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Abstract. As an improvement on the isoparametric element method, the derivation presented in this
paper is close to that done by Wang (1990) for the 2-D finite element. We extend this idea to solve 3-D
crack problems in this paper. A new displacement modelling is constructed with local solutions of three-
dimensional cracks and a quasi-compatible isoparametric element for three-dimensional fracture mechanics
analysis is presented. The stress intensity factors can be solved directly by means of the present method
without any post-processing. A new method for calculating the stress intensity factors of three-dimensional
cracks with complex geometries and loads is obtained. Numerical examples are given to demonstrate the
validity of the present method. The accuracy of the results obtained by the proposed element is
demonstrated by solving several crack problems. The results illustrate that this method not only saves
much calculating time but also increases the accuracy of solutions. Because this quasi-compatible finite
element of 3-D cracks contains any singularities and easily meets the requirement of compatibility, it can
be easily implemented and incorporated into existing finite element codes.
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1. Introduction

Fracture mechanics has been an important research field in engineering in the last decades. The

interest was induced first by the appearance of catastrophic failures caused by crack propagation

and more recently by the need for internal damage evaluation in engineering materials in order to

guarantee the safety of existing structures and machines for the longest possible period of time. The

computation of the stress intensity factors (SIFs) is an elementary and important problem in fracture

mechanics analysis of cracked structures. The number of fracture problem with a close form

analytic solution is very small because of the complexities in mathematics. Many inves tigators

have used numerical methods to obtain their SIFs so that different numerical methods suitable for

these kinds of problems have been presented. The body force method (Isida et al. 1985) on the

basis of the stress field is only used to solve such problem that its geometry is infinite. The weight

function method (Wang et al. 1998) is useful for the cases with non-uniform stress fields because of

its simplicity and economy. This method is not suitable for the cases that have the complicated
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geometry and loads. The boundary element method is a mature numerical method in providing

solutions to infinite problems (Dong et al. 2002, Chai and Zhang 2000). This method is more

accurate and effective, but limited if the geometry and the loads are complex, especially for 3-D

fracture problems with multi materials and cracks. The finite element alternating technique (Peng et

al. 2002) is used for the analytical solution for a 3-D elliptical flaw subjected to the arbitrary crack

surface loading. This method has a shortcoming that is only suitable for a single isotropic material

structure. In this aspect, the finite element method is an effective alternative for solving elastic

problems to finite domain problems (Atluri et al. 1975). The regular finite element method is not

suitable for solving problems with cracks because of the stress singularity at the crack tip. In order

to obtain enough accuracy of solutions, this method needs more dense finite element gridding near

the crack tip. So various singular elements have been introduced to account for the required crack

tip singularity in order to improve the accuracy of the finite element solutions. Compatible singular

elements are constructed by means of moving the edge-center-node of isoparametric elements

(Barsoum 1976). In this case, the SIF is usually evaluated by Tracey0s formula (Tracey 1976).

Incompatible singular elements (Bradford et al. 1984) can be obtained from combining the main

terms of Williams expansion and the displacement field of regular element. An approximate

superposition method for calculating the stress intensity factor of an infinite plate was introduced to

solve stress intensity factor problems with 2D multiple hole-edge cracks (Zhao et al. 2012). The

complex variable function equations were solved numerically using the so-called curve length

coordinate method (Nik et al. 2009). A general singular integral formulation is suggested to solve

SIFs at the crack tips (Chen and Lin 2010). A numerical solution to solve stress intensity factors for

a finite internally cracked plate was discussed with hybrid crack element method (Chen 2011). Fan

(2004) and Xiao (2003) use the PUE method to discuss 2-D crack problems. The accuracy of the

PUE solutions is very high because the PUE method uses a higher order approximation function in

solving the stress intensity factors at crack tips. But this method increases additive nodal degrees of

freedoms in formulation, which increases computational time and cost. Especially it is very difficult

to treat the compatible condition between two kinds of elements. Wang (1990) and Cao (2004)

formulate quasi-compatible singular elements by an improvement on the isoparametric element, but

the problem about problems with 3-D cracks are not mentioned. Influence coefficients for plates

containing an elliptical crack with a wide range of the parameters were presented (Delliou and

Barthelet 2007). The effect of clamping force and friction coefficient on SIF of a crack single or

double lapped joints using 3D finite element method had been studied (Sallam et al. 2011).

Each of the existing methods has its merits and demerits. As an improvement on the isoparametric

element method, the derivation presented here is close to that done by Wang (1990) for the 2-D

finite element, by Cao (2004) for blunt cracks and by Cao and Kuang (2008) for piezoelectric

materials with 2-D cracks. We extend this idea to solve the problems with three dimensional cracks.

In this paper, the local solutions of 3-D crack fields are introduced. A new singular element of 3-D

crack problems is constructed, and a new method for calculating stress intensity factors of 3-D

crack problems is presented. This paper proposes a new and more generally formulated method of

3-D quasi-compatible elements that can contain any singularities and easily meet the requirement of

compatibility. This method can be widely used in the numerical analysis of 3-D crack fields in

engineering. Numerical examples of the applications illustrate the validity of the present method.
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2. The displacement model of the 3-D singular element

An arbitrary crack shape in a three-dimensional solid is shown in Fig. 1(a). pq is its crack front.

Elements located at the crack front are selected as singular elements.

Others are regarded as regular elements. The singular displacement field (uλ) in these singular

elements can be expressed as follows

(1)

As shown in Eq. (1), this displacement field is divided into two parts. The first part ( ) can be

expressed by the isoparametric interpolation. The second part,  in Eq. (1), does not include in

the displacement field obtained by the isoparametric interpolation.

(2)

(3)

where N is the shape function matrix of the isoparametric element; qλ is the local nodal

displacement array formed by the value of uλ at the nodes of the singular elements. The general

form of the displacement model of singular elements is derived by combining  of Eq. (3) with

the displacement field of the isoparametric element as follows 

(4)

where q is the nodal displacement array. An arbitrary 3-D crack problem is shown in Fig. 1(b). (x,

y, z) is the global coordinate. (n, t, z') is the local coordinate. n and t are along the normal and

tangent directions at the point m on the crack front, z' is orthogonal to the (n, t) plane. The

transposition matrix between the local and global coordinates is

(5)
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Fig. 1 A singular element at the crack front
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where li, mi and ni (i = 1, 2, 3) are directional cosines between local coordinate axes (n, t, z') and

global coordinate axes (x, y, z), respectively. When z'-axis and z-axis have the same direction,

Eq. (5) can be simplified as

(6)

where α is the angle between n and x axes. The local displacement, strain and stress fields (σλ, ελ
and uλ) at the point A near the crack front in the global coordinate can be expressed

(7)

(8)

(9)

(10)
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 is the SIF of the point m which can be determined by the displacement field. The SIFs of the 3-

D crack are dependent on the position and continuously vary along the line of the crack front. So

the quadric interposition function is used to simulate the variation of SIFs in the element, i.e.

(11)

where L is quadric interposition function matrix of SIFs; superscript e expresses the element;  is

the stress intensity factor arrayin the element. 

(12)

where p is the nodal number at the crack front to a singular element;  is the stress intensity factor

array of the ith node at the crack front in the element.

 
(13)

Substituting Eq. (11) into Eqs. (7), (8) and (9), local displacement, stress and strain fields of the

element can be reduced into the following forms
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where  is the sub-matrix formed by  at the ith node. Substituting Eq. (18)

into Eq. (17), the new displacement model of the 3-D singular element can be obtained

(20)

3. Finite element formulation

There are NE elements in the entire domain, where there are R singular elements and (NE-R)

regular elements. Then global displacement field of the entire domain can be expressed as

(21)

where . The convergence criterion of the displacement method

requires that the displacement model of elements meets the perfect and compatible conditions. The

displacement model of element Eq. (20) is perfect. As to the compatible condition Eq. (21), we

know that the entire region consists oftwo kinds of elements, namely regular elements and singular

elements. There are three types of element boundaries:

(a) the boundary between singular elements;

(b) the boundary between regular elements;

(c) the boundary between the singular and regular elements.

For boundaries (a) and (b), the compatible condition is strictly fulfilled. As for (c), the compatible

condition is met only at the nodes. For the boundary between nodes, the compatible condition is

fulfilled in the follow two senses: (i) when the element dimension tends to zero, the second term in

the displacement model (20) disappears and the compatible condition is guaranteed; (ii) when the

boundary nodes of singular elements increase, the second term of Eq. (20) tends to zero. So the

compatible condition is approximately fulfilled and the boundary between the two kinds of elements

is quasi-compatible. The convergence of present elements is guaranteed.

With the relation between the strain and stress, we have
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Substituting Eq. (21) into Eq. (22), the following equation can be obtained 

 (24)

where  is the singular strain matrix corresponding to the singular strain field near the crack front.

B = , . According to the relation between stress and strain, the following

equation can be obtained 

(25)

where D is the elastic matrix. According to the minimum potential energy principle, we have 
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Substituting Eqs. (21), (24) and (25) into Eq. (26), we have
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where Q is the global displacement array;  is the global displacement array of singular elements,

; λ is the stress intensity factor array. To group-crack problems, the general form of Eq. (28)

is

(29)

where  is the external force applied on the surface of the ith crack,  is the column matrix of

stress intensity factors at the ith crack front and G is the total crack number in the studied region.

Because Q and λ are independentv ariables, the following equations can be obtained by the

variational principle 

(30)

(31)

Eq. (31) can be rewritten as 

(32)

Substituting Eq. (32) into Eq. (30), we have

(33)

where , . After solving Eq. (33), the SIFs can be 

directly obtained from Eq. (32) without any post-processing procedure. 

4. Numerical examples

4.1 Comparison with theoretical solutions

The geometry of the specimen containing an embedded elliptical crack is shown in Fig. 2. 2a and

2b are the lengths of the major and minor axes of an elliptical crack, respectively. The Poisson’s

ratio (ν) is equal to 0.3 and the load is uniform traction applied on the two opposite sides

perpendicular to the plane of the crack. W, t and 2H are the width, thickness and height of the

specimen in the x, y and z directions, respectively. The theoretical solution of the normal stress

intensity factor of an infinite body is defined as follows (Kassir 1966)

(34)
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a maximum value at the end of the minor axis. When ϕ = π /2, there is the following equation

 (35)

It can be seen from Eq. (35) that λImax varies with the length of the minor axis of the elliptical

crack when the length of the major axis of the elliptical crack is given. The parameters of the crack

and structure are chosen to be a = 4.0; a/W = a/h = 0.143; b/t = 0.1; b/a = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9 and 1.0, respectively. σ = 1. Due to the symmetry of the problem, only one eighth of

the specimen is discretized. The SIFs at the minor axis of the elliptical crack are calculated as

shown in Fig. 3. Fig. 3 shows that the comparison of the stress intensity factors between the present

results and the theoretical solutions (Kassir 1966). The results calculated by the present method

agree well with those obtained by the theoretical method.

λImax

σ πb

ψ p( )
--------------=

Fig. 2 The plate with an embedded elliptical crack

Fig. 3 Mode-I SIFs at the minor axis of the elliptical crack
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4.2 Analysis of element characteristics

The geometry of the specimen containing an embedded elliptical crack is shown in Fig. 2. The

stress intensity factor of an arbitrary point in an embedded elliptical crack (Kuang 2002) is

,  (36)

where MI is the normalized stress intensity factor of an arbitrary point in an embedded elliptical

crack; Q0 is the crack shape factor. Due to the symmetry of the problem, only one eighth of the

specimen is studied. Some main computation results with various Gauss' point numbers can be seen

λI MIσ πb/Q0= Q0
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Fig. 4 Computation results vs Gauss' numbers Fig. 5 Computation results vs Gauss' numbers

Fig. 6 The numbers of segments at the crack front
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Fig. 7 Computation results vs the numbers of
segments on the line of the crack front

Fig. 8 The inuence of various ratio of b/a on the
results 

Fig. 9 The influence of structural sizes on the results Fig. 10 The influence of structural sizes on the results

Fig. 11 The influence of structural sizes on the results
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in Figs. 4 and 5. At the internal part of singular elements, Gauss' points should be properly

increased because the gradient of stress and strain is great. It can be known from Fig. 5 that the

computation results can be more ideal when taking the mean value of 4 × 4 × 4, 5 × 5 × 5 points.

The different segments of the cross section in the crack plane are shown in Fig. 6. The computation

results with various numbers of segments at the crack front can be seen in Fig. 7. The computation

results with various radio of b/a for different positions along the crack front can be seen in Fig. 8.

The computation results with different structural sizes for different positions along the crack front

can be seen in Figs. 9-11.

4.3 Through crack

An elastic specimen with a through crack (Parsons and Hall 1989) is shown in Fig. 12(a). The

cross section of the crack plane is shown in Fig. 12(b). Its thickness (t), height (h) and length (W)

are equal to 250 mm, 2000 mm and 2000 mm, respectively. Along the height direction, the

specimen is subjected to uniform tension, σ = 1 MN/m2. The Poisson’s ratio is ν = 0.3 and Young’s

Fig. 12 An elastic specimen with a through crack. (a) specimen (b) singular elements in crack plane 

Fig. 13 Computation results vs singular element sizes
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modulus is equal to 207 GN/m2. Due to the symmetry of the problem, only one quarter of this

specimen is discretized. The results of calculation with various singular element sizes for different

positions along the crack front can be shown in Fig. 13.

It can be seen from Fig. 7 and Fig. 13 that the influence of element sizes on results is week. This

is because the displacement model (Eq. (20)) can entirely include the singularity at crack fronts.

Properly to increase the size of singular elements, the accuracy of computation results is still higher.

The numbers of elements, nodal points and degrees of freedoms employed by various investigators

are listed in Table 1. To compare general efficiency of calculations, the present method seems to

have a superiority in engineering applications. This characteristic makes the network dividing of

elements only satisfy the requirements for the convergence of the isoparametric element itself and

the gradient of normal stress, strain fields in engineering applications.

4.4 The surface elliptical crack

The plate with a semi-elliptical surface crack is loaded by uniform tension as shown in Fig. 14.

Fig. 15 shows the comparisons between the present results and Newman-Reju’s ones obtained by

FEM (Newman 1979) for semi-elliptical surface crack in plates subjected to uniform tension. As

can be seen from Fig. 15 that the present results agree closely with Newman-Reju’s solutions.

Fig. 14The plate with a semi-elliptical surface crack in a finite thickness plate subjected to uniform tension 

Table 1 Comparison ofthe element number, nodal points and degrees of freedoms

Methods used 
Number

 Elements Nodal points Degrees of freedoms

Present method 20 191 544

Parsons (1989) 18432 61659

Tracy (1974) 522 660

Yamamoto and Sumi (1976) 480 702

Bloom and Fossen (1976) 312 1655



334 Zongjie Cao and Yongyu Liu

Fig. 15 Comparisons of present computation results with Newman-Reju’s solutions

Fig. 16 A finite thickness plate with two semi-elliptical surface cracks

Fig. 17 Mode-I SIFs of a finite thickness plate with two semi-elliptical surface cracks subjected to uniform
tension
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4.5 Multi-cracks

As shown in Fig. 16, a finite thickness plate with two semi-elliptical surface cracks is subjected to

uniform tension. The geometry sizes are a = 5; b/a = 0.4; a/W = a/h = 0.2; b/t = 0.4, 0.38, 0.35, 0.3

and 0.25, respectively. Fig. 17 shows the stress intensity factors of a finite thickness plate with two

semi-elliptical surface cracks subjected to uniform tension.

5. Conclusions

A finite element method for three-dimensional linear elastic fracture analysis is established by

combining the local solutions of 3-D cracks and the isoparametric elements. From the establishment

of the displacement model, theoretical derivation, analysis on the element characteristic and

computation results, this method presented in this paper has the following features:

(1) It can solve any 3D brittle linear fracture problems and directly output stress intensity factors

without any post-processing procedure.

(2) With the different selection of singular element sizes, Gauss’ point numbers, structural sizes

etc., results obtained by present method are stable, reliable and highly accurate.

(3) Because this quasi-compatible element of 3-D cracks contains any singularities and easily

meets the requirement of compatibility, the size of singular elements along the front of cracks can

be larger. In an other word, finite element gridding is not dense, this element not only economize

more memory space of computers but also saves calculational time of computers.

(4) Data input and management are almost the same as that for the isoparametric element. It can

be easily implemented and incorporated into existing finite element codes in engineering

applications.

(5) By combining with any other isoparametric elements, it is very easy to be extended to other

fields, such as piezoelectric and ferroelctric intelligent materials.
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