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Numerical study on thin plates under the combined 
action of shear and tensile stresses
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Abstract. Analytical (Rayleigh-Ritz method) and numerical studies are carried out and buckling
interaction curves are developed for simply supported plates of varying aspect ratios ranging from 1 to 5,
under the combined action of in-plane shear and tension. A multi-step buckling procedure is employed in
the Finite Element (FE) model instead of a regular single step analysis in view of obtaining the buckling
load under the combined forces. Both the analytical (classical) and FE studies confirm the delayed shear
buckling characteristics of thin plate under the combined action of shear and tension. The interaction
curves are found to be linear and are found to vary with plate aspect ratio. The interaction curve
developed using Rayleigh-Ritz method is found to deviate in an increasing trend from that of validated
FE model as plate aspect ratio is increased beyond value of 1. It is found that the observed deviation is
due to the insufficient number of terms that is been considered in the assumed deflection function of
Rayleigh-Ritz method and a convergence study is suggested as a solution.
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1. Introduction

A plate can be considered as a thin plate if the thickness to the least lateral dimension ratio is less

than 0.05 (Chandrashekhara 2001). Thin plates with and without perforations do exist in many

structures and structural components such as plate girders, ship structures, aerospace structures etc.

In such cases, the plates are subjected to various in-plane load combinations, which make it to

undergo form failure i.e., buckling mode of failure. Hence, in order to have a reliable design, the

buckling load is to be determined for each load combination that is getting generated in the given

field condition. This led to the development of elastic buckling solution for thin plates subjected to

various in-plane load combinations, under various boundary conditions. Though research in the area

of thin plate buckling started since early 1940’s, most of the study that undertaken since 1980’s

concentrated on perforated plates, with un-perforated case not given a detail investigation. Detailed

literature review on perforated plates subjected to various in-plane loads/load combinations can be

found in research papers of Brown and Yettram (1986), Brown et al. (1987), Pellegrino et al.
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(2009), Maiorana et al. (2009), Moen and Schafer (2009), Narayanan et al. (1984), Paik (2007),

Sawy and Nazmy (2001), Sawy and Martini (2007), Shimizu (2007), Yettram and Brown (1985,

1986). The studies that had been well developed on the linear buckling behavior of un-perforated

thin plates are mostly confined to following standard cases. 

Studies related to un-perforated Plates: Timoshenko and Gere (1985) employed the equilibrium

approach to study the behavior of thin plate subjected to in-plane compression. Conservation of

energy using Fourier series was used to find the critical buckling load under biaxial compression/

tension whereas, in the case of combined shear & bending and combined shear & compression,

Rayleigh-Ritz method were used by Bulson (1970). Pure shear was treated using principle of

minimum potential energy by Iyengar (1986). In the above cases, the change in buckling solution

with respect to different boundary conditions such as simply supported, clamped, elastically

restrained and their combination were investigated. In addition to above mentioned classical

solution, considerable amount of research works involving either FEM or closed form formulations

or other numerical approach have been carried out in recent past. Most of these research works

predicts the buckling behavior of un-perforated thin plate subjected to one of the load cases which

includes uniaxial compression, biaxial compression, direct shear, shear and direct stresses (axial

compression/tension), bending or plate subjected to various combinations of some of the above

mentioned load cases. These research works can be found in the papers of Alinia et al. (2009),

Chen et al. (2009), Paik and Thayamballi (2000), Jaberzadeh and Azhari (2009), Lee et al. (1996),

McKenzie (1963), Shahabian and Roberts (1999), Stowell and Schwartz (1943), Xiang et al. (2003).

Hence, numbers of studies have been carried out on elastic buckling behavior of un-perforated

thin (Kirchhoff) plates, considering the different combinations of in-plane load in each case. Among

the various load combinations, the study with respect to the combined action of shear and axial

tension is limited and is not investigated in detail. But, the recent advancement in engineering

applications leads the plates to the combined action of shear and tension which in turn induces the

buckling in plate once the critical load combination is reached. As an example, the web of steel-

concrete composite plate girder with its neutral axis lies within the concrete slab as shown in Fig. 1

is subjected to combined in-plane shear and axial tension (Baskar and Shanmugam 2003). Stowell

and Schwartz (1943) indicated that the lower surface of an aircraft wings is usually subjected to

Fig. 1 Stress distribution in a composite plate girder with neutral axis lies within concrete slab (Source : IS
11384: 1985)
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combined action of shear and tension. These kinds of applications necessitate the buckling study on

plates under the combined action of in-plane shear and tension and this formed the primary

motivation for the present study area.

 

2. Problem definition

The formulation of elastic buckling interaction curve (Through both analytical and numerical

modeling) for thin, homogeneous, isotropic steel plate subjected to combined action of in-plane

shear and tension (see Fig. 2) is considered. Simply supported (out of plane) boundary condition is

considered at all plate edges and plate aspect ratio ranging from 1 to 5 is considered as parameter.

3. Method of analysis

Two different analysis procedures such as classical closed form solution and Finite Element

Analysis have been employed to predict the buckling behavior. As conventional equilibrium

approach is not suitable for obtaining the solution (Iyengar 1986), the energy (Rayleigh-Ritz)

approach is employed in the present study to obtain the solution for plates under the action of

combined in-plane shear and tension. In the FE procedure, model is developed using general

purpose FE software ABAQUS and is subjected to investigation. The buckling analysis is carried

out with ABAQUS- Shell Finite Element Eigen Buckling Analysis and the results, in the form of

normalized buckling interaction curve, are compared with that of classical method. In the numerical

model, a new multistep buckling analysis procedure is proposed for resolving the constraint that

exists for case of combined loading condition, in the conventional single step buckling analysis of

ABAQUS.

4. Classical solution

Non dimensional forms of equations are used in the formulation in order to have simplified

Fig. 2 Schematic diagram of plate under combined in-plane shear (Nxy) and tension (Nx) 
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integral computations (Iyengar 1986). Rayleigh-Ritz (energy) method is used for the buckling

analysis and the interaction curves are drawn for plates of different aspect ratio ranging from 1 to 5.

Thin plate theory and its assumptions are considered in the formulation of buckling solution.

4.1 Rayleigh-Ritz solution

4.1.1 Displacement function, w(x, y)

The deflection function representing the buckled i.e., slightly bent shape at bifurcation point is

assumed and is shown in Eq. (1) 

(1)

The above displacement function is chosen since it satisfies all the required geometric boundary

conditions. The non dimensional form of Eq. (1) is as follows

(2)

Where,

4.1.2 Bending strain energy of the plate (U)

With the Kirchhoff hypothesis taken into consideration (Chandrashekhara 2001), the Strain Energy

(U) of the loaded plate after substituting the expression for w(x, y) is obtained as follows.

(3)

4.1.3 Potential energy due to external load system, Ve

4.1.3.1 Potential energy due to in – plane tension (Nx)

It is considered in the present study that buckling under combined shear and tension is essentially

a ‘delayed shear buckling’, which means that plate buckling with its buckling mode shape same as

that of pure shear case but relatively at higher shear load for the chosen plate system in the

presence of given tensile force. This consideration of delayed shear buckling is also reported in

literature as experimental observation (Baskar and Shanmugam 2003). As a result of this

assumption, the tensile load movement during buckling will be opposite to its line of action. It is

due to this phenomenon, the potential energy due to tension becomes additive in nature to plate

strain energy, which in turn results in higher shear load at buckling (see Figs. 8, 9) when compared

to that of pure shear condition for the given plate system. This phenomenon of shear buckling at an

increased shear load for the given plate system, is mentioned in this report as ‘delayed shear

buckling’. The results of numerical modeling of thin plate subjected to shear and tension (presented

in sec. 6) confirmed this phenomenon of delayed shear buckling.

As the neutral plane of the plate is considered inextensible owing to the small deflection

assumption of Kirchhoff’s hypothesis, the displacement (dl) of the edge due to in – plane tensile
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load, Nx over an element is equal to difference in length of deflection curve, ds and the length of the

chord, dx connecting the loaded edges of the element. The same is illustrated in the Fig. 3. From

Fig. 3(b), the potential energy due to tension  is derived as follows

(4)

Here, the outmost minus sign is due to definition of potential energy and inner minus is because

of the fact that the directions of load and its movement during buckling is of opposite in nature.

Hence, for the entire plate surface, after having substituted the expression for w(x, y), the potential

energy due to tensile load (V1) is obtained as follows

(5)

Similarly, the potential energy due to in-plane shear is derived as follows 

(6)

4.1.4 Total potential energy of the system, π

The total potential energy of the system is the sum of elastic potential energy, due to bending and

potential energy of the external load system. It can be written in the following form

(7)

By principle of minimum potential energy, at buckling, we have

(8)
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Where, Aij, i, j = 1, 2, .., n. denotes the constants of deflection function, w(x, y). Since in stability

analysis, bent configuration is of interest at buckling condition, a non trivial solution is needed i.e.,

determinant of matrix form of Eq. (8) should be zero and is shown below.

Here, only first few terms of the deflection function (corresponding to m = n = r = s = 1, 2)

w(x, y), is considered to arrive at the determinant owing to difficulty involved in solving with higher

number of terms been considered in the approximating polynomial, w(x, y). The determinant is

solved for Nxy by substituting different combination of values for rest of the parameters and the

interaction curves are generated with tensile (Nx) load in X-axis and the calculated shear (Nxy) in Y-

axis. But in this way, many curves needs to be drawn corresponding to different values of b/t ratio

and plate width (b), for each plate aspect ratio (p). Hence in order reduce the complexity, during

each numerical substitution for b/t, b, p, Nx, corresponding critical shear buckling load, Nxy,cr (i.e.,

buckling load of plate under pure shear) and compression buckling load, N1x,cr (i.e., buckling load of

plate under pure compression) are calculated in addition to Nxy. The curves are then drawn with X-

axis parameter as ratio of tensile load (Nx) to its corresponding N1x,cr and Y-axis parameter as ratio

of calculated shear load at buckling, Nxy to its corresponding Nxy,cr. This normalization of X and Y

axis parameter resulted in the convergence of curves corresponding to different b/t ratio and plate

width (b) into a single normalized buckling interaction curve, for the case of each plate aspect ratio

(p) and is shown in Figs. 8, 9.

5. Numerical (finite element) modeling

5.1 Buckling formulation-basis

The Numerical modeling of thin plates subjected to combined shear and tension is developed

using ABAQUS - Shell Finite Element Eigen Buckling Analysis. In the Eigen Buckling analysis,

the following stiffness formulation is used to arrive at Eigen value. Eigen value is then used to

obtain the buckling load using the Eq. (10).

Stiffness Formulation

(9)
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 is the differential initial stress and load stiffness matrix due to the incremental loading

pattern, QN given in the buckling analysis step.

λi are the Eigen values.

Vi are the buckling mode shapes (eigenvectors).

M and N are degrees of freedom of the whole plate model.

The buckling load is given by

PN + λiQ
N (10)

In the present study, PN = 0 in all the cases and hence buckling load is the product of eigen value

and the applied load in BUCKLE step of ABAQUS.

5.2 FE Model (Procedure) description

5.2.1 Geometrical modeling of thin plate
Since, it is observed from the classical buckling solution (Figs. 8, 9) that the normalized buckling

interaction curve depends only on plate aspect ratio and is independent of plate b/t ratio and plate

width (b), steel plate of width 1 m and with thickness of .006 m (i.e., b/t = 166) is considered

throughout the FE modeling of plates of different plate aspect ratio (1 to 5).

5.2.2 Method of buckling analysis
In the conventional single step buckling analysis through ABAQUS-BUCKLE step, the eigen

value obtained represents the common factor (λ) of applied loads i.e., QN and hence it is not

possible to obtain a value for one load at buckling for the given value of other load i.e., In case

shear and tension, it is not possible to get the shear load at buckling for the given tensile load. Since

it is not possible to develop a buckling interaction curve for combined loading case with this

constraint in single step buckling analysis, a multistep buckling is proposed in the present study, in

which tension is given in ABAQUS-GENERAL STATIC step and the shear is given in ABAQUS-

BUCKLE step. Since in ABAQUS, the base state for the current step is the state (stress, strain, etc.)

of model at the end of previous step, by adopting multistep buckling analysis, instability analysis is

carried on the deformed plate model instead of un-deformed plate model itself.

5.2.3 Loading procedure

In this, the plate model is loaded using shell edge load – Normal edge traction(option in

ABAQUS for applying edge line load) for tensile/compressive load and by shell edge load – shear

edge traction (option in ABAQUS for applying plate edge shear) for shear load, by selecting the

respective geometric edges as a load application area. The unit for both the load is Newton/mm

width of plate edge.

5.2.4 Boundary condition
Since, rectangular plate loaded with a constant shear stress is not in moment equilibrium about the

3-axis i.e., Z-axis (Fig. 2), special attention is required when applying the boundary conditions to

prevent rigid body rotation in the finite element model (Naik and Meon 2009). It is found through

rigid body movement analysis that rigid body movement of plate model can be prevented by

arresting either in-plane rotational Degrees of Freedom (DOF), UR3 (see Fig. 2) or in-plane

translational DOF, U2 (see Fig. 2) or both. It is also found that buckling solution remains

k∆

MN
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unchanged and exact for the case of pure shear, in all the three above boundary condition. Hence, in

the present case of combined shear and tension, in-plane translational DOF, U2 is restrained to

prevent the rigid body movement. Then, the simply supported boundary (out of plane) condition is

modeled by arresting appropriate DOF at each plate edges as per literature (Alinia and Dastfan

2006) and is shown in Fig. 4. 

5.2.5 Meshing

In the FE procedure, the conventional stress/displacement shell element, S4R is chosen throughout

the present study since it ensures that Kirchhoff’s constraint (ABAQUS 6.9) is satisfied. Here ‘R’

denotes the reduced integration which is used in the present study to avoid the condition of ‘shear

locking’. The element size of 20 mm (along plate’s longer edge) and an element aspect ratio of 2

are arrived, based on the convergence observed in the buckling solution, at the chosen element size

in the mesh sensitivity analysis (shown in Fig. 7), that has been carried out for the case of

combined shear and tension, with value for tension kept as zero. In the convergence study, the

element size is chosen as parameter as against to conventional element number in order to make the

convergence study independent of plate aspect ratio.

Since four sided, 2-D region with no hole and with isolated edges can be meshed with structured

meshing technique, as it provides most control over the mesh that ABAQUS generates (ABAQUS

6.9), the same meshing rule is adopted all through the numerical modelling of the present study.

5.3 Validation of FE procedure

For the purpose of validating the proposed FE procedure (as mentioned in Sec. 5.2), it is applied

to the standard case of combined shear and compression and it is found to give same buckling load

(see Fig. 6) as that of literature (Galambos 1998) and it also captures the exact buckled mode shape

as shown in the literature (Stein and Neff 1947), for all possible load combinations at buckling and

is shown in Fig. 5. With this validation, the FE procedure/modeling as mentioned in section 5 (also

shown in Table 1) is adopted for shear and tension. The intersection of the curve in the Fig. 6 at X-

axis and at Y-axis validates the adopted FE procedure for the case of pure compression and pure

shear respectively.

The results of buckling analysis of plate subjected to combined shear and tension,obtained through

both analytical method and numerical modeling are presented and compared in the following

section.

Fig. 4 Simply supported boundary condition with arrested DOF (at each of plate edges)
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Fig. 5 First mode of plate under varying axial compression (N1x) 

Table 1 FE procedure/modeling adopted for the validation and then to plate under combined shear and tension

S.No
ABAQUS-

Module
Parameter Values Units

1 Part Module Plate aspect ratio 1 to 5

2
Property
Module

b/t 166 b = 1 m, t = 6 mm

3 Modulus of elasticity, E 2.10E+05 N/mm2

4 Poisson's ratio 0.3

5

Multistep 
Buckling 
Analysis

Load 
Module

Boundary condition 
(for both step 1 & 2)

Simply supported 
on all its edges

*Edge along X-axis: 
U3,U2,UR2-arrested

6
*Edge along Y-axis: 
U3,U2,UR1 -arrested

7 In this, the plate model is loaded using shell edge load – Normal edge 
traction for tensile/compressive load in step 1 (General static step) and 

by shell edge load – shear edge traction for shear load in step 2 (Buckle 
step), by selecting the respective geometric edges as a load application 

area.

8

9

Mesh 
Module

Element type S4R

14 Meshing Rule Structure Meshing

15
Element size, along plate's 

long edge
20 mm

*Here U, UR refers to translation and rotational displacement respectively and 1,2,3 refers to X, Y, Z axis
respectively, with plate lying in XY plane (Refer Fig. 2)
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6. Results and discussions

The results (interaction curve) of buckling analysis of plate under combined shear and tension are

presented in the Figs. 8, 9. The buckling mode shape of plate of various aspect ratio (1 to 5) are

also found to be in good agreement with that of pure shear case (Stein and Neff 1947). With this, it

is observed from the results (both buckling load and corresponding mode shape) of numerical

modelling that experimental observation of delayed shear buckling as reported in the literature

(Baskar and Shanmugam 2003) is satisfied, which inturn validates the use of adopted FE procedure

Fig. 6 Validation of multistep buckling analysis for p = 2 - Combined shear (Nxy) and compression (N1x) load
case 

Fig. 7 Convergence study for choosing mesh element for the case of pure shear 
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for the case involving combined shear and tension. Hence, the results of numerical method is taken

as datum for the following discussion.

The increase in plate shear load at buckling, under the combined action of shear and tension with

respect to that of pure shear case is found to increase with increase in plate aspect ratio for any

given tension load. An increase of 29.8%, 31.7%, 34.2%, 34.5% and 37.1% is observed at the

chosen tension load value of 0.5N1x,cr, for the plate aspect ratio of 1, 2, 3, 4 and 5 respectively and

can be seen in Figs. 8, 9. It is also observed that the buckling interaction curve for the combined

shear and tension is linear and it varies as plate aspect changes and the same is shown in Figs. 8, 9.

Fig. 8 Buckling interaction curve for combined shear (Nxy) and tension (Nx), for plate of aspect ratio, p = 1, 4
& 5

Fig. 9 Buckling interaction curve for combined shear (Nxy) and tension (Nx), for plate of aspect ratio, p = 2, 3 
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As the accuracy in capturing the actual plate buckling profile depends on the number of term

considered in the assumed double trigonometric deflection function (i.e., buckling profile) of the

energy (Rayleigh-Ritz) method (Cook et al. 2004, Timoshenko and Gere 1985), consideration of

lesser number of terms will make it to deviate from that of actual buckling profile (Cook et al.

2004). This deviation will in turn decrease the accuracy of the resultant buckling solution i.e.

buckling interaction curve and this formed the main reason for the observed deviation of buckling

curve of Rayleigh-Ritz method (Figs. 8, 9) from that of validated Numerical modeling in the present

study (Figs. 8, 9). It is also observed that for plate aspect ratio of 1, the number of terms considered

in the assumed deflection expression is adequate to capture the actual plate buckling profile and

hence, the results of both energy and numerical experimentation (Figs. 8, 9) are in good agreement.

But this is not the case for plate aspect ratio greater than one. Deviations of 16.8%, 32%, 38.8%

and 43.2% is observed at the tensile load value equals to 1.5N1x,cr, for the considered plate aspect

ratio of 2, 3, 4 and 5 respectively and are shown in Figs. 8, 9.

From the analysis of cases involving combined shear and compression (Fig. 6) and combined

shear-tension (Figs. 8, 9), it is found that shortening/elongation of the plate’s longitudinal fiber

decreased/increased the shear load at buckling respectively. 

In the further study of the present case of combined shear and tension, number of terms to be

considered in the assumed deflection expression of Rayleigh-Ritz method, is to be evaluated

through convergence study (i.e., checking the convergence of Rayleigh-Ritz solution by considering

more number of terms in the deflection profile, in each case) in order to predict the exact deviation

between the buckling solution of analytical and numerical model. If deviation exists, the reason for

such deviation is to be evaluated.

7. Summary 

Based on the detailed study carried out in the buckling analysis of Kirchhoff plates (Un-

perforated) under the combined action of shear and tension, the following summary and conclusions

are arrived.

1. Buckling characteristics of Kirchhoff plate under the combined action of shear and tension is

found to be a delayed shear buckling, as reported in the literature (Baskar and Shanmugam 2003),

as experimental observation.

2. In single step analysis, since it is not possible to get shear load at buckling for the given tensile/

compression, the multi step analysis is proposed and used to arrive at the shear load at buckling

for the given tension and the interaction buckling curves are drawn.

3. In the proposed multi step buckling analysis, it is found that the shortening/ elongation of plate

longitudinal fibers, produced under the action of in-plane compression/tension changed the shear

load at buckling. The shortening of the fibers reduced the shear buckling whereas the elongation

in the fiber increased the shear buckling load i.e. caused a delayed shear buckling. Thus, it is

found that the elongation developed due to the presence of tensile force is inducing a stabilizing

effect, which in turn delays the shear buckling. 

4. The transition of buckling mode shape in the case of combined shear and compression, from

pure shear to pure compression is well captured in the present study, with the use of multi step

buckling analysis. 
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8. Conclusions

1. The buckling interaction curve for combined shear and tensile case is found to be linear and it

depends on plate aspect ratio. The presence of in-plane tensile force increased the shear load at

buckling in comparison to that of pure shear case, for plates of all considered plate aspect ratios.

2 The increase in plate shear load at buckling, with respect to that of pure shear case, under the

combined action of shear and tension case, is found to increase with increase in plate aspect ratio

for any given tension load. An increase of 29.8%, 31.7%, 34.2%, 34.5% and 37.1% is observed at

the chosen tension load value of 0.5N1x, cr, for the plate ratio of 1, 2, 3, 4 and 5 respectively.

3. In the case of square plate (i.e., plate with aspect ratio = 1), the buckling interaction curve is in

good agreement with that of numerical experimentation and hence the number of terms

(corresponding to m, n, r, s = 1, 2) considered in the assumed double trigonometric deflection

function (i.e., buckling profile) of the energy method, is adequate in capturing the actual plate

buckling profile.

4. In the case of rectangular plates with aspect ratio greater than 1, the buckling interaction curve

of Rayleigh-Ritz method is found to be deviating from that of validated numerical modeling. It is

due to the fact that the number of terms considered in the assumed buckling profile of the energy

method is inadequate to capture the actual buckling profile and this resulted in the decay in the

accuracy of its buckling solution, which in turn resulted in the observed deviation.

5. The observed deviation in the analytical buckling interaction curve from that of numerical is

found to increase with increase in plate aspect ratio at any given tensile load. A deviation of

16.8%, 32%, 38.8% and 43.2% is observed at the tensile load value equals to 1.5N1x, cr, for the

considered plate aspect ratio of 2, 3, 4 and 5 respectively. Also, the deviation is found to increase

with increase in in-plane tension for the chosen plate aspect ratio.

References

Alinia, M.M. and Dastfan, M. (2006), “Behavior of thin steel plate shear walls regarding frame members”, J.
Constr. Steel Res., 62, 730-738.

Alinia, M.M., Gheitasi, A. and Erfani, S. (2009), “Plastic shear buckling of unstiffened stocky plates”, J. Constr.
Steel Res., 65, 1631-1643.

Bulson, P.S. (1970), The Stability of Flat Plates, Chatto & Windus, London.
Brown, C.J. and Yettram, A.L. (1986), “The elastic stability of square perforated plates under combinations of

bending, shear and direct load”, Thin Wall. Struct., 4, 239-246.
Brown, C.J., Yettram, A.L. and Burnett, M. (1987), “Stability of plates with rectangular holes”, J. Struct. Eng.,

113(5), 1111-1116. 
Baskar, K. and Shanmugam, N.E. (2003), “Steel-concrete composite plate girders subject to combined shear and

bending”, J. Constr. Steel Res., 59, 531-557.
Chandrashekhara, K. (2001), Theory of Plates, 1st Ed., University Press, India.
Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2004), “Concepts and applications of finite element

analysis”, 4th Ed., Wiley, India.
Chen, Y.Z., Lee, Y.Y., Li, Q.S. and Guo, Y.J. (2009), “Concise formula for the critical buckling stresses of an

elastic plate under biaxial compression and shear”, J. Constr. Steel Res., 65, 1507-1510.
Elbridge Z. Stowell and Edward B. Schwartz (1943), “Critical stress for an infinitely long plate with elastically

restrained edges under combined shear and direct stress”, NACA - Advance Restricted Report No :3X13.
EL-Sawy, K.M. and Nazmy, A.S. (2001), “Effect of aspect ratio on the elastic buckling of uniaxially loaded



880 S. Sathiyaseelan and K. Baskar

plates with eccentric holes”, Thin Wall. Struct., 39, 983-998. 
EL-Sawy, K.M. and Martini, M.I. (2007), “Elastic stability of bi-axially loaded rectangular plates with a single

circular hole”, Thin Wall. Struct., 45, 122-133.
Galambos, T.V. (1998), Guide to Stability Design Criteria for Metal Structures, 2nd Ed., John Wiley, Newyork.
IS:11384 (1985), Code of Practice for Composite Construction in Structural Steel and Concrete, Bureau of

Indian Standards, India.
Iyengar, N.G.R. (1986), Structural Stability of Columns and Plates, East-West Press, India.
Jaberzadeh, E. and Azhari, M. (2009), “Elastic and inelastic local buckling of stiffened plates subjected to non-

uniform compression using the Galerkin method”, Appl. Math. Model., 33, 1874-1885.
Lee, S.C., Davidson, J.S. and Yoo, C.H. (1996), “Shear buckling coefficients of plate girder web panels”,

Comput. Struct., 59(5), 189-795.
McKenzie, K.I. (1963), “The buckling of a rectangular plate under combined biaxial compression, bending and

shear”, The Aeronautical Quarterly, August.
Maiorana, E., Pellegrino, C. and Modena, C. (2009), “Elastic stability of plates with circular and rectangular

holes subjected to axial compression and bending moment”, Thin Wall. Struct., 47, 241-255.
Moen, C.D. and Schafer, B.W. (2009), “Elastic buckling of plates with holes in compression or bending”, Thin

Wall. Struct., 47, 1597-1607.
Narayanan, R. and Der Avanessian, N.G.V. (1984), “Elastic buckling of perforated plates under shear”, Thin

Wall. Struct., 2, 51-73.
Naik, R.T. and Moen, C.D. (2009), “Elastic buckling studies of thin plates and cold-formed steel members in

shear”, Research Article.
Paik, J.K. and Thayamballi, A.K. (2000), “Buckling strength of steel plating with elastically restrained edges”,

Thin Wall. Struct., 37, 27-55.
Paik, J.K. (2007), “Ultimate strength of perforated steel plates under edge shear loading”, Thin Wall. Struct., 45,

301-306.
Pellegrino, C., Maiorana, E. and Modena, C. (2009), “Linear and non-linear behavior of steel plates with circular

and rectangular holes under shear loading”, Thin Wall. Struct., 47, 607-616.
Stein, M. and Neff, J. (1947), “Buckling stresses of simply supported rectangular flat plates in shear”, NACA:

technical note-1222.
Shahabian, F. and Roberts, T.M. (1999), “Buckling of slender web plates subjected to combinations of in-plane

loading”, J. Constr. Steel Res., 51, 99-121.
Shimizu, S. (2007), “Tension buckling of plate having a hole”, Thin Wall. Struct., 45, 827-33.
Timoshenko, S.P. and Gere, J.M. (1985), Theory of Elastic Stability, 2nd Ed., McGraw Hill, Singapore.
Xiang, Y., Wang, C.M., Wang, C.Y. and Su, G.H. (2003), “Ritz buckling analysis of rectangular plates with

internal hinge”, J. Eng. Mech.-ASCE, 129(6), 683-688.
Yettram, A.L. and Brown, C.J. (1985), “The elastic stability of square perforated plates”, Comput. Struct., 21(6),

1267-1272.
Yettram, A.L. and Brown, C.J. (1986), “The elastic stability of square perforated plates under biaxial loading”,

Comput. Struct., 22(4), 589-594.
ABAQUS, ABAQUS/Standard Version 6.9, Set of User and Reference Manuals, Dassault Systèmes, Simulia

Corp., Providence, RI, USA.



Numerical study on thin plates under the combined action of shear and tensile stresses 881

Notations

a : Length of the plate
ae : Size of mesh element along plate’s longitudinal edge
Aij : Constant coefficients in assumed deflection function of Rayleigh-Ritz method, where i, j =

1,2,3,….n.
As : Cross sectional area of steel beam of a composite section
b : Width of the plate
be : Size of mesh element along plate’s transverse edge
beff : effective width of flange of slab
dx : Differential chord length of plate
ds : Differential buckled plate curve length
dl : Differential displacement of the plate loaded edge due to applied in-plane load
dc : Vertical distance between centroids of concrete slabs and steel beam in a composite sec-

tion
ds : Depth of concrete slab of a composite section
D : Flexural rigidity of plate
E : Elastic modulus of the plate
(fck)cu : Characteristic (cube) compressive strength of concrete
fy : Yield strength of steel
Fcc : The total compressive force in concrete
K : Buckling coefficient
Ko

MN : Stiffness matrix corresponding to base state
K∆

MN : Differential initial stress and load stiffness matrix
m,n,r,s : Integer counts for denoting each terms of deflection function, w(x, y)
M,N : Degree of freedom of the whole plate model
N1x : In-plane compressive load in x direction
Nx : In-plane tensile load in x direction
N1x,cr : In-plane critical compressive load at buckling for the case of pure compression
Nxy : In-plane shear load
Nxy,cr : In-plane critical shear load at buckling for the case of pure shear
p (= a/b) : Plate aspect ratio
PN : Preload of ABAQUS Buckling step
QN : Load given in ABAQUS Buckling step
t : Thickness of plate
U : Strain energy of the loaded plate
U1, U2 ,U3 : Translational DOF in X,Y,Z axis direction respectively
UR1, UR2, UR3: Rotational DOF in X,Y,Z axis direction respectively
Ve : Potential energy due to external load system
Vi : ith Eigen vector i.e., Buckled mode shape
V1 : Potential energy due to tensile load
V2 : Potential energy due to in-plane shear
w(x, y) : Deflection (out of plane) function
xu : Depth of neutral axis at ultimate limit state of flexure
λi : Eigen Value of ith mode shape (i.e., Eigen vector)
γ : Poisson’s ratio of plate
x, η : Non dimensional parameters of Rayleigh-Ritz method
π : Total potential energy of the system
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Abbreviation

CLDM : Conjugate Load/Displacement Method
DOF : Degrees of Freedom
EAR : Element Aspect Ratio
FE : Finite Element
FEM : Finite Element Method
PE : Potential Energy
2-D : Two dimensional 




