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Can finite element and closed-form solutions for laterally 
loaded piles be identical?
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Abstract. The analysis of laterally loaded piles is generally carried out by idealizing the soil mass as
Winkler springs, which is a crude approximation; however this approach gives reasonable results for many
practical applications. For more precise analysis, the three- dimensional finite element analysis (FEA) is
one of the best alternatives. The FEA uses the modulus of elasticity E

s
 of soil, which can be determined

in the laboratory by conducting suitable laboratory tests on undisturbed soil samples. Because of the
different concepts and idealizations in these two approaches, the results are expected to vary significantly.
In order to investigate this fact in detail, three-dimensional finite element analyses were carried out using
different combinations of soil and pile characteristics. The FE results related to the pile deflections are
compared with the closed-form solutions in which the modulus of subgrade reaction k

s
 is evaluated using

the well-known k
s
-E

s
 relationship. In view of the observed discrepancy between the FE results and the

closed-form solutions, an improved relationship between the modulus of subgrade reaction and the elastic
constants is proposed, so that the solutions from the closed-form equations and the FEA can be closer to
each other. 

Keywords: closed-form solution; finite element analysis; lateral load; modulus of elasticity; pile;
subgrade modulus 

1. Introduction

Piles are constructed to support lateral loads in several field applications. In general, the laterally

loaded piles are categorized as short or long with respect to their length as well as the stress-

deformation characteristics of both the piles and the surrounding soils (Terzaghi et al. 1996). Due to

the difficulties in realistic idealization of the behaviour of the pile and the soil, the design of the

laterally loaded piles has been a complex problem for practicing engineers and researchers. Several

analytical and numerical approaches have been developed to analyze the response of laterally loaded

piles in the past (Reese and Matlock 1956, Matlock and Reese 1960, Davisson and Gill 1963,

Matlock 1970, Poulos 1971, Reese and Welch 1975, Randolph 1981, Pise 1982, Norris 1986,

Budhu and Davies 1988, Prakash and Kumar 1996, Ashour et al. 1998, Fan and Long 2005,

Harikumar et al. 2005, Houston et al. 2005, Karthigeyan et al. 2006, 2007, Dewaikar et al. 2011,
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Basu et al. 2009, Zhang 2009). Osman and Randolph (2011) presented a closed-form analytical

solution for the consolidation of the soil around a laterally loaded pile under plane strain conditions

by assuming elastic deformation of soil. Recently Chae et al. (2004) described the results of several

numerical studies performed on laterally loaded short rigid piles and pier foundation located near

slope with a three-dimensional finite element model and prototype tests. The finite element (FE)

modeling approach provides a more precise tool that is capable of modeling soil continuity, pile-soil

interface behaviour, and three-dimensional (3D) boundary conditions (Desai and Abel 1976,

Randolph 1981). Additionally, the realistic determination of modulus of elasticity Es of soil is

possible in the laboratory by conducting triaxial tests on undisturbed soil specimens collected from

the site (Bowles 1997, Das 1999). However, the FE modeling approach is more rigorous in its

analytical methodology than any other existing methods, and therefore, this method primarily

remains a research tool. The elastic subgrade reaction approach treats laterally loaded pile in the soil

medium as a beam supported on a system of mutually independent elastic springs, called the

Winkler’s springs (Winkler 1867, Reese and Matlock 1956, Selvadurai 1979). A closed-form

analysis based on the modulus of subgrade reaction (Reese and Matlock 1956, Poulos and Davies

1980, Bowles 1997) is quite convenient for computing the pile deflection under small working loads

because of simplicity in the analysis in terms of mathematical steps; this has been the primary

reason for the wide use of this approach in routine practice. The subgrade reaction approach,

although approximate, is a powerful technique to model the response of single piles subjected to

lateral loads. The error in the computed bending moments based on the subgrade reaction approach

is no more than a few percent when compared to the theory of elasticity solutions (Vesic 1961). 

Due to the different idealizations made in the finite element analysis and the subgrade reaction

approach, the results related to pile deflections and bending moments are likely to vary. The key

parameter in the subgrade reaction approach is the modulus of subgrade reaction (ks), which is often

evaluated by conducting a plate load test that involves an application of a horizontal load to a plate

supported on the vertical soil wall (Terzaghi 1955, Teng 1962, Selvadurai 1979, Bowles 1997, Das

1999). It is experienced that the variation of ks along the pile length cannot be determined

experimentally in an economic manner. Therefore, the value of ks is generally estimated using its

relationship with elastic constants (Es and µ) given in the literature (Vesic 1961, Sevaduarai 1979,

Bowels 1998). This may be an important cause for difference between the closed-form and the FE

solutions. An attempt is made here to investigate the difference in the results related to deflections

and bending moments for laterally loaded piles obtained from the 3D finite element and the closed-

form analyses considering various pile geometries and soil characteristics. Further attempt is made

to propose an improved relationship between the modulus of subgrade reaction (ks) and the elastic

constants (Es and µs) so that the closed-form solution can be conveniently used for practical

applications without significantly deviating from the results based on rigorous finite element

analysis. 

2. Finite element formulation

Fig. 1 shows a schematic diagram of laterally loaded pile of length L, subjected to a lateral load H

at the pile top along X-direction. Z axis is vertical coinciding with the pile axis, and X-Y defines a

horizontal plane. For the sake of convenience in three-dimensional finite element (3D FE) mesh

generation, a square pile of width D has been used. The pile is completely embedded in the soil.
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The pile and soil system is idealized as an assemblage of 18 node triangular prism continuum

elements (Fig. 2) with linearly varying strain across the element. These elements are suitable for

modeling the response of a system dominated by bending deformations. Each node of the element

has three translational degrees of freedom, u, v and w, in the X, Y and Z coordinate directions,

respectively. A typical finite element mesh developed in the study is shown in Fig. 3. Taking an

advantage of the symmetry, only half of the actual domain was modelled, thus reducing the

computational effort. The mesh size selected for the finite element solution has been optimized for

both accuracy and computational economy based on the analyses of several meshes with different

numbers of elements and mesh sizes. 

The relations used in the formulation are outlined below. The shape functions which describe the

relation between the displacements at any point within the element are defined as follows

 (1)u Niui; v Nivi; w Niwi

i 1=

18

∑=
i 1=

18

∑=
i 1=

1

∑=

Fig. 1 Schematic diagram of a laterally loaded pile

Fig. 2 18 noded triangular prism element



242 Vishwas A. Sawant and Sanjay Kumar Shukla

where

(2)

Ni Mj fk η( ); j 1 6; k, 1 3 and i, 6 k 1–( ) j+= = = =

f1 η( ) 0.5η 1 η–( ); f2 η( ) 1 η
2
; f3 η( )–=– 0.5η 1 η+( )= =

Mi L1 2Li 1–( ); i 1 3,= =

Mk 4LiLj; k 4 5 6; i, , 1 2 3; j, , 2 3 1, ,= = = =

Fig. 3 Finite element discretisation of the pile-soil system
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In Eq. (2), the functions f1(η) to f3(η) define the variables in Y direction. M1 to M6 are the

components of the shape function defined in a triangular XZ plane. Any point P is defined in XZ plane

with the set of natural coordinates (L1, L2, L3) as: L1 = A1/At ; L2 = A2/At ; L3 = A3/At, where A1, A2, and

A3 are the areas of the three subtriangles, subtended by the point P and At is total area of triangle.

The relation between strains and nodal displacements is expressed as

(3)

where {ε}e is the strain vector, {δ}e is the vector of nodal displacements, and [B] is the strain

displacement transformation matrix. The stress-strain relation is given by

(4)

where {σ}e is the stress vector, and [D] is the constitutive relation matrix.

The stiffness matrix of an element [K]e is expressed as

(5)

The lateral force H, acting on the pile top, is considered as a uniformly distributed force. The

intensity of the uniformly distributed force is, q = H/A, where A is the area of pile-top. Equivalent

nodal force vector, {Q}e, is then expressed as

(6)

where [N] represents matrix of shape functions (Zienkiewicz 1977).

The element stiffness matrix [K]e and the nodal force vector {Q}e, are evaluated analytically. The

3D finite element program based on the formulation explained above is developed in FORTRAN-

90, in which, the element stiffness matrix [K]e for each element is assembled in global stiffness

matrix in the skyline storage form. Similarly, the nodal load vectors are assembled into the global

load vector. The system of simultaneous equations is solved for the unknown nodal displacements

using active column solver. Bending moments are computed using well-known moment curvature

relationship, , where E is the Young’s modulus of elasticity of the pile material, I is the

moment of inertia of the pile cross-section, and  is second order derivative with respect to z. 

For verifying the accuracy of the program, a standard problem of the cantilever beam subjected to

a load at its free end is considered. The analytical result is obtained by integration of moment

curvature relationship. The displacement pattern was computed using the developed code, and it

was compared with the analytical results. The deflection of the beam obtained from the finite

element and the analytical approaches along the beam length is compared in the Fig. 4. It is

observed that deflection increases with the distance from the fixed end of the beam. A close

agreement between the two solutions is noticed with a maximum error of 3%. Thus, the accuracy of

the developed program is validated.

It was also attempted to verify the accuracy with field results available in literature. For this

purpose, data presented by Prakash (1962) on experimental study on behaviour of lateral load pile

embedded in sand was considered. The test pile was a hollow circular tube with diameter of 1.6''

and length 24''. However, for the sake of convenience, the hollow circular section of pile is

converted into an equivalent square section of 1.6''. For the pile, Young’s modulus and Poisson’s

ratio were taken as 43520 psi and 0.2, respectively. An equivalent modulus of elasticity of sand was

defined. As detailed information pertaining to stress-strain behaviour was not available, this

ε{ }e B[ ] δ{ }e=

σ{ }e D[ ] ε{ }e=

K[ ]e B[ ]T D[ ] B[ ] vd
V
∫=

Q{ }e q N[ ]T Ad
V
∫=

M EIuZZ=

uZZ
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modulus was approximately computed from the relation E = Jγz as given by Terzaghi and Peck

(1967) where γ is the unit weight of sand, z is the depth from surface and J is the dimensionless

parameter whose value is taken as 350. The unit weight of sand was taken as 18.9 kN/m3. Poisson’s

ratio for sand was considered as 0.25. Lateral load of magnitude 12.26 N was applied at the top of

the pile. Variations in pile displacement and bending moment along depth are compared in Fig. 5. It

is observed that the results obtained from the finite element analysis (FEA) are in fair agreement

with the experimental results.

Fig. 4 Deflection of a cantilever beam with FEA and analytical solution

Fig. 5 Comparison of pile response with experimental data from Prakash (1962). (a) Variation in
displacement along depth, (b) Variation in bending moment along depth
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3. Closed-form solution

In the past, many researchers have analyzed laterally loaded pile as a vertical beam supported by

linear soil springs. The governing differential equation for the horizontal displacement u of the pile

along depth z can be given as (Hetenyi 1946, Reese and Matlock 1956, Poulos and Davis 1980) 

(7)

Vesic (1961) proposed simplified and generalized relationships between the modulus of subgrade

reaction ks and the elastic constants (Es and µs) as given below (Selvadurai 1979, Bowles 1997)

(8a)

(8b)

For constant value of ks along the pile length, solution for the differential equation (Eq. (7)) is

given as (Hetenyi 1946)

; (9)

Constants C1 to C4 are obtained using the four boundary conditions with respect to shear force

and bending moment at the pile top and tip. For the pile subjected to a lateral load H at the top, the

constants are given as

 (10)

Pile displacement u, can be expressed in the non-dimensional form  as below

(11)

Pile top displacement (at z = 0) can be computed directly from the following expression.

(12)

Bending moment M, can be expressed in the non-dimensional form  as given below

(13)

EI
d
4
u

z
4

d
-------- ksD( )u+ 0=

ks
Es

D 1 µs

2
–( )

----------------------=

ks 0.65
Es
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2
–( )

----------------------
EsD

4

EI
-----------12=

u e
λz
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4. Results and discussions 

In order to investigate the difference in the pile response with respect to deflections and bending

moments obtained from the 3D finite element and the closed-form approaches, a parametric study is

carried out considering various pile geometries and soil characteristics. The material properties are

reported in Table 1. The width of pile is taken as 0.6 m, which is kept constant throughout the

study. The pile length and modulus of elasticity of soil were varied to examine their effects on the

pile response. The ratio of pile length to its width (L/D) was varied from 10 to 50. The modulus of

elasticity Es of soil is varied from 4000 kPa to 14000 kPa.

Variations in the pile top displacement with Es and L/D ratio are presented in Fig. 6. It can be

noted that the pile top displacement decreases with an increase in Es. Further, it is observed that the

pile top displacement decreases with an increase in L/D ratio; the reductions become very small

beyond L/D greater than 15, and the displacements become almost constant for L/D greater than 40.

Fig. 6 Variation in pile top displacement with soil modulus for different L/D ratios

Table 1 Geometrical and material properties

Modulus of elasticity (kPa) Poisson’s ratio

Pile 2.0 × 107 0.30

Soil 4000, 6000, 8000
10000, 12000, 14000 

0.45

L/D ratio 10, 15, 20, 25, 30, 40, 45, 50
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Variations in the maximum bending moments in the pile for different combinations of Es and L/D

ratio are depicted in Fig. 7. It can be noticed that the maximum bending moment in the pile

decreases with an increase in Es. With respect to the effect of L/D ratio, an increase in the moment

is observed up to L/D ratio of 25, and thereafter values attain almost a constant value with a further

increase in the L/D ratio.

For specific L/D ratios and soil parameters (Es and µs), the deflections and bending moments are

obtained from the finite element analysis. For the given soil parameters (Es and µs), ks value is

determined using Eq. (8), and the pile deflections are computed from the closed-form solution given

by Eq. (11). Variations in the pile top displacements obtained from the FE and closed-form

approaches are presented in Fig. 8 for L/D = 10 to 50 in non-dimensional form. As expected, the

pile top displacement decreases with an increase in Es. Pile top displacements calculated using Eq.

(11) are significantly greater than those obtained from the FE analysis. In order to get closer match,

closed form solutions are also obtained as plotted in these figures with an improved form of Eq.

(8a) as 

(14a)

(14b)

where k is a factor, which may be called, subgrade modification factor. The value of k is obtained

by trial-and-error, so that the solutions from the closed-form equation and the FE analysis will

almost be identical. 

During the trial-and-error computation, the factor k was observed to vary from 1.38 to 1.45

(Table 2), the higher value was observed for a high L/D ratio. In Fig. 8, it is clearly observed that

ks
*

k ks×
kEs

D 1 µs

2
–( )

----------------------= =

ks
*

k ks× k 0.65
Es

D 1 µs

2
–( )

----------------------
EsD

4

EI
-----------12×= =

Fig. 7 Variation in maximum moment with L/D ratio for different soil moduli
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with the subgrade modification factor k, the pile top displacement obtained from the closed-form

equation (Eq. (11)) is in good agreement with the FEM results. For the L/D ratios greater than 10

(long flexible piles), the best fit to the scatter points yielded the following expression for factor k.

(15)

Similarly the modification factor k was in the range of 3.16 to 3.68 for k-Es relationship described

by Eq. (8b).

k 1.33321 0.00229L/D+=

Fig. 8 Comparison of FEA and closed-form results

Table 2 Factor k for different L/D ratio

L/D ratio 10 15 20 25 30 35 40 45 50

Factor k 1.45 1.38 1.38 1.38 1.4 1.4 1.42 1.45 1.45

Fig. 9 Variation in factor k with L/D ratio
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A typical comparison of maximum moments in the pile obtained from FEA and those from

closed-form solution using the relationship for k-Es given in Eq. (14), is depicted in Fig. 10. It is

observed that the maximum moments calculated using closed-form solutions are on higher side.

Overall maximum bending moments were on average 17% higher than those computed from FEA.

It may be attributed to one-dimensional load sharing mechanism in closed-form solution where

effect of side shear is neglected. Depth of occurrence of maximum moment was observed from 5D

to 3D for FEA as well as for closed-form solution. A higher value was observed for lower soil

modulus which reduced with an increase in soil modulus. Both approaches indicated nearly the

same depth, except marginally higher depth (0.5D) in few cases with FEA predictions. 

It should be noted that one can achieve the accuracy of the finite element approach into the

closed-form solutions using the subgrade modification factor as suggested above in Eq. (14);

however, this new approach requires to be verified by experiments, which are expected in future.

Present approach is suggested to minimize the difference between closed form solution and finite

element analysis. Though it is suggested as an alternative approach to complex finite element

analysis, some of the limitations of the closed form solutions will remain as it is. For instance, the

closed form solution could be valid for one-dimensional structures with symmetric geometry,

symmetric loading, unidirectional lateral loading, symmetric axial loading, and only displacements

from which the bending moments are computed. It is also required that applied load should be small

so as to have linear stress-strain relationship for soil medium. If one wants to analyse other factors

such as effect of realistic nonlinear models, stress and strain variations, and cracking leading to

softening and multi-dimensional geometries, then finite element analysis is the only alternative.

5. Conclusions 

In the present study, a three dimensional finite element formulation is presented for a laterally

loaded pile in order to estimate pile deflections and bending moments along the pile length,

considering linear elastic characteristics of soil and pile materials. The results obtained are

compared with the closed-form solutions based on the subgrade reaction approach, which is

commonly used for designing laterally loaded piles in the day-to-day practice. A significant

Fig. 10 Comparison of maximum moments from FEA and closed-form solution
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variation in the two approaches is observed. This discrepancy appears mainly because of different

assumptions and idealisations in the two approaches. This study shows that an inclusion of a

subgrade modification factor k lying in the range of 1.38 to 1.45 in the simplified Vesic’s equation

(Eq. (8a)) and 3.16 to 3.68 in the generalized Vesic’s equation (Eq. (8ba)) makes the results

obtained from the closed-form solution (Eq. (11) and (13)) almost identical to the results from finite

element analysis. For the L/D ratios greater than 10 (long flexible piles), the best fit to the scatter

points yielded a simple expression (Eq. (15)) for factor k for routine use in the simplified Vesic’s

equation (Eq. (8a)) by the designers. The use of this new subgrade reaction approach of the closed-

from solution is simple to apply, and additionally the designers can save significant time avoiding

the complex finite element formulation and required computation time.
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