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Abstract. Despite popularity of FEM in analysis of static and dynamic structural problems and the
routine applicability of FE softwares, analytical methods based on simple mathematical relations is still
largely sought by many researchers and practicing engineers around the world. Development of such
analytical methods for analysis of free vibration of non-prismatic beams is also of primary concern. In
this paper a new and simple method is proposed for determination of vibration frequencies of non-
prismatic beams under variable axial forces. The governing differential equation is first obtained and,
according to a harmonic vibration, is converted into a single variable equation in terms of location.
Through repetitive integrations, integral equation for the weak form of governing equation is derived. The
integration constants are determined using the boundary conditions applied to the problem. The mode
shape functions are approximated by a power series. Substitution of the power series into the integral
equation transforms it into a system of linear algebraic equations. Natural frequencies are determined
using a non-trivial solution for system of equations. Presented method is formulated for beams having
various end conditions and is extended for determination of the buckling load of non-prismatic beams.
The efficiency and convergence rate of the current approach are investigated through comparison of the
numerical results obtained to those obtained using available finite element software. 

Keywords: vibration frequency; variable axial force; non-prismatic beam; buckling load; weak form
integral equation

1. Introduction

Behavior of many natural phenomena can be mathematically modeled using variety of ordinary

differential or partial differential equations. For example, the non-prismatic elastic beams vibration

is formulated by partial differential equations associated with variable coefficients. According to the

history of structural dynamics, Timoshenko and Bernoulli beams theory has been proposed for

characterization of elastic beams vibration. If beam section dimensions are small with respect to its

length, behavior is best predicted by the assumption that is governed by forces envisaged in the

Bernoulli beam theory. In this theory, the effects of shear deformation and rotational inertia in the

governing differential equation are not considered. However, if the beam’s dimensions are
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considerably large, Timoshenko beam theory yields the best predictive results. In the Timoshenko

theory, the effects of shear deformation and rotational inertia are taken into account (shooshtari et

al. 2010, Yavari et al. 2001, Antes 2003, Li 2008). 

The subject of free vibration of non-prismatic beams has been paid attention by many researchers.

However, few of them have considered effects of axial forces on beam vibration frequencies. Most

such studies include simplifications in calculation process such that the governing differential

equation becomes manageable to solve. For example, in references (Li et al. 2000, Li 2001), the

exponential or power functions are used for distributions of bending stiffness, mass per unit length

and axial forces along the beam length.

Li et al. (2000) investigated free vibration of cantilevered tall structures under various axial loads.

They estimated behavior of such structures as a cantilever beam and reduced the governing differential

equation to Bessel’s equations. Elfelsoufi et al. (2005) undertaken an investigation into buckling,

flutter and vibration analysis of the non-prismatic Bernoulli beam on elastic foundation subjected to

lateral excitation. Caruntu (2009) investigated dynamic modal characteristics of transverse vibrations of

cantilevers of parabolic thickness. Fourth order governing differential equations of transverse vibrations

was factored to reach a pair of second order differential equations which led to general solutions in

terms of hyper geometric functions. Rahai et al. (2008) formulated a procedure for the buckling

analysis of tapered column members. They calculated the buckling loads using modified vibrational

mode shape and energy method. Pan et al. (2011) introduced a new perturbation method for

determination of natural frequencies and vibration modes of a non-prismatic Timoshenko beam. They

used the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same

length and boundary conditions as Ritz base functions with necessary modifications to account for

shear strain in the Timoshenko beam. Bahadir Yuksel (2012) investigated the behavior of non-

prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length

ratio of 0.5 using finite element analyses (FEA). Kaviani et al. (2008) developed an approximate

method for determination of the natural periods of multistory buildings. They reduced the governing

differential equations to Bessel’s equations. The resulting frequencies were finally combined using an

approximate method. Huang et al. (2010) presented an approach to solve natural frequencies of freely

vibrating beams having variable flexural rigidity and mass density. They transformed the governing

equation of varying coefficients to Fredholm integral equation. 

The effects of axial force on the vibration frequencies and mode shapes of non-prismatic beams

have been paid less attention by investigators (Arboleda-Monsalve et al. 2007, Elfelsoufi et al.

2006). Since the compressive axial force reduces the beam stiffness, it appears necessary to develop

new and simple approaches for analysis and calculation of frequencies as well as mode shapes of

beams under axial forces. Application of the FEM in such analysis may appear a common solution

since the use of FE softwares in analysis of various structural problems has been increased in recent

decades by practicing engineers or even researchers all around the world. However, many other still

prefer use of simple mathematical relations, if any exists, for solution of such problems and

numerous interested academics are still in the search for developments of faster, simpler, more

accurate, and reliable analytical solution procedures. 

In this paper, a new and simplified method is presented in which the effect of axial force on the

vibration frequencies of non-prismatic beams is effectively taken into account through simple

mathematical relationships. The governing differential equation for free vibration of a non-prismatic

Bernoulli beam under variable axial forces is derived first. According to harmonic vibration

principles, the derived equation is converted into a single variable equation in terms of location.
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Through repetitive integrations, the integral equation of the weak form for the governing equation is

obtained. Boundary conditions are applied next, and the integration constants are determined. Mode

shape functions of the vibration are approximated using a power series. Substitution of the power

series into the integral equation results in a system of linear algebraic equations. Natural frequencies

are determined through calculation of a non-trivial solution for system of equations. Formulations

are further provided for beams having various end supports. The proposed method is also extended

for determination of buckling load of non-prismatic beams. 

2. Non-prismatic beam vibration analysis under variable axial force 

2.1 Conversion of the governing differential equation to its weak form

Neglecting damping terms, the governing differential equation for vibration of a non-prismatic

Bernoulli beam under variable axial forces and transverse forces (Fig. 1) is given by (Clough and

Penzien 1975)  

(1)

In which  is bending stiffness which depends on both young’s modulus E and the

inertial moment of cross-sectional area I(x).  and  are the axial force, the

mass per unit length, transverse displacement and transverse force respectively. Axial force includes

a concentrated axial force at free end of the beam and variably distributed axial force. Setting

 

D x( ) EI x( )=

N x( ) m x( ) ϑ x t,( ), , P x t,( )

Fig. 1 (a) Bernoulli beam vibration under variable axial forces and transverse forces, (b) resultant forces
acting on a differential element 
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, the free vibration equation is obtained. If motion is represented by a harmonic

vibration, the transverse displacement is obtained using the following relation

(2)

Where  and ω are mode shape function and circular natural frequency of the beam,

respectively. Substitution of relationship (2) into Eq. (1) leads to a single-variable equation in terms

of location, as follows

(3)

In which L is the beam length. For further convenience, the following variables are introduced

(4)

Substituting variables (4) into Eq. (3) leads to

(5)

Eq. (5) is, in fact, the free vibration equation of a non-prismatic Bernoulli beam under variable

axial forces based on the non-dimensional variable ξ. In order to trnsform Eq. (5) to its weak form,

both sides of Eq. (5) are integrated twice with respect to ξ within the range 0 to ξ. The resulting

integral equations are as follows

(6)

(7)

Further, integration from both sides of Eq. (7) twice with respect to ξ from 0 to ξ yields

(8)

(9)

In Eq. (9) C1, C2, C3 and C4 are the integration constants which are determined through boundary

conditions of both ends of the beam. Eq. (9) is the integral equation of the weak form for free

p x t,( ) 0=

ϑ x t,( ) φ x( )eiω t

=

φ x( )
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vibration of a non-prismatic Bernoulli beam under variable axial force. As can be seen, Eq. (5)

includes a fourth order derivative of the mode shape function, (after four successive integrations)

and only the mode shape function itself. Eqs. (6)-(9) are applicable for various end supports to

determine the integration constants. Further substitution of the resulting integration constants into

Eq. (9) yields an integral equation in .

2.2 Boundary conditions

For a non-prismatic beam under variable axial force, including a concentrated axial force at the

end of the beam and a variably distributed axial force, the beam rotation (θ), the bending moment

(M) and the shear force (V) can be stated as by the following relations

(10)

In which  is the axial force per unit length. Regarding the relationship (2) and variables

introduced in Eq. (4), the relations (10) can be expressed as follows

(11)

2.2.1 Cantilever beam (C-F)

For a cantilever beam (clamped-free) the boundary conditions are established as follows

(12)

φ ξ( )

 

q x( )
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Substituting  into (9) as well as  into (8) and setting  leads to

(13)

Similarly, Substitution of V = 0 into (6) and M = 0 into (7) as well as setting ξ = 1, yields

(14)

(15)

As can be seen in Eq. (15), φ(1) is initially unknown. Therefore, it necessitates extra equation for

uniquely determination of C1 and C2. Setting ξ = 1 in Eq. (9) yields

(16)

Elimination of φ(1) from Eqs. (15) and (16) as well as using Eq. (14), results in the coefficient C2

to be determined by the following relation

(17)

In which

(18)

Substitution of the integration constants into (9) yields an integral equation as follows

(19)

In Eq. (19), f1 & f2 are non-dimensional functions which are calculated for the beam depending on

its end condition. Functions  and  are expressed by the following relations

 

(20)

φ 0= φ θ 0= = ξ 0=

C3 C4 0= =

 

 

 

 

 

 

 

f1 ξ s,( ) f2 ξ s,( )
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2.2.2 Cantilever beam with lumped mass at free end

In this section, it is assumed that there is a lumped mass at the free end of the cantilever beam

(Fig. 2(a)). The rotational inertia effects and weight of the lumped mass have been neglected. The

analysis method is exactly the same as what was stated in section 2.2.1. The difference, however, is

that, the shear force is of non-zero value at the free end of the beam (Fig. 2(b)). Other boundary

conditions are assumed unchanged. In this case, the boundary conditions are stated as follows

(Clough and Penzien 1975) 

(21)

In which  is the lumped mass at free end of the beam. If the boundary conditions introduced in

(21) are applied to Eqs. (6)-(9), the integration constants are determined. Introducing the integration

constants into Eq. (9) yields the integral equation as follows

(22)

In which the functions  and  can be stated as follows

(23)

Where

 

M

 

f1 ξ s,( ) f2 ξ s,( )

 

Fig. 2 (a) cantilever beam vibration with a lumped mass at free end, (b) shear force acting on the end mass 
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(24)

And

(25)

It is to be mentioned that if the rotational inertia effects of the lumped mass is included, the

solution procedure presented in this paper is still valid and applicable provided that the boundary

conditions at the free end of the beam are defined appropriately. In such situation, the moment at

the free end of the beam is no longer zero and the internal force component can be found in Clough

and Penzien 1975. The weight of the lumped mass can also be considered in the analysis. In this

case, the weight of lumped mass will be added to the concentrated axial force at the end of the

beam.

2.2.3 Simply supported beam (S-S)

For a simply supported beam, the boundary conditions are established as follows

(26)

Substitutio of  into Eq. (9) as well as  into Eq. (7) and setting  yields

(27)

Also, substitution of  into Eq. (7), and setting  results in

(28)

Finally, with regard to Eqs. (27) and (28), substitution of  into Eq. (9) and setting ,

leads to a relation for constant C3 as follows

(29)

 

 

ξ 0 1 φ, 0 M, 0= = =

φ 0= M φ 0= = ξ 0=

C4 C2 0= =

φ M 0= = ξ 1=

 

φ 0= ξ 1=
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Introduction of the integration constants into Eq. (9), further develops the integral equation as

follows

(30)

In which functions  and  are expressed by the following relations

(31)

2.2.4 Clamped-Pinned beam (C-P)
In this section, a beam with a clamped and a pinned end is considered. It is assumed that the

beam is clamped at ξ = 0 and is pinned at ξ = 1. The boundary conditions are introduced as follows

(32)

Substituting φ = 0 as well as  into Eq. (9) and Eq. (8) respectively associated with ξ = 0

leads to

(33)

Also, substitution of  into Eq. (7) and setting ξ = 1 yields

(34)

Finally, introducing  into Eq. (9) and setting ξ = 1 also results in

(35)

If the integration constants from Eqs. (33-35) are determined and are introduced into Eq. (9), the

integral equation is obtained as follows

(36)

 

f1 ξ s,( ) f2 ξ s,( )

 

 

φ θ 0= =

C3 C4 0= =

φ M 0= =

 

φ 0=
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In which functions  and  are expressed as follows 

(37)

2.2.5 Clamped-Clamped beam (C-C)

For a beam with both clamped end, the boundary conditions are established as follows

(38)

If  and  are introduced into Eq. (9) as well as Eq. (8) respectively and ξ is set

ξ = 0 one obtains

(39)

Also, substitution of  into Eq. (8) and setting ξ = 1 leads to

(40)

Finally, introduction of  into Eq. (9) and setting ξ = 1 leads to

(41)

Integration constants from Eqs. (39-41) are determined and then introduced in Eq. (9). This results

in the integral equation to be obtained as follows

(42)

In which functions  and  can be stated as follows

f1 ξ s,( ) f2 ξ s,( )

 

ξ 0 1 φ, , θ 0= = =

φ 0= φ θ 0= =

C3 C4 0= =

φ θ 0= =

 

φ 0=

 

 

f1 ξ s,( ) f2 ξ s,( )
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(43)

It is concluded , from the discussion given in preceding sections (Sec. 2.2.1 to Sec. 2.2.4) that, f1

& f2 in Eq. (19) are non-dimensional functions which are calculated for the beam depending on its

end condition. For example, in a cantilever beam with lumped mass at free end, these non-

dimensional functions are defined by Eq. (23) whereas for simply supported beams, it is required

that Eq. (31) be employed for calculation of these functions. As another example, in clamped-

pinned beams (C-P), non-dimensional functions f1 & f2 are written based on Eq. (37). In all these

equations, end conditions generally dominates the shape of non-dimensional functions f1 & f2. These

functions, when calculated based on the desired end condition, are inserted into integral equations

obtained which finally yields the linear algebraic equation system. Natural frequencies of the system

are obtained through calculation of non-trivial solution of the resulting system of equations. To

achieve this, the determinant of the coefficients matrix of the system has to be vanished.

Accordingly, a frequency equation is introduced. The roots of frequency equation are vibrations

frequencies of beam. In the following, these issues are described in details.

2.3 Establish the system of linear algebraic equations

The mode shape function  is the unknown parameter in the integral equations obtained. In

order to solve the integral equations and to determine the vibration frequencies, the mode shape

function is approximated by the following power series

(44)

Where Cr are unknown coefficients and R is a given positive integer, which is adopted such that

the accuracy of the results are sustained. Introducing Eq. (44) into integral equations obtained before

leads to 

(45)

Both sides of (45) are multiplied by  and integrated subsequently with respect to ξ between 0

and 1. This results in a system of linear algebraic equations in Cr

 

φ s( )

 

 

ξ
m
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(46)

In which functions  and  are expressed as follows

(47)

The system of linear algebraic Eq. (46) may be expressed in matrix notations as follows 

(48)

In which [A] and [C]T are matrix coefficients and unknowns vector transpose respectivly. In order

to obtain the circular natural frequencies of the beam, functions  and  are first

obtained. Introducing these functions into (47), the functions ,  associated

with the coefficients of matrix [A] are obtained next. The unknown parameter in the coefficients

matrix [A] is therefore the circular natural frequency of the beam.  is a trivial solution for

the resulting system of equations introduced in (46). The natural frequencies are determined through

calculation of a non-trivial solution for resulting system of equations. To achieve this, the

determinant of the coefficients matrix of the system has to be vanished. Accordingly, a frequency

equation in ω (which is a polynomial function of the order ) is introduced. Given the fact

that the mode shape function is approximated by the power series of (44), the results accuracy is

improved if more number of the series sentences are taken into account. In this case, the order of

polynomial is also increased accordingly. Hence, adoption of larger R yields more accurate results.

In the examples to be provided and discussed in Sec.3, it will be shown that if the number of the

series sentences is increased to 8, results converge to those given by SAP2000 employing 100 or

more elements. While such a number of elements employed, irrespective of much time and core

space required, may appear a common practice in FE analysis, the interested readers may note that

the method developed in this study deals essentially with one unique element. Thus the advantage

 

G m r,( ) F1 m r,( ), F2 m r,( )

 

 

f1 ξ s,( ) f2 ξ s,( )
G m r,( ) F1 m r,( ), F2 m r,( )

C[ ] 0=

2 R 1+( )
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of the method developed here is further manifested when one reach comparable and accurate results

by simple mathematical relations developed here. It is also of note that adoption of more number of

series sentences is far from a complex or unmanageable situation. It may only results in a slightly

larger coefficient matrix [A] in the analysis. 

2.4 Determination of the buckling load of the non-prismatic beams 

When the axial force acting on a beam approaches the buckling load, the beam vibration

frequency tends to zero. The proposed formulation in this paper can, therefore, be used for

determination of the buckling load of non-prismatic beams. For this purpose, a constant axial force

is assumed to act on the beam (i.e., ) and ω is set zero (i.e., ω = 0). These

conditions are subsequently applied to functions  and . These functions, for various

end support conditions, are simplified as follows

(49)

Functions , and  as well as coefficients matrix [A] are obtained if

values for functions  and  obtained from Eq. (49) are introduced into Eq. (47). It is

of note that unknown parameter in this matrix is, therefore, the constant axial force N. Further, the

beam buckling load is determined through calculation of a non-trivial solution developed for

resulting system of equations. 

3. Numerical results

Five numerical examples are presented in this section in which vibration frequencies of the non-

prismatic beams under variable axial forces are calculated based on the present approach. The

results of the analysis are then compared to those obtained using SAP-2000 software. The “beam

element” is adopted from elements library to model the problem. In all examples, the elastic

modulus (E), the weight per unit volume (γ) and the mass per unit volume (ρ) are adopted as:

210 × 106 KN/m2, 200  KN/m3 and, 20.3943 ton/m3 respectively. 

N ξ( ) constant N≡ ≡
f1 ξ s,( ) f2 ξ s,( )

 

G m r,( ) F1 m r,( ), F2 m r,( )
f1 ξ s,( ) f2 ξ s,( )
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3.1 Example 1: Cantilever beam with circular cross section

In this example, the vibration frequencies of a non-prismatic cantilever beam with circular cross

section under variable axial forces are investigated (Fig. 3). The beam is assumed to have a linearly

varying diameter as follows 

(50)

In which dim(ξ) and L are the cross sectional diameter and the beam length respectively. The

latter is adopted as 50 m in this example. The concentrated axial force at the free end of the beam

N(1) is also taken equal to 5 × 106 KN. The function defining the variable axial force, including a

concentrated axial force at the free end of the beam, as well as variably distributed axial force due

to beam weight is obtained as follows 

(51)

In which A(ξ) is cross sectional area. The first five frequencies of the beam are calculated. The

results are summarized in Table 1. The beam’s buckling load is obtained equal to 10.91 × 106 KN

for R = 8 while it is evaluated by SAP-2000 as 10.89 × 106 KN using 100 elements. With increase

of the concentrated axial force at free end of the beam to 7 × 106 KN, the vibration frequencies of

the beam have been calculated and shown in Table 2.

dim x( ) 8

L
---x– 10 or dim ξ( )+ 8ξ– 10+= = 0 ξ 1≤ ≤

 

Fig. 3 The non-prismatic cantilever beam with circular cross section under variable axial forces
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3.2 Example 2: clamped-pinned beam with hollow circular cross section

In this example, the vibration frequencies of a non-prismatic beam with a clamped-pinned ends

having hollow circular cross section subjected to variable axial forces are evaluated (Fig. 4). The

beam section is assumed to have a linearly varying external diameter and a constant thickness

defined by the following relations 

Table 1 The beam vibration frequencies of the example 1 

Vibration frequencies (rad/sec)

ω1 ω2 ω3 ω4 ω5

With effects 
of axial 
forces

Analysis results

R = 2 21.133 130.24 - - -

R = 4 16.836 52.91 125.9 373 -

R = 5 16.975 52.978 119.805 242.522 671.484

R = 8 16.974 52.869 121.05 221.21 347.7

SAP
2000 results

10 elements 16.58 50.47 112.98 202.6 319.6

25 elements 16.91 52.47 119.69 218.5 348.7

50 elements 16.953 52.77 120.69 220.97 353.72

100 elements 16.965 52.84 120.94 221.59 354.98

Without 
effects of 

axial forces

Analysis results

R = 2 20.1 82.77 617.2 - -

R = 5 19.88 58.7 124.9 248.8 682.6

R = 8 19.884 58.9974 127.82 228. 354.2

SAP
2000 results

10 elements 19.53 56.7 119.7 208.8 324.5

25 elements 19.826 58.63 126.53 225.35 355.3

50 elements 19.869 58.91 127.5 227.79 360.36

100 elements 19.88 58.974 127.74 228.4 361.6

Table 2 The beam vibration frequencies of the example 1 under increased concentrated axial force

Vibration frequencies (rad/sec)

ω1 ω2 ω3 ω4 ω5

With effects 
of axial 
forces

Analysis 
results

R = 2 20.381 113.3 - - -

R = 4 13.706 48.793 119.186 359.8 -

R = 5 14.899 49.929 117.35 239.2

R = 8 14.958 49.708 117.99 218.308 345

SAP
2000 results

10 elements 14.556 47.365 110.1 200.12 317.62

25 elements 14.885 49.314 116.65 215.62 345.95

50 elements 14.933 49.604 117.64 218.08 350.98

100 elements 14.945 49.677 117.89 218.7 352.24
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Fig. 4 The non-prismatic clamped-pinned beam with hollow circular cross section, under variable axial forces

Table 3 The beam vibration frequencies of the example 2 

Vibration frequencies (rad/sec)

ω1 ω2 ω3 ω4 ω5

With effects 
of axial 
forces

Analysis 
results

R = 4 27.33 81.21 187.72 - -

R = 5 32.019 103.198 194.976 360.159 923.453

R = 6 32.329 106.32 220.148 367.358 607

R = 8 32.238 105.793 221.741 378.078 585.262

SAP
2000 results

5 elements 32.446 107.11 233.63 454.09 8451.6

10 elements 32.246 105.74 221.37 378.42 577.62

25 elements 32.222 105.73 221.56 379.25 578.75

50 elements 32.221 105.73 221.56 379.3 578.94

100 elements 32.221 105.73 221.56 379.3 578.95

Without 
effects of 

axial forces

Analysis 
results

R = 4 40.074 101.744 200.807 544.812 -

R = 5 40.739 115.745 214.401 373.324 927.467

R = 6 40.685 116.593 232.487 385.545 621.124

R = 8 40.628 116.024 232.793 389.853 596

SAP
2000 results

5 elements 40.586 116 239.86 456.58 8451

10 elements 40.619 115.9 232.08 388.9 586.83

25 elements 40.621 115.97 232.56 390.64 590.36

50 elements 40.62 115.98 232.57 390.7 590.57

100 elements 40.62 115.97 232.57 390.7 590.58
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(52)

In which dimex(ξ) and tw are the cross sectional external diameter and the thickness of section,

respectively. The concentrated axial force at the free end of the beam and beam length are also

adopted as 10 × 106 KN and 50 m respectively. The first five frequencies for various R's are shown

in Table 3 associated with those obtained from SAP-2000. The beam's buckling load is evaluated as

high as 22.829 × 106 KN for R = 8 while SAP-2000 reaches more or less the same result as

22.8059 × 106 KN if 100 elements are introduced to model the problem.

3.3 Example 3: Simply supported beam with square cross section 

In this example, the vibration frequencies of a simply supported and non-prismatic beam having

square cross section under variable axial forces are determined. The beam cross section is assumed

to have a linearly varying width and height as follows (Fig. 5) 

(53)

In which  and  are section's width and height, respectively. The concentrated axial force

at free end of the beam and beam length are taken as 6 × 106 KN and 30 m respectively. The first

five frequencies of the beam calculated are shown in Table 4. The beam buckling load is obtained

dim
ex

x( ) 8

L
---x– 10 or dim

ex
ξ( )+ 8ξ– 10 0 ξ 1≤ ≤+= =

t
w

0.5 m=⎩
⎪
⎨
⎪
⎧

b ξ( ) d ξ( ) 4 1 0.5ξ–[ ]= = 0 ξ 1≤ ≤

b ξ( ) d ξ( )

Fig. 5 The non-prismatic simply supported beam with square cross section, under variable axial forces
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as 12.282 × 106 KN for R = 5 while this load is evaluated by SAP-2000 almost equally as

12.282301 × 106 KN when 60 elements are used to model the beam.

3.4 Example 4: clamped-clamped beam with hollow square cross section

In this example, vibration frequencies of a non-prismatic beam with clamped-clamped ends

having a hollow square cross section are evaluated subjected to variable axial forces. Fig. 6 shows

the geometry and loading conditions adopted in this example. The beam section has been assumed

to have both linearly varying width and height with uniform thickness defined by the following

relation

(54)

The concentrated axial force at free end, N(1), and beam length are adopted as 20 × 106 KN and

30 m, respectively. The first five frequencies of the beam have calculated using current approach as

well as those given by SAP-2000 are summarized in Table 5. As can be seen in the table, the beam

buckling load for R = 8 is obtained as 40.672 × 106 KN using current approach . If 60 elements are

used to model the same beam in SAP-2000, it converges to an almost identical buckling load of

40.671 × 106 KN. Negligible difference is seen between the results obtained by two approaches

which shows the accuracy and efficiency of the proposed method.

d ξ( ) b ξ( ) 4 1 0.5ξ–[ ]= =

t
w

0.5 m constant thickness=⎩
⎨
⎧

Table 4 The beam vibration frequencies of the example 3

Vibration frequencies (rad/sec)

ω1 ω2 ω3 ω4 ω5

With effects 
of axial 
forces

Analysis
results

R = 2 18.767 106.28 - - -

R = 4 20.61 111.96 280.841 601.132 1976.75

R = 5 20.61 112.13 259.896 537.326 1090.81

R = 8 20.61 112.189 260.772 468.422 748.524

SAP 2000
results

15 elements 20.612 112.16 260.66 467.93 733.68

30 elements 20.613 112.18 260.75 468.23 734.76

60 elements 20.614 112.19 260.76 468.27 734.84

Without 
effects of 

axial forces

Analysis
results

R = 2 27.82 116.07 - - -

R = 4 28.649 119.698 287.923 610.746 1979.48

R = 5 28.641 119.845 267.845 543.596 1100.69

R = 8 28.64 119.848 268.539 476.216 756.667

SAP 2000
results

15 elements 28.634 119.81 268.42 475.73 741.49

30 elements 28.639 119.84 268.52 476.05 742.6

60 elements 28.64 119.84 268.53 476.09 742.69



Free vibration analysis of non-prismatic beams under variable axial forces 579

Fig. 6 The non-prismatic clamped-clamped beam with hollow square cross section, under variable axial force

Table 5 The beam vibration frequencies of the example 4

Vibration frequencies (rad/sec)

ω1 ω2 ω3 ω4 ω5

With effects 
of axial 
forces

Analysis
results

R = 4 57.027 189.294 492.392 1109 -

R = 5 58.072 192.356 402.057 909 2003

R = 6 58.154 193.062 406.338 699.098 1510

R = 8 58.154 193.042 402.61 684.495 1097.8

SAP 2000
results

15 elements 58.15 193 402.53 682.78 1032

30 elements 58.153 193.03 402.64 683.4 1035

60 elements 58.151 193.03 402.64 683.42 1035

Without 
effects of 

axial forces

Analysis
results

R = 4 80.89 220.87 507 1102 -

R = 5 80.21 221.52 435.27 923.61 1993

R = 6 80.196 220.77 437.415 733 1524

R = 8 80.196 220.72 432.35 715.15 1129

SAP 
2000results

15 elements 80.192 220.69 432.22 713.73 1064

30 elements 80.194 220.71 432.36 714.42 1067

60 elements 80.193 220.71 432.36 714.44 1067
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3.5 Example 5: Cantilever beam with a lumped mass at free end

In this example, the vibration frequencies of a non-prismatic cantilever beam with a lumped mass

at its free end under variable axial force, shown in Fig. 2, are evaluated. It has been assumed that

the beam has a rectangular cross section with a linearly varying width and a uniform height as

defined by the following relations  

(55)

Concentrated axial force, lumped mass at free end of the beam, and beam length are adopted in

this example as: 580000 KN, 300 ton and 30 m respectively. The first five frequencies of the beam

resulted from the current approach and those obtained from SAP-2000 are all presented in Table 6 it

is of note that in this example, rotational inertia effects and weight of lumped mass are neglected.

4. Conclusions

Despite popularity of FEM in analysis of static and dynamic structural problems and the routine

applicability of FE softwares, analytical methods based on simple mathematical relations is still

largely sought by many researchers and practicing engineers around the world. Development of such

analytical methods for analysis of free vibration of non-prismatic beams is also of primary concern. 

b ξ( ) 4 1 0.5ξ–( )=

d 2 m uniform height=⎩
⎨
⎧

Table 6 The vibration frequencies of the beam of the example 5

Vibration frequencies (rad/sec)

ω5 ω4 ω3 ω2 ω1

With effects 
of axial 
forces

Analysis
results

R = 3 5.56 40.14 118.14 390 -

R = 5 5.56 40.057 113.98 234 426

R = 6 5.56 40.057 113.96 227.55 405

R = 8 5.56 40.057 113.95 227.064 381.32

SAP 2000
results

10 elements 5.536 39.725 112.75 224.28 374.5

30 elements 5.557 40.019 113.81 226.76 379.75

60 elements 5.559 40.047 113.91 227 380.14

Without 
effects of 

axial forces

Analysis
results

R = 3 7.434 41.87 119 392 -

R = 5 7.434 41.778 115.47 235.87 427.15

R = 6 7.434 41.778 115.438 228.95 406

R = 8 7.434 41.778 115.427 228.471 382.69

SAP 2000
results

10 elements 7.404 41.428 114.21 225.66 375.84

30 elements 7.431 41.739 115.29 228.16 381.12

60 elements 7.433 41.768 115.39 228.39 381.52
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The vibration frequency of non-prismatic beams under variable axial forces is analytically and

numerically investigated. The proposed method is based on the conversion of the governing

differential equation into its weak form integral equation. The mode shape function has been

approximated by a power series, which allows the weak form integral equation to be transformed

into a system of linear algebraic equations. The natural frequencies are determined by calculation of

a non-trivial solution for system of equations. Proposed method has also been extended for

determination of the buckling load of the non-prismatic beams. It is shown that when the mode

shape function is approximated by a power series, the accuracy of results will increase depending

on the increase in the number of terms applied in the series. It is, in fact, the merit of the work

presented in this paper that the method essentially provides solution procedure and accurate results

by adopting a unique element representing the beam which is solved by a simple mathematical

relation. As can be inferred from practical examples provided in sec. 3, FEM requires perhaps 100

or more elements (hence more time and core space) to reach the same accuracy as that provided by

current approach. 
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Notations

A(ξ) : cross sectional area of the beam.
b(ξ) : beam section width. 
Ci : integration constants .
d(ξ) : beam section height. 
D(ξ) : bending stiffness (=EI(ξ)).
dim(ξ) : beam section diameter. 
dimex(ξ) : external diameter of the beam section.
E : young’s modulus.
I(ξ) : inertial moment of cross-sectional area.
k = ω2L4

L : beam length.
m(ξ) : mass per unit length (=ρA(ξ)).
M(ξ, t) : bending moment.
M : lumped mass at free end of the beam.
N(ξ) : axial force.
p(x, t) : transverse force.
q(ξ) : axial force per unit length. 
R : a certain positive integer.
t : time.
tw : cross sectional thickness.
V(ξ, t) : shear force.
x : coordinate along the axis of the beam.
ϑ(x, t) : beam transverse displacement.
φ(ξ) : mode shape function. 
θ : beam rotation, due to bending of the centroidal line of the beam.
ξ : non-dimensional variable (= x/L).
ρ : specific mass.
γ : specific weight.
ω : natural angular frequency of the beam.

i 1 … 4, ,=( )




