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Abstract. This paper presents a curvature method for analysis of beam-columns with different materials
and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both
material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed
method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-
columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force
equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed
based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending
moments were evaluated based on the deformed column shape and the axial load. The moment curvature
relationship and the beam-column deflection calculation are presented in matrix form and the Newton-
Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic
solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and
effective for beam-columns subjected to eccentric compression load, lateral bracings and complex
boundary conditions.
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1. Introduction

Structural beam-column members are subjected to biaxial bending moments and axial load.

Solution of such loaded members should be approached via three-dimensional models, in which the

equilibrium conditions need to be satisfied based on the deformed column shape to consider the

amplified moments due to axial load (as called p-delta effect). When lateral bracings are provided to

prevent buckling, the bracing forces must be taken into account as well.

Many models have been proposed based on linear elastic material assumptions (Zhang et al. 1993,

Aristizabal-Ochoa 2004, Areiza-Hurtado et al. 2005, Saha and Banu 2007) and the beam-column

governing differential equations (Al-Noury and Chen 1982, Iwai et al. 1986). Numerical methods

have been also constructed to consider the material and geometric nonlinearities (Wang and Hsu

1992, Song and Lam 2009, 2010). However, for beam-columns with nonrectangular cross-sections

or made with different materials, such as steel bars and concrete, issues may arise regarding the

analysis efficiency and accuracy.
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Much effort has been asserted onto modeling the moment curvature relationship of cross-sections

consisted of different materials and or in arbitrary cross-section shapes (Zak 1993, De Vivo and

Rosati 1998, Rodriguez and Aristizabal-Ochoa 1999, Consolazio et al. 2004). These studies

provided a good starting point, from where the cross-sectional moment curvature relationship can be

incorporated into the analysis of structural behaviour of complex beam-columns.

This paper presents a curvature method for analysis of beam-columns of different material and

arbitrary cross-section shapes. The focus is on the incorporation of the cross-sectional moment-

curvature relationship into the structural analysis of complex beam-columns. A piecewise

representation of the beam-column deflection curve is constructed based on the curvatures and

angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated

based on the deformed column shape and the axial load. The moment curvature relationship and the

beam-column deflection calculation are presented in matrix form and the Newton-Raphson method

is employed to ensure fast and stable convergence. Comparison with results of analytic solutions

and eccentric compression tests of wood beam-columns implies that this method is reliable and

effective for beam-columns subjected to eccentric compression load, lateral bracings and complex

boundary conditions.

2. Basic assumptions

Formulation of the moment curvature relationship, the beam-column deflection and the resulting

bending moments at the discrete cross-sections are based on following assumptions:

• Plane section remains plane after deformation,
• Stress-strain relationship is known and independent of loading rate,
• Deflection is small compared to member geometry,
• Column deflection can be approximated by second order Taylor’s series,
• Shear stress is negligible, and 
• Torque and torsional failures are negligible.
The last assumption (ignoring torsional buckling) is generally valid for close-form cross-sections

of a relatively small height-to-width ratio. This covers most of the reinforced concrete members and

wood members made of sawn lumber; therefore, it is considered to be sufficient for the numerical

analysis problems presented in this study.

2.1 Moment curvature relationship of a cross-section under eccentric load

General procedures to formulate the moment curvature relationship of a cross-section under

eccentric loading are briefly introduced here for completeness of the proposed curvature method.

Consider a rectangular cross-section for simplicity. The moment curvature relationship can be

constructed based on the force equilibrium. Assuming that the cross-section is deformed by

curvatures  around principle axes x and y and a uniform strain  due to the axial

displacement and lateral deflection, strain εi at an arbitrary point can be uniquely determined by its

coordinates  as

(1)

φx φy, ε0

x y,

ε yφx xφy– ε0+=
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The sign convention is shown in Fig. 1. Knowing the stress-strain relationship, the normal stress σ

can be calculated from ε as

 (2)

where E is the secant modulus evaluated based on the strain ε. The resultant forces  and P

can then be calculated via integration of the stresses over the entire cross-section area as

(3)

where k denotes the stiffness matrix. The tangent stiffness matrix ktan can be obtained by

differentiating the resultant forces with respect to the curvatures and uniform strain as

(4)

where  is the tangent modulus evaluated based on the strain value ε. Considering a cross-section

consisting of n materials, the stiffness matrix k corresponding to the area of each type of material

can be evaluated following Eqs. (3) and (4), and the total stiffness matrix K can be assembled based

on the principle of superposition as

(5)

The total tangent stiffness matrix Ktan can be assembled similarly. These matrices can be used to

calculate the curvatures and uniform strains caused by certain external bending moments and axial

loads, and vice versa. The solution can be facilitated by using Newton-Raphson method. For
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Fig. 1 Biaxial cross-section deformation under external load effects
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example, the cross-sectional deformation obtained at mth iteration can be updated as

(6)

where  is the deformation of mth iteration;  is the out-of-balance

forces evaluated at mth iteration; and  is the inverse matrix of the total tangent stiffness

matrix evaluated at mth iteration, and so on.

2.2 Formulation of beam-column deflection and bending moments

The curvature method calculates the beam-column lateral deflection exclusively by the curvatures

of discrete cross-sections with consideration of boundary conditions. The process is explained with

the aid of a discretized beam-column member as shown in Fig. 2.

Assuming that the curvature is linear within the segment length, the relative deflection of node i

with respect to node i−1 can be calculated from the angles of rotation at node i−1 and the average
curvature as

, (7)

where ∆ is the segment length, assumed to be constant throughout the column length for simplicity.
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Fig. 2 Discretization of a beam-column with initial deflection
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The sign convention is shown in Figs. 1 and 2. The angles of rotation at node i can be calculated

from the curvatures up to node i as

, (8)

where  and  are the angles of rotation at node 0. The total deflection at node i can then be

calculated from the relative deflections up to node i with respect to the deflection of node 0 as

(9)

where  and  are the deflections of node 0. Eq. (9) can be used to calculate the deflection

 and  of node n with i substituted by n. Note that the deflections at the boundary nodes 0

and n equal zero,  and  can then be solved from Eq. (9) as

(10)

Therefore, the total deflection of node i can be expressed exclusively by the cross-sectional

curvatures as

(11)

Eq. (11) can be rearranged as , where , ,  is the

stiffness matrix and can be calculated by

(12)

where  represents the biaxial deflection at node i due to the curvatures at node j and can be

calculated according to Eq. (11) as
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, (13)

where  and  are the coefficients and determined by

,

Assuming that the beam-column is subjected to a axial load P, the resulting bending moments at

node i with consideration of the p-delta effect can be calculated by

,  (14)

Similarly, the moments can be expressed in matrix form as , where  takes similar

form as  except substituting  by , which can be expressed as

(15)

where  and  are defined in Eq. (13). As  is independent of ϕ, the tangent stiffness ,

defined by the first order derivative of M with respect to ϕ, takes the same form as . 

At any combination of cross-section curvatures and uniform strains, the out-of-balance load of the

beam-column can be evaluated as the difference between the external loads and the internal stress

resultants as

, (16)

where ψ is the out-of-balance load vector including the moments and the axial load,  is the axial

load and the moments due to initial deflection.  is the stiffness matrix calculated by Eq. (15) and

needs to be expanded to consider the effect of uniform strain ε0. Note that ε0 does not affect the

deflection and the moments under constant axial load; therefore,  and  can be modified

as

(17)
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, (18)

where  is the effective tangent stiffness matrix evaluated at mth iteration,  is the

out-of-balance load vector evaluated at mth iteration by Eq. (16). The nonlinear solution process for

a beam-column under compression load is shown schematically in Fig. 3.

2.3 Incorporation of lateral bracing forces

Provision of lateral bracings can induce lateral bracing forces and additional bending moments to

the beam-columns. The lateral bracing forces can be determined from the bracing stiffness and

column deflection at the bracing nodes. Consider a beam-column braced at node i0 as in Fig. 4, the

lateral deflection at node i0 and the resulting bracing force Fbr can be calculated by 

(19)

where kbr is the bracing stiffness. The bending moment at node i due to the bracing force can be

determined from static analysis as
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Fig. 3 Nonlinear solution process using Newton-Raphson method

Fig. 4 Bending moments due to lateral bracing force
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(20)

Plug in Eq. (19), the biaxial bending moments can be expressed by the curvatures and uniform

strains as 

, (21)

where  is the bracing stiffness matrix and can be assembled similarly as in Eq. (12) with

 calculated by

(22)

where  are the bracing stiffness in x and y axes, respectively; and  and  are

defined in Eq. (13) with . As can be seen from Eq. (22),  is also independent of the

deformation and therefore the tangent stiffness matrix  equals . For a beam-column

with multiple lateral bracings, the bending moments and the stiffness and tangent stiffness matrices

can be assembled similarly for each individual lateral bracing and summed up by superposition as

the beam-column is statically determinate.

2.4 Incorporation of boundary conditions

Beam-columns can have various boundary conditions, such as pinned, fixed and pinned with

rotational and/or translational springs. Note that a rotational spring with pin end can simulate the

pinned or fix end support by setting the spring stiffness krot to zero or infinite large. Consider a

beam-column with rotational springs at both ends. The bending moments at the intermediate nodes

induced by the springs are shown in Fig. 5. The angles of rotation at node 0 and n are calculated by

Eqs. (8) and (10). The resulting moment distribution is determined by static analysis. The bending

moment at intermediate nodes can also be expressed in matrix form by
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Fig. 5 Bending moments due to rotational springs at beam-column ends
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, (23)

where  and  can be assembled by Eq. (12) with  and  calculated

by

, (24)

where  or n,  and  can be calculated by

where ,  or n  are the stiffness values of the rotational springs at nodes 0 and n,

respectively. Stiffness matrix  is independent of the deformation if constant spring stiffness is

assumed, therefore, the tangent stiffness matrix  equals .

2.5 Verification with analytical solutions

The curvature method was first verified by Euler’s critical load for a slender beam-column under

compression load. The beam-column was assumed to have an effective length of 5000 mm and

100 × 100 mm2 in cross-sectional dimension. The initial modulus of elasticity was assumed to be

1.0 × 104 N/mm2. The beam-column was assumed to be either simply supported or pin-and-fix-end
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Fig. 6 Simply-supported slender beam-column under compression load
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supported. Various load eccentricities were considered to initiate the lateral deflection and buckling

failure. A rotational spring with large stiffness was used in the calculation to simulate the fix-end

support. The results are shown in Figs. 6 and 7, where good agreement can be found.

Fig. 8 shows the column deflection curves obtained using the curvature method with various

rotational spring stiffness values. It can be seen that the column deflection curve were simulated

reasonably, including the transition from pin support to fix end support.

2.6 Verification with experimental results

Biaxial eccentric compression tests of wood beam-columns were conducted to provide input

parameters and verification for the proposed method. The raw materials included Spruce Pine Fir

(SPF) dimension lumber and 10d common nails (76.2 mm in length and 3.76 mm in diameter). The

SPF lumber was of two machine stress rated (MSR) grades (graded in conformance with the

National Lumber Grades Authority Special Product Standard 2 of Canada, SPS 2) and two cross-

sectional sizes. All specimens made with dimension lumber were kept in a conditioning room at

65% relative humidity and 20oC before testing, until the equilibrium moisture content was reached.

Fig. 7 Simply-supported slender beam-column with rotational spring at one end

Fig. 8 Lateral deflection of simply supported slender beam-column with rotational spring at left end
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The wood beam-columns were tested by a compression load with a biaxial load eccentricity.

Seven groups of beam-columns were tested without bracing, and four groups were braced at

midspan and in the weak axis (x axis, defined in Fig. 9). The lateral bracing members were made of

SPF dimension lumber (39 × 89 mm2 in cross section size and 610 mm in length) which was graded

as MSR1650f-1.5E. Details of the experimental design are listed in Table 1. The test layout is

shown in Fig. 9.

The axial compression load, midspan lateral deflections and lateral bracing force were the main

Fig. 9 Eccentric compression tests of wood beam-columns with and without lateral bracing

Table 1 Beam-column specimens of the biaxial eccentric compression tests (unit: mm)

Group Lumber grade* Cross section Length
Eccentricities 

Braced Replication
x axis y axis

1 MSR 1650f-1.5E 38 × 89 2134 0 20 NO 30

2 MSR 1650f-1.5E 38 × 89 2134 20 20 NO 30

3 MSR 1650f-1.5E 38 × 89 2134 20 50 NO 30

4 MSR 1650f-1.5E 38 × 89 3048 20 20 NO 30

5 MSR 1650f-1.5E 38 × 139 2134 20 20 NO 30

6 MSR 2400f-2.0E 38 × 89 3048 20 20 NO 30

7 MSR 2400f-2.0E 38 × 139 3048 20 20 NO 30

8 MSR 1650f-1.5E 38 × 89 3048 0 20 YES 15

9 MSR 1650f-1.5E 38 × 89 3048 20 20 YES 15

10 MSR 2400f-2.0E 38 × 89 3048 20 20 YES 15

11 MSR 2400f-2.0E 38 × 139 3048 20 50 YES 15

Note: MSR1650f-1.5E refers to design values of bending strength 1650 psi (11.38 MPa) and MOE 1.5 × 106

psi (10342 MPa), MSR2400f-2.0E refers to design values of bending strength 2400 psi (16.55 MPa) and
MOE of 2.0 × 106 psi (13789 MPa).
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Fig. 10 Axial compression load and midspan deflection in x axis of specimen group 2

Fig. 11 Axial compression load and midspan deflection in y axis of specimen group 2

Fig. 12 Axial compression load and lateral bracing force of group 8
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Fig. 13 Axial compression load and lateral bracing force of group 9

Fig. 14 Axial compression load and lateral bracing force of group 10

Fig. 15 Axial compression load and lateral bracing force of group 11
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concerns for the verification study. The proposed method was implemented based on the beam-

column dimensions and load eccentricities. The input parameters of the model were based on the

mean values of the material property test results. The test results and model predictions are shown

in Figs. 10 to 15 and Table 2. 

It can be seen that the model agreed well with the test results in terms of the stiffness of the load-

and-deflection curves, lateral bracing force and the maximum compression load. The model

predictions of the midspan deflection in the x axis turned out to be stiffer than the test results, due

to the assumption of a constant (linear) lateral bracing stiffness. On the other hand, the model

predictions agreed very well with the test results on the ratio between the lateral bracing forces and

the axial compression load. 

3. Conclusions

This paper presents a curvature method for analysis of beam-columns of different materials with

arbitrary cross-section shapes. The methodology focuses on the development of column deflection

curve based on the curvatures at discrete cross-sections, whereas the moment-curvature relationship

of complex cross-sections can be constructed following methods in literature. Verification with

analytical solution and experimental results implies that the proposed method has satisfactory

accuracy, high computation efficiency and is reliability in modeling the structural behaviour of

braced wood beam-columns subjected to eccentric compression load. The generated method and

knowledge in this study can be used as an alternative to FEM models in analysis of beam-columns

of complex configurations and subjected to combined loading.
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