

features of the damaged index. 
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2.5 Damage detection using fuzzy clustering

In the previous section, damaged index has been defined, but it is difficult to choose a threshold

values that characterize damage. In order to perform the damage detection, fuzzy c-means clustering

(FCM) algorithm, which was first presented by Bezdek (1981), and recently applied to SHM

problems by da Silva et al. (2008), is employed to clarify the features, and supply a fuzzy decision

by using the membership of damage index in a cluster. This algorithm is an unsupervised

classification algorithm which uses a certain objective function, described in Eq. (23), for iteratively

determining the local minima. 

(23)

 (24)

 (25)

(26)

where C is the total number of clusters, which here is set to be 2 that denote two states, such as the

healthy and damaged state in this paper. N is the total number of objects in calibration. uij is the

membership function associated with the j-th object of the i-th cluster, which is updated by using

Eq. (26) in each iteration step. The exponent m is a measurement of fuzzy partition. ci is the

centroid of the i-th cluster, xj is j-th object of data set to be clustered, which here is set to γ, dij

denotes the distance between j-th object and the centroid of the i-th cluster, here, Euclidean distance

is used as Eq. (25) (Matlab 2000). 

3. An experimental example for structural damage detection

3.1 Experimental description

To verify the proposed method, an experimental example based on a three-story frame structure

(Fig. 2) is used here. The background and time history data are available from the Los Alamos

National Laboratory website (http://institute.lanl.gov/ei/). The structure was built of Unistrut

columns and aluminum floor plates with two-bolt connections to the brackets on the Unitstrut.

Twenty-four piezoelectric single-axis accelerometers (n = 24), two per joint, were mounted on the

aluminum blocks, eight in each plate. The shaker was attached at Corner D using a stinger
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connected to a tapped hole at the mid-height of the base plate and a force transducer is also

mounted between the stinger and the base plate to measure the excitation input. 

3.2 Experimental cases

The experimental investigation includes a number of healthy states (HS) and damaged states (DS)

with single and multiple damage locations and varying damage levels. The following cases are

considered.

HS1: Reference state;

DS1: Damage introduced to location 1C, including two damage levels (DB0 and DBB);

HS2: Healthy state recovered from DS1;

DS2: Damage introduced to location 3A, including two damage levels (DB0 and DBB);

HS3: Healthy state recovered from DS2;

DS3: Damage introduced to location 1C and 3A, including two damage levels (DB0 and DBB);

HS4: Healthy state recovered from DS3;

DS4: Damage introduced to location 1C, including three damage levels (D05, D10 and DHT);

HS5: Healthy state recovered from DS4.

The damage levels include DB0, DBB, D05, D10 and DHT, which mean

DB0: Bolts were removed between the bracket and the plate; 

DBB: Bracket was completely removed; 

D05: Torque value of 5 ft.Lbs was left on the bolts; 

D10: Torque value of 10 ft.Lbs was left on the bolts;

DHT: Hand tight torque was left on the bolts.

Fig. 2 Three-story frame structure
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Table 1 List of known state (reference state)

Case Structural condition damage location damage extent Excitation level (V)

1 Health State (HS1) - D00 2

Table 2 List of unknown states

Case
Structural 

State
Damage 
Location

Damage 
extent

Excitation 
Level (V)

Case
Structural 

State
Damage 
Location

Damage 
extent

Excitation 
Level (V)

2

Healthy 
States

(HS1)

- D00 2 32

Damaged 
States

(DS3)

1C and 3A DB0 2

3 - D00 2 33 1C and 3A DB0 5

4 - D00 5 34 1C and 3A DB0 8

5 - D00 5 35 1C and 3A DBB 2

6 - D00 8 36 1C and 3A DBB 5

7 - D00 8 37 1C and 3A DBB 8

8

Damaged 
States

(DS1)

1C DB0 2 38

Healthy 
States

(HS4)

- D00 2

9 1C DB0 5 39 - D00 2

10 1C DB0 8 40 - D00 5

11 1C DBB 2 41 - D00 5

12 1C DBB 5 42 - D00 8

13 1C DBB 8 43 - D00 8

14

Healthy 
States

(HS2)

- D00 2 44

Damaged 
States

(DS4)

1C D05 8

15 - D00 2 45 1C D05 8

16 - D00 5 46 1C D10 8

17 - D00 5 47 1C D10 8

18 - D00 8 48 1C DHT 8

19 - D00 8 49 1C DHT 8

20

Damaged 
States

(DS2)

3A DB0 2 50

Healthy 
States

(HS5)

- D00 2

21 3A DB0 5 51 - D00 2

22 3A DB0 8 52 - D00 5

23 3A DBB 2 53 - D00 5

24 3A DBB 5 54 - D00 8

25 3A DBB 8 55 - D00 8

26

Healthy 
States

(HS3)

- D00 2
Notes: D00 indicates no damage occurs, DB0 indicates
that the bolts were removed between the bracket and
the plate, DBB indicates the bracket was completely
removed, DHT indicates the bolts were left in at a
hand tight torque, and D05/D10 indicate that a torque
value of 5 or 10 ft. Lbs. was left on the bolts.

27 - D00 2

28 - D00 5

29 - D00 5

30 - D00 8

31 - D00 8
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Random shaker excitation was applied to the base, and the responses were sampled at 1600 Hz

with each signal consisting of 8192 points. The FRFs were calculated from both the measured force

and response signals. In order to reduce the random fluctuation in the estimation of the FRFs, the

number of averaging individual time records was selected to be eight as the same setting as the ref

(Zang et al. 2003). The final FRF was produced with 512 spectrum lines (p = 512). The reference

state is chosen from the healthy state (HS1) arbitrarily, supposed to be the FRFs using the excitation

levels of 2V as listed in Table 1, and the configurations of all test cases are listed in Table 2. It

should be noted that the FRFs data used in Case 1 are different from those used in Cases 2-7. 

3.3 Results and discussions

Fig. 3 plots the FRF curves in the same condition with different excitation levels, where the figure

legend “Case6: HS1-D00-8-2” denotes Case 6 corresponding to the HS1 state with D00 damage

extent and 8V excitation level as shown in Table 2, the last digit 2 is the set number. D00 indicates

no damage occurs. Other legends in the following figures can be recognized similarly. It can be

seen from Fig. 3 that data normalization is very effective to remove the effect of the excitation

levels, which cause the increasing or decreasing of amplitude in FRF curves. 

The median values of PCs in different states are compared in Fig. 4. The PCA can give 24

eigenvectors corresponding to 24 non-zero eigenvalues, however, the KPCA can supply 415 non-

zero eigenvalues, which result in 24 and 415 median values for the two projection algorithms, PCA

and KPCA, respectively. It can be seen that the last median values of PCs are sensitive to damage,

whether using normal PCA or KPCA. This is because damage can only induce changes in FRF

Fig. 3 Comparison on FRF curves before and after normalization
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Fig. 4 Comparison on median values of PCs in different states

Fig. 5 Feature indexes extracted by PCA and KPCA
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locally, not entirely. If the median values of the first few PCs vary remarkably, which indicates

serious damage arises, but it does not mean that changes of the last median values suggest damaged

occurred due to the effect of noise. 

Then, how to detect damage occurred in structure from the variety of the median values? In this

paper, the fuzzy c-means clustering algorithm is used to supply a fuzzy decision by finding the

hidden patterns in damaged structure. The damage indexes are computed by Eqs. (21) and (22)

respectively, some of them are plotted in Fig. 5. From Fig. 5(a), it can be seen clearly that the

damage index in Case 29 (healthy state) fluctuates around unity in Case 1 (reference state) and that

in Case 49 (damaged state) takes an offset. Fig. 5(b) is the damage index obtained by KPCA, it also

shows a distinct pattern between Case 29 (healthy state) and Case 49 (damaged state), especially at

the middle section, where the damage index in Case 29 (healthy state) exhibits an excursion pattern

while that in Case 49 (damage state) shows an rotation pattern. 

Further, the damage index computed with PCA and KPCA were taken as the input of FCM

respectively, in which the cluster number C = 2 and the exponent m = 1.5. Fig. 6 and Fig. 7 plot the

centroid of clusters derived from these damage indexes respectively, each centroid of clusters

represents the healthy or damaged pattern. It can be seen that there exists clearly different patterns

in healthy and damaged structure. 

The membership values of each case in each cluster are presented in Fig. 8 and Fig. 9, it can be

seen that all undamaged cases were classified well when using PCA. There were a false-positive in

Case 43 when using KPCA. For the damaged cases, Figs. 8 and 9 show that the KPCA result is

better than the PCA result, because there were about 88.9% correct decisions for the KPCA with 5

false-negatives in Cases 21, 22, 44, 46 and 47, whereas there are about 87% correct decisions for

the PCA with 7 false-negatives in Cases 21, 22, 24, 25, 44, 46 and 47. 

In the FCM process, two parameters play an important role in the clustering results. One is the

exponent m, in general, the higher the exponent, the more vague the boundary between different

Fig. 6 Centroid of clusters derived from feature index by PCA
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cluster. The exponent is always greater than unity, m = 1.5 is set here. Another one is the distance

dij, the results mentioned above were obtained by using Euclidean distance in Eq. (25). In order to

investigate the effect of different distance on the results, we adopt another five distances (Matlab

2000) as in Table 3 instead of Euclidean distance. The results of PCA and KPCA were plotted in

Fig. 10 and Fig. 11 respectively. 

It should be noted that only the membership in damaged cluster were plotted in Fig. 10 and

Fig. 7 Centroid of clusters derived from feature index by KPCA

Fig. 8 Membership of each case in each cluster (PCA)
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Fig. 11, as the summation of membership of each case in two clusters always equal to unity. The

closer the membership in damaged cluster is to unity, the higher the probability of damage, and vice

versa. From Fig. 10, it can be seen that there are no evident improvement in the results of all cases

using various distances except those using Cosine distance, which classifies the Cases 21, 22, 24

and 25 correctly, and increases correct decisions of the PCA to be 92.6%. Fig. 11 shows that the

poor results for the KPCA may be obtained when using Cosine distance for damaged cases, the

Fig. 9 Membership of each case in each cluster (KPCA)

Table 3 Various distances

Distance Equation Notes

Seuclidean
Where S is a diagonal matrix whose j-th diagonal element 
is s2, where s is the vector xj of standard deviations.

Cityblock
The city block distance is a special case of the Minkowski 
metric, where p = 1.

Minkowski

For the special case of p = 1, the Minkowski metric gives 
the City Block metric, for the special case of p = 2, the 
Minkowski metric gives the Euclidean distance, and for 
the special case of p = ∞, the Minkowski metric gives the 
Chebychev distance. In this paper, p = 3 is used. 

Chebychev
The Chebychev distance is a special case of the Minkowski 
metric, where p = ∞.
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Fig. 10 Membership of each case in damaged cluster by PCA

Fig. 11 Membership of each case in damaged cluster by KPCA
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results of each case using all distances except Cosine distance, are similar to each other. However,

there were no false-positive when using Seucildean distance and Cityblock distance with 5 false-

negatives in Cases 21, 22, 44, 46, and 47. The correct decision is up to 90.7%. 

In Cases 21, 22, 24 and 25 corresponding to DS2, when Euclidean distance was used for PCA

and any of distances used for KPCA, there was lower correct decisions, which is consistent with the

results in the ref (da Silva et al. 2008). But when Cosine distance was used for PCA, these cases

can be classified correctly. However, in Cases 44, 46 and 47 corresponding to DS4, both two

algorithms failed to detect damage when any of distances was used for PCA, which may be due to

the slight damage. 

4. Conclusions

An eigenspace projection clustering method is proposed in this paper for structural damage

detection on the basis of measured frequency response functions (FRFs). An experimental example

of three-story frame structure validated its effectiveness, further two projection algorithms, namely

principal component analysis (PCA) and kernel principal component analysis (KPCA), and six

distances in the fuzzy c-means (FCM) algorithm were compared respectively, some conclusions can

be made as follows: 

(i) Before performing data projection, data normalization is very necessary for eliminate the

environmental and operational effects. 

(ii) By comparing the results of two projection algorithms, i.e. PCA and KPCA, KPCA were

found to be slightly better than PCA when using any distance except Cosine distance in the FCM

process. However, when using Cosine distance, the correct decision for PCA increases to be

92.6%. Considering the computational costs induced by KPCA, PCA is better than KPCA. 

(iii) Which distance should be chosen in damaged detection process? The results show that it

should be based on the distribution of features corresponding to γ in this paper. For the special

case, it is recommended that the Cosine distance is used for PCA while the Seuclidean distance

and the Cityblock distance is suitably used for KPCA.

(iv) This integrated method contains five steps, i.e., data collection, data normalization, projection,

data reduction, and clustering, which is associated with each other. The experimental example

shows that it can give the more robust damage detection results, compared with the existing

approach proposed by da Silva (da Silva et al. 2008). It has many desirable features for utilization

in real-world structures, as for instance: it needs only one sample in healthy state to be as the

reference data; damage detection procedure is conducted in an unsupervised learning mode, and

doesn’t need a predefined threshold value. However, there still exist some issues needed to be

investigated, such as the effect of kernel function, nonlinearity damage detection and damage

localization and quantification etc. Further research is being conducted dealing with all these issues.
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