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Abstract. The goal of this study is to conceptually orientate optimized layouts of outrigger belt trusses
which are in widespread use today in the design of tall buildings by strut-and-tie truss models utilizing a
topology optimization method. In this study unknown strut-and-tie models are realized by using a typical
SIMP method of topology optimization methods. In tradition strut-and-tie model designs find the
appropriate strut-and-tie trusses along force paths with respect to elastic stress distribution, and then
engineers or designers determine the most proper truss models by experience and intuition. It is linked to
a trial-and-error procedure based on heuristic strategies. The presented strut-and tie model design by using
SIMP provides that belt truss models are automatically and robustly produced by optimal layout
information of struts-and-ties conforming to force paths without any trial-and-error. Numerical applications
are studied to verify that outrigger belt trusses for tall buildings are optimally chosen by the proposed
method for both static and dynamic responses.
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1. Introduction

Outrigger structural systems (Stafford et al. 1996) are widely used today in the design of tall

buildings. Typical outriggers extend from a lateral load-resisting core and columns. The innovative

system for tall buildings leads to considerably efficient use of structural materials by activating the

axial strength and stiffness of exterior columns to resist part of the overturning moment caused by

lateral loadings like wind or earthquake on the tall building. A specific development of outrigger

systems is the use of a so-called “belt truss” (Shankar Nair 1998) for tall buildings. Outrigger

trusses are connected directly to the core and to outboard columns, and then they transfer

overturning moment from the core to elements outboard of the core. While moment transfer of belt

trusses is almost equal to that of outrigger trusses, there is no a direct connection between the
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outrigger trusses and the core in belt truss systems as shown in Fig. 1. In belt trusses, the removal

of a direct connection between the trusses and core keeps away from many of the problems such as

architectural and functional constraints on needed floors and complicate connection detail between

trusses and core.

As can be seen in Fig. 1 layouts of belt trusses are very similar to those of trusses like building

roofs, bridges and cranes which consist of regular triangular modules. Appropriate layouts of these

trusses are a significant issue into structural design, since they are directly linked to construction

cost, safety and function. Especially the layouts of belt trusses would be determined to synthetically

consider given design conditions such as the number of floor occupied by belt trusses, span and

material quantity of steel or concrete. In tradition they have a tendency to be decided by trial and

error oriented by engineer’s experience and intuition.

The issue of layout or connectivity among trusses stems from a strut-and-tie model design whose

goal is to reinforce a given structure by using combination of straight bars, i.e., truss like strut or

tie. The conventional strut-and-tie model design method (Schlaich et al. 1987) requires a trial-and-

error procedure oriented by mainly designer’s experience and intuitive decision in order to

accomplish reinforcement designs. Although the strut-and-tie model design is conceptually simple,

Fig. 1 Outrigger and belt truss systems
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discrete form like a straight formed truss of the strut-and-tie model has some limit to make belt

trusses into design space for tall buildings related to complex stress disturbances. In practice it is

difficult to realize belt trusses by the simple strut-and tie truss model because of complex stress

patterns caused by multi loading and boundary conditions.

To effectively generate the strut-and-tie model in stress disturbance situations without trial and

error, discrete truss topology optimization methods by a so-called ground structure approach have

been developed to evaluate appropriate reinforced trusses (Ali et al. 2001, Biondini et al. 2001).

Despite of evaluating both optimized shape and topology, the discrete topology optimization method

has some shortcoming that in particular potential solution possibilities determining varied optimal

shapes and topologies are blocked due to the use of straight truss members with one direction.

In order to resolve the problems, the so-called continuous topology optimization has been

introduced (Bendsoe and Kikuchi 1988) as a material approach, i.e., the so-called SIMP (Solid

Isotropic Microstructure of Penalization for Intermediate Density). The SIMP presented in this study

determines optimal layouts like shapes and topologies of material density of specified volume in a

domain that maximizes the stiffness for a given set of loads and boundary conditions. This

computer-oriented shape and topology extraction strategy removes trial-and-error procedures for

modeling appropriate truss-wise members which often occur in typical strut-and-tie model designs.

The outline of this study is as follows: With respect to SIMP formulation, the static and dynamic

material topology optimization problems are described in Section 2. In Section 3, a numerical

algorithm for the static and dynamic topology optimization methods is presented. The appropriate

belt truss model for tall buildings conformed to load currency and the benefits of automatic optimal

shape and topology extraction are studied in several numerical applications of the present method in

Section 4. Section 5 presents conclusions of this study.

2. Material topology optimization formulations for static and dynamic problems

In general the field of material topology optimization conveniently deals with voids(0)-solids(1)

material distribution and depends on linear elastostatic problems. The schematic of the two-phase

material topology optimization of a solid structure with the specified field and boundary conditions

is shown in Fig. 2.

2.1 Optimization formulations for static problems

The general problem of the structural topology optimization is specified as the objective function

and constraints. Please note that according to the principle of minimum potential energy the

objective function can be written as minimum compliance, i.e., minimal strain energy f for static

problems as follows. The minimal compliance problem aims to design the stiffest or least compliant

structure using a given fixed load, the possible support conditions, and the restrictions on the

volume of material used.

(1)

where according to discretization, the continuous material tensor C is dependent on the density-
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stiffness relationship of the typical SIMP approach. The discontinuous Heaviside function is

regularized for a smoothed and continuous form near the material boundaries. The function can be

included in a strain energy formulation since the original Heaviside function determines the solid

and void regions in a design domain.

The inequality optimization constraint is , which ensures that the density stays within

reasonable bounds. Equality constraints are a linear elastostatic equilibrium, which clearly presents

the state equation, and an equation controlling the volume of the used material under the volume

fraction  as follows, respectively.

 (2)

  (3)

2.2 Optimization formulations for dynamic problems

The governing equation for free vibration systems considered in this study can be written as

 (4)

By using Laplace transformation Eq. (4) can be rewritten as

 (5)

By substituting ω2 for l into Eq. (5), the final eigenvalue problem is defined as

 (6)
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Fig. 2 Design domain for two-phase material topology optimization problems of structures 
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where K and M are the global stiffness and mass matrix, respectively.  is the i-th eigenfrequency

and ui denotes the corresponding eigenvector depending on . In order to numerically solve Eq.

(6), K and M have to be symmetrically and positively defined (Lehoucq et al. 1998) owing to the

finite element-based and generalized structural eigenvalue.

Eigenvalue optimization designs are profitable for mechanical structural systems subjected to

dynamic loading conditions like earthquakes and wind loads. The dynamic behaviors of structural

systems can be estimated by eigenfrequency which describes structural stiffness. In general

maximizing first-order eigenfrequency can be an objective for dynamic topology optimization

problems since stiffness of structures also increases when eigenfrequency increases. Problems of

topology optimization for maximizing natural eigenfrequencies of vibrating elastostatic structures

have been considered in the studies (Diaz et al. 1992, Pedersen 2000).

Assuming that damping can be neglected, such a dynamic design problem can be formulated as

follows.

(7)

subject to : (8)

(9)

 (10)

where g is volume fraction which means a specific material constraint. These discrete formulations

for the dynamic problem are equal to continuous formulations, i.e., Eqs. (1)-(3) for the static

problem except for objective and governing equation.

2.3 Interpolation scheme by Using SIMP material

After discretization of the continuous design domain, the material density  is constantly

assigned to each finite element and is defined by applying a penalty contour to the design variable

field, i.e. as in the so-called “power law or SIMP approach” (Bendsoe and Kikuchi 1988).

According to the SIMP approach, the material density distribution affects element stiffness. This

element stiffness-density relationship may be expressed in terms related to Young’s modulus .

Young’s modulus is associated with the updated element density . The element stiffness-density

relationship is defined as

(11)

where E0 and Φ0 denote nominal values of Young’s modulus and material density of elements,

respectively, and Ne is the number of elements.

According to the penalized Young’s module, element stiffness matrix of four-node square

elements with eight-DOF used in this study is written as
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(12)

where  

 

        

Please note that the stiffness formulation is used for both static and dynamic problems in this

study. For example, an isotropic material model with a plane stress (such as a wall structure) is used

here without loss of generality, so that

 (13)

where  is a material tensor of each finite element i and includes the updated term of Young’s

modulus  which has been defined by the updated element density average . ν is Poisson’s

ratio.

According to dynamic topology optimization problems using SIMP material, mass matrix Me of a

specific finite element e also includes the same penalty formulation such as the stiffness matrix of

Eq. (12) multiplied by original mass matrix M0. Therefore it can be written as

 (14)

For the mass matrix, a lumped mass matrix  (subscript L = Lumped, superscript e = the

number of finite element), a consistent mass matrix  (subscript C = Consistent, superscript

e = the number of finite element) or a combination of those two can be used. The lumped and

consistent mass matrices are written as respectively in case discretization of eight-node square

elements with 8 DOFs.
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(15)

(16)

where Φ and A denote the material density and area of elements, respectively and I is the 8 × 8 unit

matrice.

2.4 Sensitivity analyses for static and dynamic problems

In general, the sensitivity of the optimization problems such as objective functions or constraints

is mainly calculated by analytical methods due to small error. The analytical variational approach is

used here since it is numerically more efficient than the discrete method for certain optimization

problems. With respect design variables s (for instance, material element densities), the total

differential form (Haug et al. 1986) of the objective function is the combination of parts of an

explicit partial derivative and an implicit partial derivative as follows.

(17)

According to static topology optimization problem, under the assumptions that external forces ,

, the differential matrix L and a Jacobi matrix J are independent of the design variables, the total

partial derivative is written as a simple continuous formulation as

 (18)

According to dynamic topology optimization, the total derivative is written as a simple discrete

formulation as follows.

(19)

3. Strut-and-tie model algorithm generating belt trusses for tall buildings

Since the optimal shape and topology results report the deposition information of stress-resistance
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truss members in a given design space, it is firstly considered to lay out real strut-and-tie models by

using topology optimization.

In general the strut-and-tie model consists of strut, tie and node. The strut is a compression

member which denotes a compressible stress region. The tie is a tensile stress member and in

general denotes reinforced steels into concrete structures. Areas which the strut, tie and loadings

exist together are defined as a node, and then the node takes complex stress states with varied

direction.

A classical strut-and-tie model design process is shown in Fig. 3(a). As can be seen this process

needs structural knowledge and experience of designers in order to determine initial truss models.

As a consequence, the appropriate truss model can be intuitively obtained by trial-and-errors of

repetitive analyses and model modification. It serves a large number of designer’s efforts and design

time.

Fig. 3(b) sketches a typical topology optimization procedure which consists of structural analyses,

sensitivity analyses, and optimization methods. Please note that from the solution of the shape and

topology design proper truss models for strut-and-tie model design can be automatically produced.

This is a key point in this study.

The developed MATLAB code for dynamic topology optimization design is based on MATLAB

code (Sigmund 2001) for static designs.

Fig. 3 Synthetic/automatic strut-and-tie model design processes by using topology optimization 
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4. Numerical applications and discussion

In general building frame structures are a bending moment-resistance structural system in which

beams are connected to columns.

Numerical examples involve generating appropriate layouts of belt trusses on tall buildings in the

strut-and-tie model design by using continuous two-phase (0-1) material SIMP topology

optimization methods for both static and dynamic problems. The objective function is minimal

strain energy (kN·m) for static problem and maximal eigenfrequency (Hz) is defined to objective

function for dynamic problem. A plane stress state is assumed to static and dynamic problems.

Design spaces in which belt trusses are located on tall buildings are assumed to be a fixed span

length (L) of 32 m and varied floor heights (H) of 1.6 m, 2.0 m, 2.4 m~5.2 m, 5.6 m, 6.0 m as

shown in Fig. 4. Thickness of design space is 1.0 m. Ends of both sides of the given design spaces

Fig. 4 Design space for belt truss design

Table 1 Design input data

Model 
number

Design space
(L×H×Thickness)

Finite 
mesh

Relative volume
(44.8m3 is fixed)

Size ratio
(L/H)

Material 
property

Model-1 32 m×1.6 m×1.0 m 80×4 87.60% 20.00

*Young’s 
modulus: 
200GPa

*Poisson’s
Ratio:

0.3

*Material: 
steel

Model-2 32 m×2.0 m×1.0 m 80×5 70.00% 16.00

Model-3 32 m×2.4 m×1.0 m 80×6 58.33% 13.33

Model-4 32 m×2.8 m×1.0 m 80×7 50.00% 11.43

Model-5 32 m×3.2 m×1.0 m 80×8 43.75% 10.00

Model-6 32 m×3.6 m×1.0 m 80×9 38.89% 8.89

Model-7 32 m×4.0 m×1.0 m 80×10 35.00% 8.00

Model-8 32 m×4.4 m×1.0 m 80×11 31.82% 7.23

Model-9 32 m×4.8 m×1.0 m 80×12 29.17% 6.67

Model-10 32 m×5.2 m×1.0 m 80×13 26.92% 6.15

Model-11 32 m×5.6 m×1.0 m 80×14 25.00% 5.71

Model-12 32 m×6.0 m×1.0 m 80×15 23.33% 5.33
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are fixed. In the case of static problem, uniformly distributed load 5,000 kN/m is applied to the

upper side of the design space. In dynamic problem any loading condition is not considered due to

free vibration response. One square finite element of 0.4 m×0.4 m is assumed for discretizing the

given design spaces. 12 design space models (Model 1~12) are shown in Table 1. Material of belt

trusses is steel and then Young’s modulus of steel is 200 GPa and Poisson’s ratio is 0.3. Material

quantity which is occupied into each design space to generate belt trusses is fixed to the volume

44.8 m3 during every optimization procedure, and therefore relative volumes of each model differs

from each space’s size. The relative volumes are used to input data of volume fraction for

optimization.

4.1 Belt truss generation for tall-buildings with static and dynamic responses

Figs. 5 and 7 show the final optimal belt truss layouts, for static and dynamic problem,

respectively, evaluated by automatic strut-and-tie model results using SIMP with volumes of

23.33~87.60% occupied by steel of 44.8 m3. The layouts are described by collecting 0 (white),

1 (black), and intermediate value (gray) of finite element densities. As can be seen different shapes

and topologies of the belt truss layouts depend on design space size such as span and height. The

optimal results rely on also static and dynamic problem. The layouts are seemed to combine struts

and ties and verify to automatically generate strut-and-tie model.

Figs. 6 and 8 illustrates graphically three dimensionally density contours of Figs. 5 and 7,

respectively. Here X and Y grid denote refinement of finite elements of X and Y direction in Fig. 6

and 8.

Fig. 5 Belt truss layout results on tall buildings with static response



Evaluation of structural outrigger belt truss layouts for tall buildings 721

Fig. 6 Graphical density distributions of belt trusses of Model 1, 4, 7, 10 for static response

Fig. 7 Belt truss layout results on tall buildings with dynamic response



722 Dong-Kyu Lee, Jin-Ho Kim, Uwe Starossek and Soo-Mi Shin

4.2 Investigation of optimal size ratios (L/H) of belt trusses for static and dynamic problems

Fig. 9 shows Copt and Wopt according to size ratios (L/H) on belt truss models 1~12 for static and

dynamic problems. Here Copt and Wopt denote, respectively, converged minimal strain energy for

static problem and converged maximal first order eigenfrequency for dynamic problem. Points in

Fig. 9 indicate converged values of model 1, 2, 3 …12, in turn, from right points. Each model with

Copt and Wopt leads to each belt truss layout with maximal stiffness.

As can be seen in Figs. 9(a) and (b) stiffness of belt trusses increase, when L/H ratio decreases. It

can be found that positions in which L/H ratios converge are almost below L/H = 10. According to

structural safety and economical aspect, belt trusses at the positions are optimal layouts by using

limited steel of 44.8 m3. In addition design space size of them is optimized to construct belt trusses.

It is very wasteful and inefficient to occupy too much floor space for belt truss construction on tall

buildings.

Belt truss layouts of these positions would be chosen to conceptual design practice on tall

buildings. Especially model 11 (32 m(L) × 5.6 m(H)) is the best choice on tall buildings for static

problem, and model 6 (32 m(L) × 3.6 m(H)) for dynamic problem. In order to immediately treat all

static and dynamic problems, combining two layouts would be ideal to belt truss design for tall

buildings.

Fig. 8 Graphical density distributions of belt trusses of Model 1, 4, 7, 10 for dynamic response
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5. Conclusions

This study targets two facts as follows. One is to evaluate desired outrigger belt trusses of tall

buildings with respect to stiffness of optimal shape and topology. The other is to investigate or

understand the present strut-and-tie model design by using topology optimization technique. This

study provides both a design and analysis tool for outrigger belt truss structural designs and belt

truss structural analyses. Appropriate belt truss structures can be achieved or measured as a design

model through considering both static and dynamic behaviors.

According to evaluated shape and topology results of numerical examples, it is verified that

outrigger belt trusses are redundant and loads follow free formed diagonals like struts and ties

structure as it naturally resisting vectors of forces like lateral loadings and uniformly distributed

loadings.

The belt truss is used to transfer and resist part of the overturning moment caused by lateral

loadings; therefore it may be unreasonable to apply only UDL, i.e., apparently representing gravity

to the models of numerical application. If the loading conditions have not been appropriately

applied, the consequent results and discussion are not convincing and must be reconsidered. Surely

it will be absolutely future’s works. This study concentrates on one dimensional design shape results

through which engineers or designers firstly make decision to select appropriate belt truss layouts

such as member’s deposition and topologies.
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