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Abstract. Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with
temperature dependent physical properties are studied in this paper by using the total Lagrangian
Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with
immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling
phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also,
the material properties (Young’s modulus, coefficient of thermal expansion, yield stress) are temperature
dependent: That is the coefficients of the governing equations are not constant in this study. This situation
suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically
and physically nonlinear. The considered highly non-linear problem is solved considering full geometric
non-linearity by using incremental displacement-based finite element method in conjunction with Newton-
Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless
Steel (316). The convergence studies are made. In this study, the difference between temperature
dependent and independent physical properties are investigated in detail in post-buckling case. The
relationships between deflections, thermal post-buckling configuration, critical buckling temperature,
maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Keywords: temperature dependent physical properties; thermal post-buckling analysis; total lagrangian
finite element model; Timoshenko beam; uniform temperature rise 

1. Introduction

Nuclear power plants, Aerospace vehicles, thermal power plants etc. are subject to large thermal

loadings. The design of structural elements (beams, plates, shells etc.) in the high thermal

environments is very important in engineering applications. Especially, in the case of structural

elements with immovable ends, temperature rise causes compressible forces end therefore buckling

and post-buckling phenomena occurs. Understanding the buckling and post-buckling mechanism of

structural elements is very important. It is known that buckling and post-buckling problems are

nonlinear problems. In recent years, with the development of technology in aerospace engineering,
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structural enginering, robotics and manufacturing make it inevitable to excessively use non-linear

models that must be solved numerically. Because, closed-form solutions of large-deflection

problems of beams with general loading and boundary conditions using elliptic integrals are limited.

There have been a lot of studies on buckling and post-buckling of beams. Rao and Raju (1984)

investigated thermal postbuckling of columns. Global descriptions of the properties of buckled states

of nonlinearly thermoelastic beams and plates when heated at their ends and edges is investigated

by Gauss and Antman (1984). Jekot (1996) investigated the thermal postbuckling of a beam made

of physically nonlinear thermoelastic material by using the geometric equations in the von-Karman

strain-displacement approximation. Li (2000) examined Thermal Post-Buckling of Rods with

Pinned-Fixed Ends using the shooting method. Coffin and Bloom (1999) gave an elliptic integral

solution for the symmetric post-buckling response of a linear elastic and hygrothermal beam with

the two ends pinned. On the basis of exact nonlinear geometric theory of extensible beam and by

using a shooting method, computational analysis for thermal post buckling behavior of beams with

pinned-pinned, fixed-fixed and pinned-fixed ends were presented by Li and Cheng (2000), Li et al.

(2002), Li and Zhou (2001). Thermal post-buckling responses of an elastic beam, with immovably

simply supported ends and subjected to a transversely non-uniformly distributed temperature rising,

were investigated by Li et al. (2003). Thermal post-buckling response of an immovably pinned-

fixed Timoshenko beam subjected to a static transversely nonuniform temperature rise is

numerically analyzed by using a shooting method by Li and Zhou (2003). Based on the finite

element method, the analysis of heat conduction and structural stress and buckling are considered at

the same time in the design optimization procedure by Chen et al. (2003). Vaz and Solano

(2003, 2004) investigated thermal post-buckling of rods and came up with a closed form solution

via uncoupled elliptical integrals. Large thermal deflections for Timoshenko beams subjected to

transversely non-uniform temperature rise and with pinned-pinned as well as fixed-fixed ends are

numerically analyzed by Li and Song (2006). Aristizabal-Ochao (2007) developed a new set of

slope deflection equations for Timoshenko beam-columns which includes the combined effects of

shear and bending deformations, and second-order axial load effects in a classical manner and

emphasized the great importance of shear effects on static, tension and compression stability and

dynamic behavior of elastomeric bearings used for seismic isolation. Both thermal buckling and

post-buckling of pinned-fixed beams resting on an elastic foundation are investigated by Song and

Li (2007). Vaz et al. (2007) examined a perturbation solution for the initial post-buckling of beams

resting on elastic foundation and subjected to uniform thermal load. Parente and de Sousa (2008)

investigated a simple and efficient methodology for sensitivity analysis of geometrically nonlinear

structures subjected to thermo-mechanical loading in regular and critical states. Thermal post-

buckling analysis of uniform, isotropic, slender and shear flexible columns is presented using a

rigorous finite element formulation and a much simpler intuitive formulation by Gupta et al. (2009).

Gupta et al. (2010a) investigated simple, elegant, and accurate closed-form expressions for

predicting the post-buckling behavior of composite beams with axially immovable ends using the

Rayleigh-Ritz method. Thermal post-buckling analysis of columns with axially immovable ends is

studied using the Rayleigh-Ritz method by Gupta et al. (2010b). Vaz et al. (2010) examined elastic

buckling and initial post-buckling behavior of slender beams subjected to uniform heating with

temperature-dependent physical properties by using a perturbation solution. Akba  and Kocatürk

(2011) investigated post-buckling analysis of a simply supported beam subjected to a uniform

thermal loading by using total Lagrangian finite element model of two dimensional continuum for

an eight-node quadratic element. Kocatürk and Akba  (2011) studied post-buckling analysis of
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Timoshenko beams with various boundary conditions subjected to a non-uniform thermal loading by

using the total Lagrangian Timoshenko beam element approximation. Akba  (2012) studied termal

post-buckling of functionally graded beams. Yu and Sun (2012) investigated large deformation post-

buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends

and subjected to a significant increase in swelling by an alternative method. Furthermore, Kocatürk

and Akba  (2012) investigated thermal post-buckling analysis of functionally graded Timoshenko

beams subjected to thermal loading by using the total Lagrangian Timoshenko beam element

approximation.

It is seen from literature that post-buckling studies with temperature-dependent physical properties

has not been broadly investigated. In a recent study, Vaz et al. (2010) investigated elastic buckling

and initial post-buckling behavior of slender beams subjected to uniform heating taking into account

temperature-dependent physical properties by using a perturbation solution. In another recent study,

Kocatürk and Akba  (2011) studied post-buckling analysis of Timoshenko beams with various

boundary conditions subjected to a non-uniform thermal loading in the case of temperature

independent physical properties by using the total Lagrangian Timoshenko beam element

approximation. 

Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with

temperature dependent physical properties are studied in this paper by using the total Lagrangian

Timoshenko beam element approximation. The considered highly non-linear problem is solved

considering full geometric non-linearity by using incremental displacement-based finite element

method in conjunction with Newton-Raphson iteration method. The distinctive feature of this study

is post-buckling analysis of Timoshenko beams under uniform thermal loading considering full

geometric non-linearity and temperature dependent physical properties by using finite element

method: As far as the authors know, there is no study on the thermal post-buckling analysis of

Timoshenko beams considering full geometric non-linearity and temperature dependent physical

properties investigated by using finite element method. Another distinctive feature of this study is

investigation of the differences of the analysis results in the case of temperature dependent and

independent physical properties in detail in post-buckling case.

The development of the formulations of general solution procedure of nonlinear problems follows

the general outline of the derivation given by Zienkiewicz and Taylor (2000). The related

formulations of post-buckling analysis of Timoshenko beams with various boundary conditions

subjected to a non-uniform thermal loading are obtained by using the total Lagrangian finite

element model of Timoshenko beam. Convergence studies are performed for various numbers of

elements. In deriving the formulations for post buckling analysis under uniform thermal loading and

temperature dependent physical properties, the total Lagrangian Timoshenko beam element

formulations given by Felippa (2012) are used. There is no retstriction on the magnitudes of

deflections and rotations in contradistinction to von-Karman strain displacement relations of the

beam. The difference between temperature dependent and independent physical properties are

investigated in detail in post-buckling case. The beams considered in numerical examples are made

of Austenitic Stainless Steel (316). The relationships between deflections, thermal post-buckling

configuration, critical buckling temperature, maximum stresses of the beams and temperature rising

are illustrated in detail in post-buckling case.
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2. Theory and formulations

The clamped-clamped beam configurations, with co-ordinate system O (X, Y, Z) are shown in Fig. 1.

In this study, the TL Timoshenko beam element is used and the related formulations are

developed for temperature dependent physical properties by using the formulations given by

Kocatürk and Akba  (2011) which was developed for thermal loading by using the formulations

given by Felippa (2012). In the present study, finite element model of Timoshenko beam element is

developed by using a two-node beam element shown in Fig. 2. Each node has three degrees of

freedom: Two node displacements  and , and one rotation  about Z axis. 

A particle originally located at  moves to  in the current configuration, as shown

in Fig. 3. The projections of P0 and P along the cross sections at C0 and C upon the neutral axis are

called  and , respectively. It will be assumed that dimensions of the beam cross

section do not change, and that the shear distortion γ << 1 so that cosγ can be replaced by Felippa

(2012)

 (1)

 (2)

sç

uxi uyi θi

P0 X Y,( ) P x y,( )

C0 X 0,( ) C xc yc,( )

x xc Y sinψ sinγcosψ+( )– xc Y sin ψ γ+( ) 1 cosγ–( )sinψ+[ ]– xc Ysinθ–= = =

y yc Y cosψ sinγsinψ–( )+ yc Y cos ψ γ+( ) 1 cosγ–( )cosψ+[ ]+ yc Ycosθ+= = =

Fig. 1 Clamped-clamped beam subjected to a uniform temperature rise and cross-section

Fig. 2 A two-node C0 beam element
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where  and . Consequently,  and . From

now on we shall call uXC and uYC simply uX and uY, respectively, so that the Lagrangian

representation of the motion is

 (3)

in which uX, uY and θ are functions of X only. This concludes the reduction to a one-dimensional

model, as sketched in Fig. 3(b). For a two-node C0 element, it is natural to express the

displacements and rotation functions as linear in between the node displacements

 (4)

xc X uXC+= yc uXC= x X uXC Ysinθ–+= y uYC Ycosθ+=

X

Y

X uX Ysinθ–+

uY Ycosθ+
=

w

uX X( )

uY X( )

θ X( )

1

2
---
1 ξ– 0 0 1 ξ+ 0 0

0 1 ξ– 0 0 1 ξ+ 0

0 0 1 ξ– 0 0 1 ξ+

uX1

uY1

θ1

uX2

uY2

θ2

Nu= = =

Fig. 3 Lagrangian kinematics of the C0 beam element with X-aligned reference configuration: (a) plane beam
moving as a two-dimensional body, (b) reduction of motion description to one dimension measured by
coordinate X. This figure is given by Felippa (2012) 
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in which  is the isoparametric coordinate that varies from  at node 1 to

 at node 2. 

The Green-Lagrange strains are given as follows Felippa (2012) 

  (5)

;   (6)

where e is the axial strain, γ is the shear strain and κ is curvature of the beam, ,

, . The second Piola-Kirchhoff stresses with a temperature rise can be

expressed by inclusion of the temperature term as follows 

(7)

where ,  are initial stresses, E is Young’s modulus and G is the shear modulus,  is

coefficient of thermal expansion in the X direction and , where T0 is installation

temperature and ∆T is the uniform temperature rise. The physical properties of the material

(Young’s modulus, coefficient of thermal expansion, yield stress) are dependent on temperature T. 

The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The

coefficients of temperature T for Austenitic Stainless Steel (316) are expressed as follows (from

Incropera and DeWitt 1985, Detail of the ITER Outline Design Report 1994, ITER Documentation

Series: No 29 1991, ASME Code Cases: Nuclear Components 1992)

 (GPa) (8)

(9)

 (MPa) (10)

where E is Young’s modulus,  is thermal expansion coefficient and  is yield stress. Poisson’s

ratio is taken as ν = 0.27. In this study, the unit of the temperature is taken as Kelvin (K). These

equations are valid for temperatures ranging from 300 K to 1000 K.

Using constitutive Eq. (7), axial force N, shear force V and bending moment M can be obtained as

 (11)

 (12)

(13)

(14) 

ξ 2X/L0( ) 1–= ξ 1–=

ξ 1=

e[ ]
e1

e2

eXX

2eXY

1 uX′+( )cosθ uY′ sinθ Yθ ′– 1–+

1 uX′+( )sinθ– uY′ sinθ+

e Yκ–

γ
= = = =

e 1 uX′+( )cosθ uY′ sinθ 1–+= γ 1 uX′+( )sinθ– uY′ sinθ; κ+ θ ′= =

uX′ duX/ Xd=

uY′ uYd / Xd= θ ′ θ/ Xdd=

s
sXX

sXY

s1

s2

s1
0

E T( ) e1 αX T( ) T∆–( )+

s2
0

G T( )e2+

s1
0

s2
0

E T( ) 0

0 G T( )

e1 αX T( ) T∆–

e2
+= = = =

s1
0

s2
0

αX

T T0 T∆+=

E T( ) 205.91 2.6913– 10
2–
T× 4.1876– 10

5–
T
2

×=

α T( ) 11.813 1.3106+ 10
2–
T× 6.1375– 10

6–
T×( ) 10

6–
m/mK( )×=

σy T( ) 448.69 1.193T– 1.4787+ 10
3–
T
2

× 6.3134– 10
7–
T
3

×=

αX σy

N s1 Ad
A
∫ s1

0
E T( ) e Yκ– αX T( ) T∆–( )+[ ] Ad

A
∫= =

N N
0

E T( )eA E T( )AαX T( ) T∆–+=

V s2 Ad
A
∫ s2

0
G T( )e2+[ ] Ad

A
∫ V

0
G T( )Aγ+= = =

M
A
∫ Ys1 Ad–

A
∫ Y s1

0
E T( ) e Yκ– αX T( ) T∆–( )+[ ] Ad–= =
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   (15)

where A and  are the cross section area and second moment of inertia, respectively. 

, , (16)

For the solution of the total Lagrangian formulations of TL Timoshenko beam problem, small-step

incremental approaches from known solutions are used. As it is known, it is possible to obtain

solutions in a single increment of the external force only in the case of mild nonlinearity (and no

path dependence). To obtain realistic answers, physical insight into the nature of the problem and,

usually, small-step incremental approaches from known solutions are essential. Such increments are

always required if the constitutive law relating stress and strain changes is path dependent. Also,

such incremental procedures are useful to reduce excessive numbers of iterations and in following

the physically correct path. In the iterations, the temperature loading is divided by a suitable number

according to the value of temperature. In high temperature values, the temperature loading is

divided by large numbers. After completing an iteration process, the load is increased by adding

load increment to the accumulated load.

In this study, small-step incremental approaches from known solutions with Newton-Raphson

iteration method are used in which the solution for n+1th load increment and ith iteration is

obtained in the following form 

 (17)

where  is the system stiffness matrix corresponding to a tangent direction at the ith iteration,

 is the solution increment vector at the ith iteration and n+1th load increment,  is the

system residual vector at the ith iteration and n+1th load increment. This iteration procedure is

continued until the difference between two successive solution vectors is less than a selected

tolerance criterion in Euclidean norm given by

 (18)

A series of successive approximations gives

 (19)

where

 (20)

The residual vector  for a finite element is as follows

 (21)

where f is the vector of external forces and p is the vector of internal forces given in Appendix.

M M
0

EI0κ+=

I0

N
0

s1
0
Ad

A
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0
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The element tangent stiffness matrix for the total Lagrangian Timoshenko plane beam element is

as follows which is given by Kocatürk and Akba  (2011), Felippa (2012)

 (22)

where  is the geometric stiffness matrix, and  is the material stiffness matrix given as

follows by Kocatürk and Akba  (2011), Felippa (2012)

 (23)

The explicit forms of the expressions in Eq. (22) is given in Appendix. After integration of

Eq. (23), KM can be expressed as follows

  (24)

where  is the axial stiffness matrix,  is the bending stiffness matrix,  is the shearing

stiffness matrix and explicit forms of these expressions remain the same as given by Kocatürk and

Akba  (2011) except for modulus of elasticity E depends on temperature T in the present study. The

details of these expressions are given in Appendix.

The geometric stiffness matrix KG, Bm and the internal nodal force vector p remains the same as

given by Kocatürk and Akba  (2011), Felippa (2012) and given in Appendix.

After obtaining the displacements of nodes, the second Piola-Kirchhoff stress tensor components

 can be obtained by using Eq. (7). The relation between the Cauchy stress tensor

components  and the second Piola-Kirchhoff stress tensor components  is

given in Kocatürk and Akba  (2011).

The beams considered in numerical examples are elastic, with undeformed length L, rectangular

cross-section of width b and thickness h (see Fig. 1).

3. Numerical results

In the numerical examples, the post-buckling deflections as well as the max. Cauchy normal

stresses, thermal post-buckling configuration, critical buckling temperatures are calculated and

presented in figures for temperature dependent and independent physical properties for various

thermal loads. To this end, by use of usual assembly process, the system tangent stiffness matrix

and the system residual vector are obtained by using the element stiffness matrixes and element

residual vectors for the total Lagrangian Timoshenko plane beam element. After that, the solution

process outlined in the previous section is used for obtaining the related solutions for the total

Lagrangian finite element model of Timoshenko plane beam element.

The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The

coefficients of temperature T for Austenitic Stainless Steel (316) are expressed as follows (from

Incropera and DeWitt 1985, Detail of the ITER Outline Design Report 1994, ITER Documentation

Series: No 29 1991, ASME Code Cases: Nuclear Components 1992). In this study, the material of

the beam is considered in the elastic range, so as not to exceed the yield stress (σy) that is a

sç
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function of temperature. Hence, if the stress of the beam equals to yield stress, then the analysis is

interrupted. So, plastic buckling and plastic post-buckling cases are not considered in this study.

In numerical examples, the initial temperature (installation temperature) of the beam is assumed to

be . The height of the beam is h = 1 m and the width of the beam is b = 1 m.

Convergence studies are also performed. In the post-buckling case, the maximum Cauchy stresses

(true stresses) can be obtained after obtaining the second Piola-Kirchhoff stresses by using the

relations between the Cauchy and the second Piola-Kirchhoff stresses tensor components given by

Kocatürk and Akba  (2011), Felippa (2012). 

In Table 1, the central deflections  of the beam for uniform temperature rise 

are calculated for various numbers of finite elements n for L/h = 80, b = 1 m, h = 1 m with

temperature-dependent physical properties. Where, temperature rise  corresponds to

yield temperature for L/h = 80 in the post-buckling case which is plotted in Fig. 8.

It is seen from Table 1 that, when the number of finite elements is n = 120, the considered

displacements converge. Therefore, in the numerical calculations, the number of finite elements is

taken as n = 120. 

Young’s Modulus and the coefficient of thermal expansion versus temperature rising are illustrated

in Fig. 4 and yield stress versus temperature rising are illustrated in Fig. 5, by using Eqs. (9), (10)

and (11) respectively for Austenitic Stainless Steel (316).

It is seen from Fig. 4 that with increase in temperature, Young’s modulus decreases. Because, with

the temperature increase, the intermolecular distances of the material increase and intermolecular

forces decrease. As a result, the strength of the material decreases. Also, It is seen from Fig. 4 that,

with temperature increase, the coefficient of thermal expansion increases. It is seen from Fig. 5 that,

increase in temperature causes decrease in the yield stresses. 

In Fig. 6, thermal post-buckling configuration of the beam is presented for L/h = 100, b = 1 m,

h = 1 m for uniform temperature rising  and also for elastic post-buckling temperature

limits for temperature dependent and independent physical properties.

T0 300 K=

sç

V L/2( ) T∆ 35 K=

T∆ 35 K=

T∆ 25 K=

Table 1 Convergence analysis for the central deflections V(L/2) of the beam 
for various numbers of finite elements n for ∆T = 35 K and L/h = 80 

The central deflections V(L/2) of the beam

n V(L/2) (m)

20 0.2349

30 0.2596

40 0.2676

50 0.2712

60 0.2732

70 0.2744

80 0.2750

90 0.2754

100 0.2756

110 0.2757

120 0.2757
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Fig. 4 Young’s modulus and coefficient of thermal expansion of Austenitic Stainless Steel (316) versus
temperature rising

Fig. 5 Yield stress of Austenitic Stainless Steel (316) versus temperature rising

Fig. 6 Thermal Post-Buckling configuration of the beam for L/h = 100, b = 1 m, h = 1 m for uniform
temperature rising ∆T = 25 K and elastic post-buckling temperature limit with temperature dependent
and independent physical properties
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It is seen from Fig. 6 that, there is a significant difference between the deformed configurations of

the beam for temperature dependent and temperature independent physical properties. Also it is seen

from Fig. 6 that the elastic limit for temperature dependent physical properties are lower than the

elastic limit for temperature independent physical properties: Because, with temperature rising, the

yield stress of the material decrease. 

In Fig. 7, the critical buckling uniform temperature ∆T versus the ratio L/h of the beam is

presented for temperature dependent and independent physical properties for b = 1 m and h = 1 m.

It seen from Fig. 7 that, the beam buckles at lower temperatures for higher L/h ratios. Decrease of

the ratio L/h of the beam causes increase in the difference between the critical buckling

temperatures for the temperature dependent and independent physical properties. Approximately

after L/h = 70, the critical buckling temperatures of the temperature dependent and independent

physical properties almost coincide. In small L/h ratios, the critical temperatures for the temperature-

independent physical properties are greater than the critical temperatures of the temperature-

dependent physical properties. Also elastic buckling limit of the beam with temperature independent

physical properties is obtained at a lower L/h ratio compared to the elastic buckling limit of the

beam with temperature dependent properties. Hence, the temperature-dependent physical properties

must be taken into account for safe design of beams and for obtaining more realistic results.

Otherwise an important error is inevitable. 

In Fig. 8, the specified transversal displacement v(L/2) versus uniform temperature rising ∆T is

presented for temperature dependent and independent physical properties for L/h = 80, 90, 100

ratios.

It is seen from Fig. 8 that the difference of the transversal displacements of the midpoint of the

beam with the temperature dependent and independent physical properties in post-buckling case

increases with decrease in the ratio L/h. In other words, increase in the ratio L/h of the beam causes

decrease in the difference between the transversal displacements for the temperature dependent and

independent physical properties. In Fig. 8, furcation points can be seen. As it is known, buckling

occurs at the furcation points: Actually these points are bifurcation points. As it is konown,

according to the initial arbitrary deviation from the straight position of the beam, buckling can occur

in either positive or negative directions. In this study, deviation from the straight position is always

Fig. 7 Critical buckling uniform temperature ∆T versus the ratio L/h with temperature dependent and
independent physical properties 
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taken as positive for buckling analysis. The symmetrical branches according to ∆T axis would be

obtained if the deviations from the straight positions were taken as negative values. The transversal

displacements for the temperature-dependent physical properties are greater than those for the

temperature-independent physical properties. This situation may be explained as follows: In the

temperature-dependent physical properties, with the temperature increase, the intermolecular

distances of the material increase and intermolecular forces decrease. As a result, the strength of the

material decreases. Hence, the beam becomes more flexible in the case of the temperature-

dependent physical properties. 

Also, it is seen from Fig. 8 that the material of the beam yields after certain temperatures that are

shown by circles on the figures in the post-buckling case: After the corresponding temperature,

plasticity must be considered which is out of the scope of this study. 

Fig. 8 The specified transversal displacment v(L/2) versus uniform temperature rising ∆T with temperature
dependent and independent physical properties for the ratio L/h = 80, 90, 100 

Fig. 9 Maximum Cauchy normal stress versus uniform temperature rising ∆T for temperature dependent and
independent physical properties for L/h = 120, b = 1 m and h = 1 m 
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In Fig. 9, maximum Cauchy normal stresses versus uniform temperature rising ∆T is presented for

temperature dependent and independent physical properties for L/h = 120, b = 1 m and h = 1 m.

The maximum Cauchy normal stresses for the temperature dependent and independent physical

properties in the post-buckling case within elastic limit are given in Fig. 9. Before the buckling

furcation point, the maximum Cauchy normal stresses increase almost linearly, but after furcation

point, the stresses increase suddenly. This situation is expected and natural in buckling phenomenon.

Also, it is seen from Fig. 9 that the yield stress for the beam with temperature dependent physical

properties is lower than the yield stress for the beam with temperature independent physical properties.

4. Conclusions

Thermal post-buckling analysis of a Timoshenko beam subjected to uniform temperature rising is

investigated for temperature dependent physical properties by using the total Lagrangian

Timoshenko beam element approximation. The considered highly non-linear problem is solved

considering full geometric non-linearity by using incremental displacement-based finite element

method in conjunction with Newton-Raphson iteration method. The difference between the analysis

results for the temperature dependent and independent physical properties are investigated in detail

in post-buckling case. The relationships between deflections, thermal post-buckling configurations,

critical buckling temperatures, maximum stresses of the beams and temperature rising are illustrated

in detail in post-buckling case. It is observed from the investigations that there are significant

differences of the analysis results for the temperature dependent and independent physical properties

in the post-buckling case. Especially, increase in temperature causes increase in the difference of the

analysis results for the temperature dependent and independent physical properties considerably.

After certain temperatures, the material of the beam yields. The yield stresses of material for

temperature dependent physical properties are lower than the yield stresses of temperature

independent physical properties. Hence, for safe design of structural elements, the temperature-

dependent physical properties must be considered. Otherwise an important error is inevitable. Also,

increase of the ratio L/h of the beam causes decrease in the difference between the transversal

displacements for the temperature dependent and independent physical properties. It is observed

from open literature that the effect of temperature dependent physical properties on the analysis

results are not considered broadly. Taking into consideration of the temperature dependent physical

properties is very important for failure analysis and safe design of structures. 

References

Akba , .D. (2012), “Post-buckling behaviour of functionally graded beams under the influence of temperature”,
Ph.D. Thesis, Institute of Science at Y ld z Technical University Istanbul.

Akba , .D. and Kocatürk, T. (2011), “Post-buckling analysis of a simply supported beam under uniform thermal
loading”, Sci. Res. Essays, 6(4), 1135-1142. 

Aristizabal-Ochoa, J.D. (2007), “Large deflection and post-buckling behavior of Timoshenko beam-columns with
semi-rigid connections including shear and axial effects”, J. Eng. Struct., 29(6), 991-1003.

ASME Code Cases : Nuclear Components (1992), Case N-47-30, Section III, Division 1, ASME Boiler and
Pressure Vessel Code. 

Chen, B., Gu, Y., Zhao, G., Lin, W., Chang T.Y.P. and Kuang, J.S. (2003), “Design optimization for structural

sç Sç
i i

sç Sç



122 eref Do u can Akba  and Turgut KocatürkSç g
o
sç sç

thermal buckling”, J. Therm. Stresses, 26(5), 479-494.
Coffin, D.W. and Bloom, F. (1999), “Elastica solution for the hygrothermal buckling of a beam”, Int. J. Nonlin.
Mech., 34(5), 935-947.

Detail of the ITER Outline Design Report (1994), The ITER Machine, Vol 2, San Diego. 
Parente, E. and de Sousa, J.M.S. (2008), “Design sensitivity analysis of nonlinear structures subjected to thermal
loads”, Comput. Struct., 86(11-12), 1369-1384.

Felippa, C.A., Retrieved March (2012), “Notes on nonlinear finite element methods”, http://www.colorado.edu/
engineering/cas/courses.d/NFEM.d/NFEM.Ch10.d/NFEM.Ch10.pdf

Gauss, R.C. and Antman, S.S. (1984), “Large thermal buckling of non-uniform beam and plates”, Int. J. Solids
Struct., 20(11-12), 979-1000.

Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2009), “Comparative study of thermal post-buckling
analysis of uniform slender & shear flexible columns using rigorous finite element and intutive formulations”,
Int. J. Mech. Sci., 51(3), 204-212.

Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010a), “Post-buckling analysis of composite beams:
Simple and accurate closed-form expressions”, Compos. Struct., 92(3), 1947-1956.

Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010b), “Thermal post-buckling analysis of slender
columns using the concept of coupled displacement field”, Int. J. Mech. Sci., 52(4), 590-594.

Incropera, F. and DeWitt, D. (1985), Fundamentals of Heat and Mass Transfer, 2nd Edition, John Wiley.
ITER Documentation Series, No 29 (1991), Blanket, Shield Design and Material Data Base, IAEA, Vienna. 
Jekot, T. (1996), “Non-linear problems of thermal buckling of a beam”, J. Therm. Stresses, 19, 359-369.
Kocatürk, T. and Akba , .D. (2011), “Post-buckling analysis of Timoshenko beams with various boundary
conditions under non-uniform thermal loading”, Struct. Eng. Mech., 40(3), 347-371.

Kocatürk, T. and Akba , .D. (2012), “Post-buckling analysis of Timoshenko beams made of functionally graded
material under thermal loading”, Struct. Eng. Mech., 41(6), 775-789.

Li, S.R. (2000), “Thermal post-buckling of asymmetrically supported elastic rods”, Eng. Mech., 17(5), 115-119.
Li, S. and Cheng, C. (2000), “Analysis of thermal post- buckling of heated elastic rods”, Appl. Math. Mech.
(English Ed.), 21(2), 133-140.

Li, S., Zhou, Y.H. and Zheng, X. (2002), “Thermal post- buckling of a heated elastic rod with pinned-fixed
ends”, J. Therm. Stresses, 25(1), 45-56.

Li, S. and Zhou, Y. (2001), “Thermal post-buckling of rods with variable cross sections”, Proceedings of the
Fourth International Congress on Thermal Stresses, Osaka, Japan.

Li, S.R., Cheng, C.J. and Zhou, Y.H. (2003), “Thermal post-buckling of an elastic beams subjected to a
transversely non-uniform temperature rising”, Appl. Math. Mech. (English Ed.), 24(5), 514-520.

Li, S. and Zhou, Y. (2003), “Geometrically nonlinear analysis of Timoshenko beams under thermomechanical
loadings”, J. Therm. Stresses, 26(9), 861-872.

Li, S. and Song, X. (2006), “Large thermal deflections of Timoshenko beams under transversely non-uniform
temperature rise”, Mech. Res. Commun., 33(1), 84-92.

Rao, G.V. and Raju, K.K. (1984), “Thermal postbuckling of columns”, AIAA J., 22(6), 850-851.
Song, X. and Li, S.R. (2007), “Thermal buckling and post-buckling of pinned-fixed Euler-Bernoulli beams on an
elastic foundation”, Mech. Res. Commun., 34(2), 164-171.

Vaz, M.A. and Solano, R.F. (2003), “Postbuckling analysis of slender elastic rods subjected to uniform thermal
loads”, J. Therm. Stresses, 26(9), 847-860.

Vaz, M.A. and Solano, R.F. (2004), “Thermal post-buckling of slender elastic rods with hinged ends constrained
by a linear spring”, J. Therm. Stresses, 27(4), 367-380.

Vaz, M.A., Nascimento, M.S. and Solano, R.F. (2007), “Initial post-buckling of elastic rods subjected to thermal
loads and resting on an elastic foundation”, J. Therm. Stresses, 30(4), 381-393.

Vaz, M.A., Cyrino, J.C.R. and Neves, A.C. (2010), “Initial thermo-mechanicalpost-buckling of beams with
temperature-dependent physical properties”, Int. J. Nonlin. Mech., 45(3), 256-262.

Yu, Y.P. and Sun, Y.H. (2012), “Analytical approximate solutions for large post-buckling response of a
hygrothermal beam”, Struct. Eng. Mech., 43(2), 211-223. 

Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Fifth Edition, Volume 2: Solid
Mechanics, Butterworth-Heinemann, Oxford.

sç Sç

sç Sç



Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties 123

Appendix

The components of the material stiffness matrix: the axial stiffness matrix , bending stiffness matrix
 and shearing stiffness matrix   are as follows

(A1)

 (A2)

(A3)

where m stands for beam midpoint, ξ = 0, and , , , ,
,  and  (See Fig. A1 for symbols). The axis of the

considered beam initially is taken as horizontal, therefore . The matrix S is defined as follows

 (A4)

Bm matrix is as follows

(A5)

KM

a

KM

b
KM

s

 

 

 

θm θ1 θ1+( )/2= ωm θm ϕ+= cm cosωm= sm sinωm=
em Lcos θm ψ–( )/L0 1–= α1 1 em+= γm Lsin ψ θm–( )/L0=

ϕ 0=
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The geometric stiffness matrix KG is given as follows

 

(A6)

 

 

Fig. A1 Plane beam element with arbitrarily oriented reference configuration (Felippa 2012)
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in which Nm and Vm are the axial and shear forces which are evaluated at the midpoint. The internal nodal
force vector is as follows Felippa (2012)

(A7)

where . The external nodal force vector can be expressed as follows

 (A8)

where fX, fY are the body forces, tX, tY, mZ are the surface loads in the X, Y directions and about the Z axis, he
is the thickness, h is the height.
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