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Abstract. A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The
algorithm is based on the concepts of the charged system search (CSS) and the particle swarm
optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss’s laws of electrostatics in
physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the
swarm intelligence and utilizes the information of the best fitness historically achieved by the particles
(local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent
is affected by local and global best positions stored in the charged memory considering the governing
laws of electrical physics. Three different types of structures are optimized as the numerical examples
with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-
heuristic algorithms proves the robustness of the new algorithm.

Keywords: charged system search; particle swarm optimization; structural optimum design; hybrid
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1. Introduction

Recently, many meta-heuristic algorithms have been developed for optimization problems, and

because of their high potential for modeling engineering problems in environments which have been

resistant to solution by classic techniques, these methods have attracted a great deal of attention

(Kaveh and Talatahari 2009a). Although these methods do not require gradient information and

possess better global search abilities than the conventional optimization algorithms (Coello 2002),

however, hybridization can strengthen and improve the searching abilities of these algorithms. The

contribution of this paper is to develop a new hybrid algorithm using the concepts of the charged

system search (CSS) and the particle swarm optimization (PSO) algorithms.

The charged system search is the most recently introduced meta-heuristic algorithm (Kaveh and

Talatahari 2010a), which has been utilized for optimum design of different types of structures

consisting of trusses, frames and grillage systems (Kaveh and Talatahari 2010b, c). The governing
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laws from the physics initiate the base of the CSS algorithm. CSS is a multi-agent algorithm in

which each agent is considered as a charged sphere. Since these agents are treated as charged

particles that can affect each other according to the Coulomb and Gauss’s laws from electrostatics,

they are called Charged Particles (CPs). After determining the resultant force affected on each CP,

the Newtonian motion law is utilized to determine the movement of the agents. The successive

moving of CPs considering the resultant forces directs the agents toward optimum solutions.

The particle swarm optimization algorithm is based on the swarm intelligence and its ability is

underpinned by the fact that decentralized biological creatures can often accomplish complex goals

by cooperation. The particle swarm optimization algorithm is initialized with a population (swarm)

of random potential solutions (particles). Each particle iteratively moves across the search space and

is attracted to the position of the best fitness historically achieved by the particle itself (local best)

and by the best among the neighbors of the particle (global best), (Kennedy et al. 2001). Compared

to other evolutionary algorithms based on heuristics, the advantages of PSO consist of easy

implementation and a smaller number of parameters to be adjusted. However, its practical use in

solving engineering optimization problems is severely limited due to the high computational cost of

slow convergence rate (Smith 1998) and the PSO had difficulties in controlling the balance between

exploration and exploitation (Angeline 1998).

The remainder of this paper is organized as follows. Section 2 presents the statement of optimum

design of structures. A brief review of the CSS and PSO algorithms are presented in Section 3. The

new hybrid method is explained in section 4. Section 5 studies various numerical examples to verify

the efficiency of the new algorithm. The final section will contain the concluding remarks.

2. Statement of optimum design of structures

The aim of optimizing structures is to reach at a set of design variables that has the minimum

weight satisfying certain constraints. This can be expressed as 

(1)

where X is a set of design variables; ng is the number of groups (number of design variables); Di is

an allowable set of values for the design variable xi; W(X) denotes the weight of the structure; nm is

the number of members making up the structure; γi is the material density of member i; Li is the

length of member i; Ai represents the cross-sectional area of member i;  is the design

constraints; and n is the number of the constraints. Some structural examples are selected from

literature and their related constraints are as follows.

2.1 Constraint conditions for truss structures

For truss structures, the stress limitations for the members, and the displacement constraints for

Find X x1 x2 … xng, , ,[ ]=

            xi Di∈

to minimize W X( ) γi xi Li⋅ ⋅
i 1=
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the nodes are imposed as

(2)

(3)

where nm is the number of members making up the structure; nn is the number of nodes;  and 

represent the stress and nodal deflection, respectively;  and  are the allowable values.

2.2 Constraint conditions for steel frames

Optimal design of frame structures is subjected to the following constrains according to AISC-

ASD provisions (1989) 

(4)

(5)

(6)

where fa (=P/Ai) represents the computed axial stress. The computed flexural stresses due to the

bending of the member about its major (x) and minor (y) principal axes are denoted by fbx and fby,

respectively.  and  denote the Euler stresses about the principal axes of the member that are

divided by a factor of safety of 23/12. The allowable bending compressive stresses about the major

and minor axes are designated by Fbx and Fby. Cmx and Cmy are the reduction factors, introduced to

counterbalance overestimation of the effect of secondary moments by the amplification factors

 and Fa stands for the allowable axial stress under axial compression force alone.

The slenderness ratio limitation is considered as follows  

(7)

Eq. (7) represents the slenderness limitations imposed on all members such that the maximum

slenderness ratio is limited to 300 for members under tension, and to 200 for the members under

compression loads. 

Geometric constraints are considered between beams and columns framing into each other at a

common joint for practicality of an optimum solution generated as described in Kaveh and

Talatahari (2009b).
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The maximum lateral displacement limitations are considered as 

(8)

, (9)

where  is the maximum lateral displacement; H is the height of the frame structure; R is the

maximum drift index (= 1/400); di is the inter-story drift; hi is the story height of the ith floor; ns

represents the total number of stories; and RI is the inter-story drift index permitted by the code of

the practice (= 1/400).

2.3 Constraint conditions for grillage systems

The displacement limitations is defined by Eq. (2), and the strength constraints are required to be

imposed for grillage systems according to LRFD-AISC provisions (1999) in which the strength

constraints are defined as follows 

(10)

(11)

where  is the required flexural strengths of member i;  denotes the nominal flexural

strengths; φb is flexural resistance reduction factor (φb = 0.90);  is the factored service load

shear for member i;  is the nominal strength in shear; and φv represents the resistance factor for

shear given as 0.9.

3. A review of the CSS and PSO 

3.1 Charged system search algorithm

The Charged System Search (CSS) algorithm is based on the Coulomb and Gauss laws from

electrical physics and the governing laws of motion from the Newtonian mechanics. This algorithm

can be considered as a multi-agent approach, where each agent is a Charged Particle (CP). Each CP

is considered as a charged sphere with radius a, having a uniform volume charge density and is

equal to (Kaveh and Talatahari 2010a)

, (12)

where Wbest and Wworst are the minimum and the maximum weight among all the particles; Wj

represents the weight of the agent i, and N is the total number of CPs. 

CPs can impose electrical forces on the others. The kind of the forces is attractive and its

magnitude for the CP located in the inside of the sphere is proportional to the separation distance
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between the CPs, and for a CP located outside the sphere is inversely proportional to the square of

the separation distance between the particles

,   (13)

where Fj is the resultant force acting on the jth CP; rij is the separation distance between two

charged particles which is defined as follows 

(14)

where Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position of the

best current CP with the minimal weight; and ε is a small positive number. The initial positions of

CPs are determined randomly in the search space and the initial velocities of charged particles are

assumed to be zero. Pij determines the probability of moving each CP toward the others as 

(15)

The resultant forces and the motion laws determine the new location of the CPs. At this stage,

each CP moves toward to its new position considering the resultant forces and its previous velocity,

as

(16)

(17)

where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence of the

previous velocity; and randj1 and randj2 are two random numbers uniformly distributed in the range

of (0,1). If each CP exits from the allowable search space, its position is corrected using the

harmony search-based handling approach as described by Kaveh and Talatahari (2009a). In addition,

to save the best design, a memory (Charged Memory) is considered containing the CMS number of

positions for the so far best agents.

3.2 Particle swarm optimization

The Particle Swarm Optimization (PSO) is motivated from the social behavior of bird flocking

and fish schooling which has a population of individuals, called particles, that adjust their

movements depending on both their own experience and the population’s experience (Kennedy et

al. 2001). In other words, each particle in the PSO algorithm continuously focuses and refocuses on

the effort of its search according to both local best and global best. In PSO, the position of each
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agent, , and its velocity, , are calculated as

(18)

(19)

where ω is an inertia weight to control the influence of the previous velocity, r1 and r2 are two

random vectors uniformly distributed in the range of (0,1), and c1 and c2 are two acceleration

constants, and the sign “°” denotes element-by-element multiplication. The above mentioned

formulations of the PSO algorithm can be combined and rewritten as 

(20)

In some previous studies, to improve the performance of the algorithm, another term is added to

above formulae as 

(21)

where cj, similar to c1 and c2, is a constant value, and rj is a random vector. ne denotes the number

of extra terms considered in the algorithm and  is defined based on the type of the algorithm

being used. For example in the particle swarm with passive congregation (PSOPC), (He et al.

2004), the number of the extra terms is equal to unity, and  is one particle's location selected

randomly from the current swarm; for improved PSO suggested by the authors (Kaveh and

Talatahari 2009c), the number of these terms is equal to two and the first  is defined similar to

the PSOPC and the second one is generated from the search space randomly. As the third example

in the work of Xu and Xin (2005),  is selected as the best position of neighboring particle,

where the definition of the neighborhood particle may be changed in different implementations of

the approach. Often the aim of the third term is to increase the exploration ability of the

algorithm.

4. A hybrid charged system search and particle swarm optimization algorithm

Both CSS and PSO are multi-agent algorithms in which the position of each agent is obtained by

adding the agent's movement to its previous position; however the movement strategies are

different. Though each algorithm has some positive characters that direct the searching process,

however there are some disadvantages which make some problems in finding the optimum point or

decrease the speed of the algorithm. This paper collects the advantages of both optimization

methods to develop an efficient hybrid algorithm.

The PSO algorithm utilizes a velocity term which is a combination of the previous velocity, ,

movement in the direction of the local best, , and movement in the direction of the global best,

. This means that at each iteration, a particle moves towards a direction computed from the best

visited position (local best) and the best visited position of all particles in its neighborhood (global

best). One of the greatest disadvantages of the PSO approach is the existence some difficulties in
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controlling the balance between the exploration and exploitation due to ignoring the effect of other

agents in calculating the direction of agents (Angeline 1998), and this increases the probability of

losing the favorite space containing the optimum solution. The potency of the PSO is summarized

to find the direction of movements of agents, and therefore determining the acceleration constants

(c1 and c2) become important.

Similar to the PSO, the CSS algorithm utilizes a term of the previous velocities, however, the

CSS can determine the amount and the direction of a charged particle' movement. Since in the CSS,

the movements are calculated based on the overall forces resulted by the agents and the movement

updating is performed by considering the quality of the solutions, so not only the directions but also

the amount of movements are determined.

In the present hybrid algorithm, the advantage of the PSO containing utilizing the local best and

the global best is added to the CSS algorithm. The charged memory (CM) for the hybrid algorithm

is treated as the local best in the PSO, and the CM updating process is defined as

(22)

in which the first term identifies that when the new position is not better that the previous one, the

updating does not perform while when the new position is better than the stored so far good

position, the new solution vector is replaced. In the first iteration, the vector stored in CM and the

first positions of the agents will be identical. Considering the above mentioned new charged

memory, the electric forces generated by agents are modified as 

(23)

where S1 and S2 are defined as follows

(24)

(25)

in which S1 determines the set of agents utilized from CM; n denotes the number of CM' agents; S

is utilized as a set of all agents' number and thus S2 will be the set of current agents used for

directing the agent j. Here, in the primary iterations n is set to two continuing the number of the

best stored so far agent among all CPs (global best) and jth agent stored in the CM which is treated

as local best. Then the number of used agents from CM is increased linearly and finally it reached

to N in the last iterations. In this hybrid algorithm,  will be treated similar to  in the

PSO. The other modification is that the forces can be attractive or repulsive, and arij is added to

fulfill this aim which determines the kind of the force as 

(26)
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effect of the kind of forces. Comparing to Eq. (13), this new formulae (Eq. (23)) considers the best

so far location of agents and the best local position of the current agent in addition to the location

of other agents. Also, here mj is assumed to be qj and therefore Eq. (16) is simplified as 

(27)

The pseudo-code of the hybrid algorithm can be summarized as follows:

Step 1: Initialization. The magnitude of the charge for each CP is defined by Eq. (12). The initial

positions of the CPs are determined randomly and the initial velocities of charged particles are

assumed to be zero.

Step 2: CM creation. The position of the initial agents and the values of their corresponding

objective functions are saved in the Charged Memory (CM).

Step 3: The forces determination. The probability of moving each CP towards the others (pij),

the kind of forces (aij) are determined using Eq. (15) and Eq. (26), respectively, and the resultant

force vector for each CP is calculated using Eq. (23).

Step 4: Solution construction. Each CP moves to the new position according to Eq. (27).

Step 5: CM updating. CM updating is performed according to Eq. (22).

Step 6: Terminating criterion control. Steps 3-5 are repeated for a predefined number of

iterations.

6. Numerical examples

Three examples containing a truss, a frame and a grillage system are optimized utilizing the new

hybrid method. These examples are those that have been solved by the CSS and PSO previously

and therefore are selected for this study to compare the solutions of other advanced heuristic

methods with the new algorithm and to examine the efficiency of this work. For the CSS algorithm,

a population of 50 CPs is used for the first two examples and a population of 20 candidates is

selected for the last example. ka and kv will be different for different populations. 

Here, kv and ka are defined as (Kaveh and Talatahari 2010b)

 (28)

where iter is the iteration number; itermax is the maximum number of the iterations; and c is set to

0.5 and 0.2 when the population of 20 and 50 CPs are selected, respectively.

5.1 A 942-bar spatial truss

A 26-story-tower space truss containing 942 elements and 244 nodes is considered as the truss

example. Fifty-nine design variables are used to represent the cross-sectional areas of 59 element

groups in this structure, employing the symmetry of the structure. Fig. 1 shows the geometry and

the 59 element groups. The detailed information is presented in Kaveh and Talatahari (2010b).

This example has been optimized using 5 meta-heuristic algorithms, previously. The CSS method

achieved a good solution after 15,000 analyses and found an optimum weight of 47,371 lb (210,716

N), (Kaveh and Talatahari 2010b). The best weights for the GA, PSO, BB–BC and HBB–BC were

Xj new, ka r1 Fj⋅ ⋅ kv r2 Vj old,⋅ ⋅ Xj old,+ +=

kv c 1 iter/itermax–( ), ka c 1 iter/itermax+( )==
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56,343 lb (250,626 N), 60,385 lb (268,606 N), 53,201 lb (236,650 N) and 52,401 lb (233,091 N),

respectively (Kaveh and Talatahari, 2009b). The new algorithm can find the best result among

others as shown in Table 1. The best result of this hybrid algorithm is equal to 46,310 lb (205,997

N). The new algorithm has better performance in terms of the optimization time, standard deviation

Fig. 1 A 942-bar spatial truss
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Table 1 The optimum design of the hybrid algorithm result for the truss example

Optimal cross-sectional areas (cm2)

Members Area Members Area Members Area

1 A1 1.00129 21 A21 2.517844 41 A41 0.487918

2 A2 2.172368 22 A22 0.345915 42 A42 0.652938

3 A3 1.507987 23 A23 3.318067 43 A43 19.57336

4 A4 0.519582 24 A24 4.811102 44 A44 0.520678

5 A5 0.652481 25 A25 19.44032 45 A45 1.591111

6 A6 18.36865 26 A26 0.525286 46 A46 0.481946

7 A7 0.360254 27 A27 2.653218 47 A47 0.570354

8 A8 3.002 28 A28 19.54679 48 A48 1.28328

9 A9 2.234142 29 A29 4.641994 49 A49 19.63833

10 A10 3.664224 30 A30 4.763839 50 A50 0.843581

11 A11 0.784325 31 A31 14.3183 51 A51 4.131012

12 A12 1.077496 32 A32 0.853898 52 A52 0.403386

13 A13 2.860273 33 A33 0.890297 53 A53 11.7018

14 A14 0.493023 34 A34 1.26838 54 A54 18.50203

15 A15 19.24458 35 A35 0.136246 55 A55 18.25599

16 A16 1.325013 36 A36 0.195457 56 A56 3.376078

17 A17 1.980365 37 A37 18.57036 57 A57 2.774705

18 A18 0.529124 38 A38 0.639793 58 A58 4.884796

19 A19 18.10974 39 A39 1.396738 59 A59 0.264933

20 A20 0.323562 40 A40 0.355912

Weight  205997 N

Table 2 Performance comparison for the truss example

GA PSO BB–BC HBB–BC CSS CSS+PSO

Best weight (lb) 56343
(250,626 N)

60385
(268606 N)

53201
(236650 N)

52401
(233091 N) 

47371
(210716 N)

46310
(205997 N)

Average weight (lb) 63223
(281230 N)

75242
(334693 N)

55206
(245568 N)

53532
(238122 N)

48603
(216197 N)

47953
(213305 N)

Std Dev (lb) 6640.6
(29,539 N)

9906.6
(44,067N)

2621.3
(11660 N)

1420.5
(6318 N)

950.4
(4,227 N)

874.3
(3,889 N)

No. of analyses 50,000 50,000 50,000 30,000 15,000 13,500

Optimization time 
(sec.)

4,450 3,640 3,162 1,926 1,340 1,190

and the average weight. It converges to a solution after 13,500 analyses of structures in average.

Table 2 provides the statistic information for this example and the convergence history is shown in

Fig. 2.
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5.2 A 10-story spatial frame 

A 10-story space steel frame consisting of 256 joints and 568 members is considered as shown in

Fig. 3. The detailed information about the grouping of elements and loading conditions are

presented by Saka and Hasançebi (2009).

The optimum design of this space frame is carried out using the CSS, the simulated annealing

(SA), evolution strategies (ESs), particle swarm optimizer (PSO), tabu search optimization (TSO),

simple genetic algorithm (SGA), ant colony optimization (ACO), and harmony search (HS)

methods. In each optimization technique the number of iterations has been taken as 50,000 for all

methods except the CSS algorithm in which 12,500 is sufficient as the maximum number of

analyses. The hybrid algorithm could find the optimum solution after 10,800 analyses. The design

history of hybrid algorithm is shown in Fig. 4. The optimum design attained by the new hybrid

Fig. 2 The convergence history of the truss example for the hybrid algorithm 

Fig. 3 A spatial frame example
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Fig. 4 The convergence history of the frame example

Table 3 Optimal design for the frame example

 Element
group

Optimal W-shaped sections

PSO ESs CSS CSS+PSO

1 W14X159 W14X193 W14X132 W14X145

2 W24X76 W8X48 W21X55 W21X48

3 W10X39 W10X39 W12X40 W18X35

4 W10X22 W10X22 W10X33 W16X31

5 W24X55 W21X50 W21X50 W21X44

6 W12X72 W10X54 W12X65 W18X65

7 W27X146 W14X109 W14X99 W14X99

8 W27X217 W14X176 W14X120 W14X120

9 W18X40 W18X40 W21X44 W21X44

10 W18X40 W18X40 W21X44 W21X44

11 W18X71 W10X49 W14X61 W14X53

12 W12X101 W14X90 W10X88 W18X86

13 W14X176 W14X109 W14X99 W21X101

14 W14X34 W14X30 W18X35 W16X36

15 W21X44 W16X36 W12X50 W18X40

16 W12X65 W12X45 W21X68 W24X62

17 W10X68 W12X65 W16X57 W12X65

18 W12X35 W10X22 W24X68 W8X67

19 W12X79 W12X79 W16X36 W10X33

20 W14X38 W14X30 W16X31 W14X38

21 W10X39 W8X35 W10X33 W14X26

22 W8X31 W10X39 W16X31 W14X38

23 W12X96 W8X31 W8X28 W8X31

24 W12X26 W8X18 W8X18 W8X21

25 W12X26 W14X30 W10X26 W10X26

Weight (kg) 253,260.2 228,588.3 225,654.0 218,971.0
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method for this example is 218,971.0 kg, while it is 225,654.0 kg, 228,588.3 kg for the CSS and

ESs which are the best ones among the others. The minimum weights as well as W-section

designations obtained by the PSO, ESs, CSS and the new algorithm are provided in Table 3. For the

present algorithm, maximum stress ratio is equal to 98.39%, and the maximum drift is 0.86 cm,

while the allowable value is set to 0.91 cm. 

5.3 A 12 m × 12 m grillage system 

As the last example, a grillage system with a 12 m × 12 m square area is considered. The system

is supposed to carry a 15 kN/m2 uniformly distributed load (total load is 2,160 kN). The grillage

system that can be used to cover the area has the longitudinal beams of length 12 m and the

transverse beams of length 12 m. This system is composed of 2m beams as shown in Fig. 5, where

the system has 60 members. The total external load is distributed on the joints of the grillage

system as point loads. 

Fig. 5 A 60-elements grillage system 

Table 4 Optimal design for the grillage system example

 Element group
Optimal W-shaped sections

CSS CSS+PSO

1 W6X9 W10X12

2 W36X135 W36X135

3 W12X14 W8X10

4 W12X22 W14X22

Weight (kg) 9,251 9,211

δ
u (mm) 24.3 23.4

Maximum Strength Ratio 99.0% 99.2%
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The vertical displacements of middle joints are restricted to 25 mm. Four group designs are

considered in such a way that the outer and inner longitudinal beams belong to group 1 and 2,

respectively, while the outer and inner transverse beams are taken as group 3 and 4, respectively.

The weight obtained by the new algorithm is 9,211 kg while it has been 9,251 kg for the CSS

method (Kaveh and Talatahari 2010c). The optimum results obtained by the hybrid algorithm are

summarized in Table 4. The number of required structural analyses for this example was equal to

2,560 which is less than 3,000 analyses required for the CSS.

6. Conclusions 

A hybrid algorithm is developed by adding positive characters of the particle swarm optimization

into the charged system search algorithm. The first change is to redefine the charged memory (CM)

in a way that it is treated as the local best in the PSO, and the size of CM is taken as the number of

agents. The CM updating process is performed when the new position of an agent is better than the

so far stored good position of this agent. The second modification is the utilization of a new CM in

determining the affected forces. In this way, not only the global and local best agents from the CM

but also some other stored points are utilized. In addition, some of the locations of the current

agents are also employed to determine the resultant forces. Utilizing the CM increases the

exploitation of the algorithm while using the current agents enlarges the exploration ability of the

algorithm. As a result, for the present algorithm the number of agents utilized from CM is increased

gradually and the number of used current agents is reduced, simultaneously. As the third difference

between the hybrid algorithm and the original CSS, one should mention the utilization of the

repulsive forces in addition to attractive ones in the algorithm.

The new algorithm has high power in the searching level because of high exploration ability due

to utilizing current agents distributed all over the search space in the primary iterations. In addition

using the best so far CPs as the one point existing in the PSO increases the exploitation ability of

the algorithm. Finally putting together of these properties improve the balance between exploration

and exploitation of the resulted method.

In order to investigate the efficiency of the new algorithm, three different skeletal structures are

optimized. The results are compared to those of some advanced meta-heuristic algorithm especially

to the PSO and CSS algorithms. For all three examples, the present algorithm can find better

designs in most cases with smaller computational costs. This demonstrates that the presented new

algorithm is a powerful optimization method which can easily be employed in optimum design of

structures.
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