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A new higher-order triangular plate bending element for 
the analysis of laminated composite and sandwich plates
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Abstract. To analyze the bending and transverse shear effects of laminated composite plates, a thirteen
nodes triangular element will be presented. The suggested formulations consider a parabolic variation of
the transverse shear strains through the thickness. As a result, there is no need to use shear correction
coefficients in computing the shear stresses. The proposed element can model both thin and thick plates
without any problems, such as shear locking and spurious modes. Moreover, the effectiveness of w

,n
, as an

independent degree of freedom, is concluded by the present study. To perform the accuracy tests, several
examples will be solved. Numerical results for the orthotropic materials with different boundary
conditions, shapes, number of layers, thickness ratios and fiber orientations will be presented. The
suggested element calculates the deflections and stresses more accurate than those available in the
literature.

Keywords: plate bending; laminate; finite element analysis (FEA); shear deformation, thin and thick
plates.

 

 

1. Introduction

In the recent decades, composite materials have extensively been used for a number of

applications in various fields, such as civil, mechanical and aerospace engineering. Composite

laminates are widely utilized in structures due to their lightweight, high ratios of stiffness and

strength to weight. Furthermore, these materials have suitable sound absorption and flexibility for

use in complex structural configurations. Finite element analysis of laminate composite plates in the

recent decades has been mainly based on four plate theories. These theories include: the classical

lamination theory (CLT) based on Kirchhoff hypothesis, first-order shear deformation theory

(FSDT), higher-order shear deformation theory (HSDT) and layer-wise lamination theory (Reddy

1997, Timoshenko and Krieger 1959, Reissner 1945, Mindlin 1951). The CLT is an extension of the

classical thin plate theory to laminated plates, which neglects the effects of transverse shear and

requires continuity of the deflections and their slopes (C1 continuity) in displacement fields. The

errors in the CLT theory increase as the thickness-span ratio of plate increases.

 The first-order shear deformation theories (FSDT) are based on Reissner-Mindlin plate theory

(Rezaiee-Pajand and Sarafrazi 2000). FSDT theories only require C0 continuity, and they can be
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used for the analysis of both thick and thin plates. In FSDT, the transverse shearing strains or

stresses are assumed constant through the plate thickness. This is not agreeing with the zero shear

stress conditions on the bounding planes of the plate, and several spurious shear correction

coefficients must be introduced (Cen et al. 2002). The displacement finite element techniques tend

to cause undesirable shear locking phenomena for low order interpolation polynomials in Reissner-

Mindlin elements. Locking effect occurs by the selective integration methods. These techniques in

some occasions lead to the appearance of spurious mechanisms. The use of mixed interpolations has

been adopted as the more popular alternative to the selective method where the deflection, the

rotations and the shear forces are independently interpolated (Belounar and Guenfoud 2005).

Higher-order plate theories have been proposed by some researchers. Taking advantage of free

parameters in the stiffness matrix and optimizing the element behavior by template strategy can

improve the structural responses (Rezaiee-Pajand and Mohamadzade 2010). Another way of

increasing the element accuracy is using hybrid-Trefftz formulations for plate bending analysis

(Rezaiee-Pajand and Karkon 2012). 

Two different methods have been commonly employed that include single-layer and multi-layer

formulations. The former increases the order considered for the displacement representation in the

thickness coordinate, and the latter assumes a representation formula for the displacement field in

each layer, similar to that of layer-wise theory. Carrera et al. (2011) compared the solutions obtained

via equivalent single-layer fourth-order FEM model and a layer-wise one and investigated the sets

of effective terms for a different length-to-thickness ratio in the case of an unsymmetrical cross-ply

square simply-supported plate under a distributed load.

Some Techniques have been presented to solve the mentioned problems of the FSDT. For

instance, the distribution of transverse shear stresses can be evaluated by a three-dimensional (3D)

elasticity equilibrium equation. Vlachoutsis (1992) proposed a simple approach to calculate shear

correction factors for laminated plates and shells under cylindrical bending. Rolfes and Rohwer

(1997) studied a simple post-processing procedure to obtain improved transverse shear stresses in

the finite element analysis based on FSDT. Rolfes et al. (1998) suggested a simple and accurate

post-processing method for the FSDT to calculate the transverse normal stress, which was initially

assumed to be zero. During the past 40 years, many researchers have made significant contributions

on development of simple triangular and quadrilateral elements based on FSDT (Cen et al. 2002). 

A considerable work has been done on the composites in the last decade. For example, Polit and

Touratier (2000) formulated a new C1 six-node triangular finite element for geometrically linear and

non-linear elastic multilayered composite plates. This finite element could model both thin and thick

plates without any shear locking and spurious modes and was built on the Argyris interpolation for

bending and the new interpolation type for membrane displacements and transverse shear rotations.

Sheikh et al. (2002) developed a high precision triangular element for the analysis of laminated

composite plates. In this element, the effect of shear deformation was considered by taking

transverse displacement and bending rotations as independent field variables. Cen et al. (2002)

presented a simple displacement based, quadrilateral 20 DOF bending element based on the first-

order shear deformation theory for analysis of composite plates. Their element was constructed by

two procedures. First, the variation functions of the rotation and the shear strain along each side of

the element were determined using Timoshenko’s beam theory and second the shear strain, rotation

and in-plane displacement fields in the domain of the element were determined using the technique

of improved interpolation. Furthermore, a simple hybrid procedure was also proposed to improve

the stress solutions. 
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Sheikh and Chakrabartib (2003) proposed a triangular element based on Reddy’s higher-order

shear deformation plate theory. The transverse displacement was approximated by a truncated

quintic polynomial. That was obtained by imposing cubic variation of normal slope along the three

sides, which had helped to express the three unknowns of a complete quintic polynomial in terms of

other unknowns. Belounar and Guenfoud (2005) presented a new four nodes rectangular finite

element for the linear analysis of plate bending with transverse shear effect. The related

displacement fields were developed using the strain-based approach, and it was based on the

assumed independent functions for the various components of strain in so far as it was allowed by

the compatibility equations. Belinha and Dinis (2006) extended a meshless method (the element-free

Galerkin method (EFGM)) and used in the analysis of anisotropic plates and laminates considering

a Reissner-Mindlin laminate theory (FSDT). The approximation functions were calculated

considering the moving least squares (MLS) approach, which was consistent provided the basis was

complete in the polynomials up to a desired order. Shear locking in plate bending was avoided

considering the appropriate polynomials for the displacements and rotations. Cai et al. (2008)

developed a small strain and elasto-plastic formulation of Polygonal Element Method (PEM) for

efficient analysis of elasto-plastic solids. The construction method of polygonal mesh can directly

utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal

elements. The incremental variational form and a Von-Mises type model were used for non-linear

elasto-plastic analysis. 

Dash and Singh (2010) proposed a transverse bending of shear deformable laminated composite

plates in Green-Lagrange sense accounting for the transverse shear and large rotations. Governing

equations were developed in the framework of higher-order shear deformation method. Their theory

satisfied zero transverse shear strains conditions at the top and bottom surfaces of the plate in von-

Karman sense. A C0 isoparametric finite element was developed for the proposed nonlinear model.

Zhen and Wanji (2010) developed a C0-type higher-order theory for bending analysis of laminated

composite and sandwich plates subjected to thermal-mechanical loads. The total number of

unknowns in this theory was independent of the number of layers. Thinh and Quoc (2010) studied

free vibration and bending failure of laminated stiffened glass fiber-polyester composite plates with

laminated open section (rectangular or T-shaped) and closed section (hat shaped) of stiffeners by

finite element method and experiment. Tu et al. (2010) extended a nine-nodded rectangular element

with nine degrees of freedom at each node for the bending and vibration analysis of laminated and

sandwich composite plates. The theory accounted for parabolic distribution of the transverse shear

strains through thickness of the plate and rotary inertia effects. 

Alieldin et al. (2011) presented the first-order shear deformation plate (FSDT) model to

investigate the mechanical behavior of laminated composite and functional graded plates. Three

procedures developed to transform the laminated composite plate, with stepped material properties,

to an equivalent functionally graded (FG) plate with a continuous property function across the plate

thickness. Bussamra et al. (2012) proposed three-dimensional hybrid finite elements for the analysis

of laminated composite plates. Two independent fields were approximated: stresses within the

elements and displacements on their boundary. The required stress field in point-wise equilibrium

was generated by harmonic and orthogonal polynomials with the potentials to generate

homogeneous solution of Navier equations for isotropic material. Notably, based on the presented

brief review, the HSDT methods are able to produce overall global response and in-plane stresses

with reasonable accuracy and less computational effort, besides their simplicity over the layer-wise

and zigzag models.
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In this paper, a new higher-order thirteen nodes triangular bending element, which includes

transverse shear effect, is generalized for analyzing multilayered anisotropic composite plates. The

principle of minimum potential energy is introduced to establish the relationship between the

displacement and the stress or internal force fields. Extensive finite element analyses were

performed by utilizing the author's computer program, which includes the proposed higher-order

shear deformation element. Good results were obtained in comparison to the other available finite

elements. Moreover, the effectiveness of w,n, as an independent degree of freedom, is concluded by

the present study. Due to the page limit, only a few of the numerical examples are given in this

paper. However, it will be clearly illustrated that the new higher-order element possesses the

advantages of displacement-based elements, such as simple formulas for solving displacements with

high precision and rational distributions. Besides, the suggested formulations lead to both accurate

solutions for stresses and internal forces.

 

2. Finite element modeling

At this stage, a triangular bending element with transverse shear effect will be formulated in

details. The suggested element is very useful for the modeling of the laminated composite plates.

Rezaiee-Pajand and Akhtary (1996, 1998) suggested several plate bending triangular elements in

order to investigate the effect of elemental degrees of freedom in isotropic plates. All of these

elements were not C1 compatible, and their related nodes had various degrees of freedom.

Kirchhoff's theory was used for finite element analysis of thin plate bending. They concluded that

the T13-5 element was the best one. This element had 13 nodes, which were located at the corners

and centroid, and also there were three nodes in each side. The related degrees of freedom for the

element were: w, w,x and w,y on the corners and centroid, w in the mid-side and w,n in other nodes. It

should be added that, although the other proposed elements had 13 nodes and with the same

displacement function, their degrees of freedom were not very effective (Rezaiee-Pajand and

Akhtary 1998). In the following sections, a higher-order triangular plate bending element for the

analysis of laminated composite plates is developed, which has thirteen nodes. Furthermore, a

computer program which can utilize the presented formulation is prepared by the authors. 

 

 2.1 A triangular element with 13 nodes

 

The proposed formulation is based on higher-order shear deformation plate theory. It is assumed

that the transverse displacement is small compared to plate thickness, and the plate material follows

Hooke’s law. Locations of the element nodes discussed in this paper are shown in Fig. 1. Deflection

of the plate (w) and its derivatives are the degrees of freedom used in this study. There are two

types of coordinates for this element: Cartesian coordinates (x, y), which are used for any nodes,

and (t, n) coordinates, which are used for mid-side nodes. The mentioned coordinates are shown in

Fig. 2. The following relationships exist between x, y, n and t coordinates 

, (1)

Several types of degrees of freedom are used in this study. The first and second derivatives of w,

n Cx Sy+=

t Sx– Cy+=⎩
⎨
⎧ C cosθ=

S sinθ=⎩
⎨
⎧
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with respect to x, y and n are utilized. All degrees of freedom for the suggested element are

displacement components (u, v, w), bending rotations (θx, θy) and partial derivative of w with

respect to n (∂w/∂n). This triangular element uses u, v, w, w,x and w,y as degrees of freedom for

nodes 1, 2, 3 and 13, and u, v, w, w,x, w,y and w,n for nodes 4, 6, 7, 9, 10 and 12. In addition to

these, nodal deflection, w, is utilized for nodes 5, 8 and 11, as a degree of freedom. 

In this study, a fifth-order polynomial is used for the transverse displacement (w) and forth-order

polynomial is used for displacement components (u, v), bending rotations (θx, θy) and partial

derivative of w with respect to n (∂w/∂n). These functions have the following form

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

In these equations, dimensionless vectors  and  vary from zero to one in all triangular

intervals. To express the unknown coefficients of the assumed polynomials in terms of the nodal
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 Fig. 1 Triangular element with 13 nodes  Fig. 2 Element coordinates
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displacement vector, {δ}, the field variables may be determined appropriately by the following

equations

or (12)

(13)

(14)

In the last formulas, w,n is the normal vector associated to j-k side of the triangular element that is

shown in Fig. 2. This partial derivative of w with respect to n can be written in the form bellow 

(15)

(16)

 (17)

Where, ϕj is the angle between nj and x axis. The matrix [A] can be formed with the coordinates

of the different nodes. The bending rotations, θx and θy, are taken as independent field variables,

they are not derivations of w. Therefore, the average transverse shear strains can be defined by the

following relation

 (18)

In the former equation, φx and φy are the effects of shear deformations. The interpolation function

that is used for transverse displacement (w), in Eq. (18) is one order higher than that used for

bending rotations (θx, θy). This assumption causes the element to be free from shear locking.

Eq. (18) can be written in dimensionless coordinates as follows

 (19)

 (20)

The displacement components of a point at a distance of z from the reference plane are given

below (Reddy 1984)
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(21)

(22)

(23)

In these equations, the transverse shear strains have a parabolic variation along z, and they are

zero both at the top and bottom of the plate. In this theory, there is no parameter in the

formulations, which does not have any physical meaning. The strains resulting from bending in

terms of the rotations, θx, θy and of the mid-surface displacement, u0, v0, w, are written in the

following form (Reddy 1984) 

 

(24)

 (25)

(26)

 (27)

(28)

At this stage, the generalized Hooke’s law is utilized to obtain the constitutive equations for a

layer of orthotropic material. For a plate of constant thickness, composed of thin layers, the

following relations are held

, (29)

The stress and strain equations have the form below

, , (30)

, , (31)

The stresses and its associated principle ones are computed for each element at each integration

point. The transformed material constants, [Qb] and [Qs], can be evaluated with the respect to

material properties, such as E1, E2, E3 ν12, ν13, ν23, G12, G13, G23 and fiber orientation of the lamina.
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Moreover, the rigidity matrix of a laminate, [D], can be described as follows

(32)

Where, [Db] and [Ds] are the rigidity matrices for bending and shear, respectively. These matrices

can be expressed in the bellow form

(33)

 (34)

The rigidity matrix of a laminate, [D], is constituted with the contributions of its individual

lamina. Having matrices [Qb] and [Qs], the different quantities of the rigidity matrices, [Db] and

[Ds], can be calculated by the following relationships (Sheikh and Chakrabarti 2003) 
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displacement type finite element, the virtual work technique, the stiffness matrix for the plate

element can be expressed as 

(38)

 (39)

(40)

In the last equation, p, [k] and {P} are the transverse load of intensity p, the element stiffness

matrix and the nodal load vector, respectively. The stiffness matrix recoveries are performed by

integration.

 

3. Numerical examples and discussion 

Some problems will be analyzed in this section to show the applications of the proposed element.

A computer program is written by the authors to utilize the presented two-dimensional thirteen

nodes element for the analysis of symmetric/unsymmetric cross ply laminated plates. Numerical

computation for various examples will be performed. The geometry of the laminated composite

plates is shown in Fig. 3. The obtained results will be compared with finite element solutions,

wherever available in the literature. In this study, numerical investigations for a couple of

symmetric/unsymmetric cross-ply laminated, angle-ply laminated, skew plate laminated, plate strip

laminated, simply supported and free edge plates subjected to the transverse sinusoidal loads or

uniform transverse load on the top face will be presented. To demonstrate the efficiency of the

suggested formulations, a high-precision shear deformable element for the analysis of laminated

composite plates of different shapes by Sheikh et al. (2002), a C0-type higher-order theory for

bending analysis of laminated composite and sandwich plates by Zhen and Wengi (2010), energy

and variational methods in applied mechanics by Reddy (1984), shear locking free robust

isoparametric three-node triangular finite element for moderately thick and thin arbitrarily laminated

plates by Kabir (1995), an enhanced global-local higher-order theory for the free edge effect in

laminates by Lo et al. (2007), edge effects of uniformly loaded cross-ply composite laminates by

V ε{ }T D[ ] ε{ } x ydd wp xd yd∫–∫=

K[ ] B[ ]T D[ ] B[ ] x ydd
A

 

∫=

K[ ] δ{ } P{ }=

 Fig. 3 Geometry of the laminated composite plates  



262 M. Rezaiee-Pajand, F. Shahabian and F.H. Tavakoli 

Tahani and Nosier (2003), ending extensional coupling in laminated plates under transverse loading

by Whiney (1969), bending of simply supported anti symmetrically laminated rectangular plate

under transverse loading by Ren (1987), and the elasticity solutions for cross-ply composite and

sandwich laminates by Kant et al. (2008), will be compared with the results obtained from the

present FE model. 

 

Example 1. Cross-ply laminate

A square cross-ply laminated simply supported at the four sides subjected to a sinusoidal

transverse loading was considered by Sheikh et al. (2002). This plate is analyzed by the proposed

element. The elastic constants are chosen as: E1 = 25E2, G12= G13= 0.5E2, G23= 0.2E2 and

ν12= 0.25. The study is made for antisymetric (0o/90o) and symmetric (0o/90o/90o/0o) ply

arrangements taking four different values of the span to thickness ratio (a/h). Note that the 6×6 and

8×8 mesh are employed to obtain all the results using the proposed element. The deflection and

bending moments obtained at the center of the plate are presented in Tables 1 and 2. It can be seen

that the obtained responses by the new formulation are in excellent agreement with the high-

precision shear deformable element for the analysis of laminated composite plates of different

shapes by Sheikh et al. (2002), energy and variational methods in applied mechanics by Reddy

Table 1 Deflections at the centre of a simply supported cross-ply square laminate (1000wE2h
3/pa4)

 Stacking 
sequence

 a/h
 Present analysis with mesh size  Sheikh et al. 

(2002)
Reddy
(1984)

Kabir 
(1995)  6×6  8×8 

 0o/90o  10  19.51  19.16  19.47  19.04  18.95

 48  17.04  17.05  17.04  17.05  17.00

 1000  17.06  16.94  16.95  16.95  16.85

 10000  16.93  16.95  16.95  16.95  16.85

0o/90o/90o/0o 10  9.672  10.03  10.25  9.690  9.660 

 48  7.034  6.952  6.987  6.920  6.910

 1000  7.201  6.791  6.797  6.790  6.760

 10000  6.755  6.792  6.797  6.790  6.760 

Table 2 Bending moments at the centre of a simply supported cross-ply square laminate (1000M/pa2) 

 Stacking
sequence

 a/h
 Present analysis with mesh size  Sheikh

 et al. (2002) 
Reddy
(1984)

 Kabir 
(1995)  6×6  8×8 

 0o/90o  10  63.58  62.69  62.68  62.71  62.25

 48  62.02  62.97  62.98  62.98  62.53

 1000  64.19  63.02  63.03  63.00  62.61

 10000  62.69  63.11  63.19  63.00  62.62 

0o/90o/90o/0o 10 111.81 112.26 111.35 112.68 111.84 

 48 120.23 120.46 120.47 120.51 119.57

 1000 120.57 120.90 120.95 120.93 120.11

 10000 121.42 120.97 121.04 120.93 120.12
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(1984), and shear locking free robust isoparametric three-node triangular finite element for

moderately thick and thin arbitrarily laminated plates by Kabir (1995). Moreover, it can be easily

found that the presented triangular element is suitable for the thin and moderately thick laminated

plates and no shear locking to happen in the thin plates (a/h = 10000). Besides, in comparison with

other researchers, this plate element has a quite rapid rate of convergence for both thin and thick

plates because of the using of w,n, as an independent degree of freedom.

 

Example 2. Cross-ply free-edge laminate 
A free-edge problem in laminates subjected to uniform transverse load on its top surface was

considered by Lo et al. (2007). The length, width and thickness of the laminated plate are 2a, 2b

and h (a = 5h, b = 2h), respectively. This plate includes two opposite free edges, and two simply

supported edges. Each ply is assumed to be of equal thickness, and the material properties used in

the present analysis are: E1 = 20×106 psi, E2 = E3 = 2.1 × 106 psi, G12 = G13 = G23 = 0.85 × 106 psi

and ν12 = ν13 = ν23 = 0.21. Note that the 10×10 meshes are employed to obtain all the results using

the proposed element. For easy comparison with other published results, the following non-

Table 3 Non-dimensional inter-laminar shear stresses  across the width in [0o/90o/90o/0o] laminate in x =
2h at 0o/90o interface

 Stacking sequence  y/b  Present analysis  Lo et al. (2007)  Tahani and Nosier (2003) 

0°/90°/90°/0°
 (symmetric)

0.1  00.000 00.000  00.000

0.2  -0.0006 -0.0006  -0.0006

0.3  -0.0009 -0.0010  -0.0009

0.4  -0.00125 -0.00125  -0.00124 

0.5  -0.0025 -0.0027  -0.0024 

0.6  -0.0045 -0.0046  -0.0045

0.7  -0.0086 -0.0086  -0.0084

0.8  -0.00144 -0.00148  -0.00142

0.9  -0.0239 -0.0245  -0.0237

τ
yz

 Fig. 4 Inter-laminar shear stresses  across the width in [0o/90o/90o/0o] laminateτ
yz
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dimensional parameters are considered

The distributions of transverse shear stress  through the width of a [0o/90o/90o/0o] laminate at

the mid plane and at the 0o/90o interface are plotted in Fig. 4 and presented in Table 3. Analyzing 4-

layered laminated composite plate with the proposed element, gives good answers that are closed to

ones from an enhanced global-local higher-order theory for the free edge effect in laminates by Lo

et al. (2007), and also edge effects of uniformly loaded cross-ply composite laminates by Tahani

and Nosier (2003). The findings demonstrate that the higher-order triangular element is a powerful

tool to be used for analyzing the laminated composite free-edge plates.

 

Example 3. Laminated composite plate strip

Cylindrical bending of the laminated composite plate strip subjected to a sinusoidal transverse

loading q = q0sin(πx/a) was considered by Zhen and Wanji (2010). The material properties used in

this example are: E1 = 172.4 GPa, E2 = E3 = 6.89 GPa, G12 = G13 = 3.45 GPa, G23 = 1.378 GPa, and

ν12 = ν13 = ν23 = 0.25. For easy comparison with other published results, displacements and stresses

are normalized in the form bellow

,

Where a, and h are the length and the thickness of the laminates, respectively. Note that the

12 × 12 meshes is used to obtain all the results using the proposed element. Distributions of

displacement and stress components for unsymmetric four-layer plates [0o/90o/0o/90o] are shown in

Figs. 5 and 6 and represented in Tables 4 and 5. The obtained results show good agreement with the

C0-type higher-order theory for bending analysis of laminated composite and sandwich plates by

Zhen and Wanji (2010). The results show that the performance of the proposed new element is

excellent for analyzing laminated composite plate strip.

τ xz τ yz,( ) τxy τyz,( ) h

q0a
--------=

τ yz

u E2h
2
u 0 z,( )/a3

= σx σx a/2 z,( )h2
/q0a

2
, τ xz τxz 0 z,( )/q0= =

Fig. 5 Distributions of in-plane displacements through
the thickness of four-layer plate (a/h = 4)

Fig. 6 Distributions of transverse shear stresses through
the thickness of four-layer plate (a/h = 4)
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Example 4. Angle-ply laminate

A square angle ply (θ/−θ) antisymmetric laminate simply supported at all the sides subjected to a

sinusoidal transverse loading was considered by Sheikh et al. (2002). To demonstrate the

effectiveness of the suggested formulations, the authors considered various angles for analyzing the

laminated plates. In this problem, three degrees of e = 15o, 30o and 45o are used. In all the cases, the

thickness ratio (a/h) is taken as 100 and the material properties used in the present analysis are

E1 = 40E2, G12 = G13 = 0.5E2, G23 = 0.6E2 and ν12 = 0.25. Note that the 8 × 8 and 12 × 12 meshes are

employed to obtain all the results using the proposed element. The results are given in the form of

defection and bending moments at the plate centre and axial forces at one of the corners of the plate

in Tables 6, 7 and 8. The author's results show good agreement with the high-precision shear

deformable element for the analysis of laminated composite plates of different shapes by Sheikh et

al. (2002), bending extensional coupling in laminated plates under transverse loading by Whitney

(1969), and also bending of simply supported anti symmetrically laminated rectangular plate under

transverse loading by Ren (1987). To improve the calculation precision, an appropriate selection for

the mesh sizes is important. As it can be seen in Tables 6, 7 and 8, using fine mesh for analyzing

the plate shows the efficiency of proposed triangular element, especially in solving angle-ply

laminated plates.

 

Table 4 Distributions of in-plane displacements through the thickness of four-layer plate (a/h = 4) 

 Stacking sequence  z/h  Present analysis  Zhen and Wangi (2010) 

 0°/90°/0°/90°
(unsymmetric)

-0.4  0.901  0.901

 -0.3  0.127  0.127

 -0.2  -0.125  -0.125

 -0.1  0.123  0.124

 0.0  0.291  0.293

 0.1  -0.490  -0.490

 0.2  -1.252  -1.251

 0.3  -2.256  -2.256

 0.4  -3.491  -3.490

Table 5 Distributions of transverse shear stresses through the thickness of four-layer plate (a/h = 4) 

 Stacking sequence  z/h  Present analysis  Zhen and Wangi (2010) 

 0°/90°/0°/90° 
(unsymmetric)

-0.4  0.346  0.348

-0.3  0.489  0.491

-0.2  0.484  0.484

-0.1  0.484  0.484

 0.0  0.484  0.484

 0.1  0.474  0.475

 0.2  0.275  0.278

 0.3  0.068  0.068

 0.4  0.031  0.033



266 M. Rezaiee-Pajand, F. Shahabian and F.H. Tavakoli 

Table 6 Deflection and stress resultant at the important points of an angle-ply (15o/−15o) square laminate

Deflection and 
stress resultant

 Present analysis with mesh size Sheikh et al. 
(2002)

 Whitney
 (1969)

 Ren
 (1987)  8×8  12×12 

 7.154  7.166  7.167  7.142  7.169

 44.00  44.05  44.10  44.03  44.09

 45.62  45.68  45.77  45.67  45.65

 11.39  11.42  11.43  11.42  11.42

 1.231  1.234  1.234  1.233  1.234 

Table 7 Deflection and stress resultant at the important points of an angle-ply (30°/−30°) square laminate 

Deflection and 
stress resultant

 Present analysis with mesh size Sheikh et al. 
(2002)

Whitney
(1969)

Ren
(1987)  8×8  12×12 

7.776  7.776  7.770  7.752  7.779

23.29  23.27  23.28  23.21  23.36

30.65  30.65  30.66  30.62  30.66

6.944  6.954  6.953  6.954  6.954

2.682  2.682  2.682  2.681  2.682 

Table 8 Deflection and stress resultant at the important points of an angle-ply (45°/−45°) square laminate

Deflection and 
stress resultant

 Present analysis with mesh size  Sheikh et al. 
(2002)

Whitney 
(1969)

 Ren
(1987)  8×8  12×12 

 7.336  7.335  7.338  7.321  7.348

 4.613  4.623  4.621  4.620  4.650

 4.613  4.623  4.621  4.620  4.650

 3.679  3.680  3.680  3.680  3.679

 3.679  3.680  3.680  3.680  3.679 
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 Fig. 7 Geometry of the skew laminated plate 
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Example 5. Skew laminate
A skew laminated plate simply supported at all the sides subjected to a sinusoidal transverse

loading, with the span to the thickness ratio (a/h) as 10 was considered by Sheikh et al. (2002). The

elastic constants are chosen as: E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2 and ν12 = 0.25. The study

is made for skew angle of 15o, 30o and 45o taking cross-ply (0o/90o/0o) and angle-ply (45o/−45o/45o)

arrangements. Note that the 10 × 10, 12 × 12 and 14 × 14 meshes are employed to obtain all the

results using the proposed element. Geometry of the skew laminated plate is shown in Fig. 7. The

defection and bending moments obtained at the plate centre are presented in Tables 9, 10 and 11.

Obtained numerical results, using this element, agree well with the high-precision shear deformable

element for the analysis of laminated composite plates of different shapes by Sheikh et al. (2002).

Moreover, this plate element has a quite rapid rate of convergence.

 

Table 9 Deflection and bending moments at the center of a simply supported skew composite plate with skew
angle (15°) 

Deflection and stress 
resultant

 Present analysis with mesh size Sheikh et al.
(2002)  10×10  12×12  14×14 

Cross-ply (0°/90°/0°)

 9.711  9.728  9.740  9.743

 118.39  118.47  118.50  118.49

 13.38  13.46  13.47  13.47

Angle-ply (45°/−45°/45°)

 9.183  9.264  9.277  9.277

 45.92  46.02  46.11  46.10

 47.95  48.01  48.05  48.05

Table 10 Deflection and bending moments at the center of a simply supported skew composite plate with
skew angle (30°)

Deflection and stress 
resultant

 Present analysi with mesh sizes Sheikh et al. 
(2002)  10×10  12×12  14×14 

Cross-ply (0°/90°/0°)

 8.052  8.191  8.195  8.195

 99.98  100.08  100.11  100.10

 14.77  14.83  14.90  14.90

Angle-ply (45°/−45°/45°)

 8.306  8.399  8.420  8.417

 46.60  46.67  46.73  46.73

 50.52  50.59  50.62  50.64
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Table 11 Deflection and bending moments at the center of a simply supported skew composite plate with
skew angle (45°)

Deflection and stress 
resultant

 Present analysis with mesh size Sheikh et al.
 (2002)  10×10  12×12  14×14 

Cross-ply (0°/90°/0°)

 5.402  5.496  5.511  5.513

 67.59  67.71  67.73  67.73

 14.94  15.03  15.19  15.20

Angle-ply( 45°/−45°/45°)

 5.397  5.488  5.492  5.490

 38.92  38.96  39.00  39.00

 43.44  43.48  43.55  43.55
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Table 12 Comparison of maximum stresses for square sandwich plate 

 a/h
 Stress

 components

 Present analysis with mesh size  Zhen and Wangi 
(2010)

 Kant et al. 
(2008)  6×6  12×12 

For a/h = 4 

 1.5643  1.5651  1.5622  1.5660

 -1.5643 -1.5651 -1.5622  -1.5120

  0.2523  0.2552  0.2549  0.2590

  -0.2523 -0.2552 -0.2549 -0.2590

  0.2373  0.2379  0.2372  0.2390 

  0.1051  0.1054  0.1050  0.1070

For a/h = 10 

1.150  1.155  1.1686  1.1530

 -1.150  -1.155  -1.1686 -1.1520

 0.1109  0.1113  0.1117  0.1100

 -0.1109 -0.1113 -0.1117  -0.1100

 0.2933  0.2956  0.2957 0.3000

 0.0506  0.0510  0.0506 0.0527

For a/h = 20 

 1.1100  1.1102  1.1101 1.1100

 -1.1100  -1.1102 -1.1101 -1.1100

  0.0691  0.0700  0.0697 0.0700

  -0.0691  -0.0700 -0.0697 -0.0700 

  0.3168  0.3173  0.3174 0.3170 

  0.0360  0.0360  0.0360 0.0360 

σx 0 0 h/2, ,( )

σx 0 0 h– /2, ,( )

σy 0 0 h/2, ,( )

σy 0 0 h– /2, ,( )

τ xz a/2 0 0, ,( )

τ yz 0 b/2 0, ,( )

σx 0 0 h/2, ,( )

σx 0 0 h– /2, ,( )

σy 0 0 h/2, ,( )

σy 0 0 h– /2, ,( )

τ
xz

a/2 0 0, ,( )

τ
yz

0 b/2 0, ,( )

σx 0 0 h/2, ,( )

σx 0 0 h– /2, ,( )

σy 0 0 h/2, ,( )

σy 0 0 h– /2, ,( )

τ
xz

a/2 0 0, ,( )

τ
yz

0 b/2 0, ,( )
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Example 6. Sandwich plate
Simply-supported three-layer sandwich plate subjected to a doubly sinusoidal transverse loading

q = q0sin(πx/a)sin(πy/b) was considered by Zhen and Wanji (2010). The following non-dimensional

stress components are considered for comparison with other published results:

,

The thickness of face sheets at the upper and the lower surfaces equals to 0.1 h, whereas the

thickness of core is of 0.8 h. For the sandwich plate, the material properties for face sheet are

E1 = 172.4 GPa, E2 = E3 = 6.89 GPa, G12 = G13 = 3.45 GPa, G23 = 1.378 GPa, and ν12 = ν13 = ν23 = 0.25.

The elastic constants for core are E1 = E2 = 0.276 GPa, E3 = 3.45 GPa, G13 = G23 =  0.414 GPa,

G12 = 0.1104 GPa, and ν12 = ν13 = ν23 = 0.25. Note that the 6 × 6 and 12 × 12 meshes are employed

to obtain all the results using the proposed element. The stress components obtained from the

present analysis for three-layer sandwich plate are represented in Table 12. The calculated results

are in excellent agreement with the C0-type higher-order theory for bending analysis of laminated

composite and sandwich plates by Zhen and Wanji (2010), and also the elasticity solutions for

cross-ply composite and sandwich laminates by Kant et al. (2008). This finding highlights the

capability of new formulation for analyzing sandwich plates. It should be mentioned again, using of

w,n, as an independent degree of freedom in new higher-order element shows a quite rapid rate of

convergence.

 

4. Conclusions 

An efficient two-dimensional thirteen nodes triangular plate bending element with transverse shear

effect is formulated. This new element is based on the higher-order shear deformation theory, and it

is suitable for the analysis of thin and moderately thick laminated composite plate. Unlike other

presented plate elements, the proposed formulations do not contain any parameter without physical

meaning and the boundary conditions at the top and also bottom surfaces of the structure are

exactly satisfied. In addition, due to the high-order of the different interpolation functions for

transverse displacement and bending rotations, new element is free from any transverse shear

locking and spurious modes. From the application point of view, it has a quite rapid rate of

convergence for the analysis of both thin and thick plates. In fact, using w,n as a degree of freedom

with independent interpolation function, is very effective to obtain accurate answers and accelerated

the rate of convergence. This study offers very good numerical results for the orthotropic laminated

composite plates with different structural parameters, such as boundary conditions, shapes, number

of layers, thickness ratios and fiber orientations. Furthermore, the findings highlighted the capability

of the suggested formulation to estimate accurately the values of the stresses and deflections.
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Notations

u, v : In-plane displacement components at the nodes
w : Transverse displacement at the nodes
u0, v0, w0 : Displacement components at the midplane
w,x, w,y, w,n : Partial derivatives of w with respect to x, y and n
n, t : Normal and tangential vectors
θx, θy : Rotation of normals to midplane
[N1], [N2] : Interpolation function matrices

: Unknown coefficient vectors
ξi, ξj, ξk : Dimensionless vectors
{δ} : Nodal displacement vector

[A] : Formed with the coordinates of the different nodes 

{∆} : Total unknown coefficient vectors

ϕj : Angle between nj and x axis

xj, yj : Coordinates of node j
φx, φy : Average transverse shear strain components
{ε} : Strain vector
{εb} : In-plane strain vector
{εs} : Transverse shear strain vector
{σ} : Stress vector
{σb} : In-plane stress vector
{σs} : Transverse shear stress vector
z : Distance from midplane
[Qb] : The transformed material constants for bending 
[Qs] : The transformed material constants for shear 
[D] : Rigidity matrix of the laminate
[Db] : Rigidity matrix of the laminate due to bending
[Ds] : Rigidity matrix of the laminate due to shear
[B] : Strain displacement matrix
[K] : Element stiffness matrix
V : Potential energy
{P} : Nodal load vector
a : Length of the plate
b : Width of the plate
h : Thickness of the plate
Ei : Young’s modulus of elasticity
Gij : Shear modulus of elasticity
νij : Poisson’s ratio
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