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Abstract. An efficient one dimensional finite element model has been presented for the dynamic
analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the
convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the
transverse displacement (w0), and linear interpolation is used for the axial displacement (u0) and shear
rotation (ψ0). Each node of an element has four degrees of freedom. The expressions of variationally
consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration.
The formulation is validated by comparing the results with the 2D-FE results for composite symmetric
and sandwich beams with various end conditions. The employed finite element model is free of shear
locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and
clamped–clamped beams are obtained with a one-dimensional finite element codes developed in
MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results
obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for
these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for
dynamic response under given boundary conditions.
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1. Introduction

Increasing demand for the development of light weight and reliable structure particularly in space

technology, automobile, turbo machinery and marine structures are some of the examples where

composites can be often used. Analysis and design of such laminated structures requires an accurate

and efficient model. The finite element (FE) method provides a powerful tool for the numerical

analysis of composite structures. Aircraft wings, turbo machinery blades, space and marine

structures can be modeled as composite or sandwich beams. Substantial literatures are available in

this area. Benjeddou (2000) reviewed finite element modeling of laminated elastic substrate with

piezoelectric layers. He concluded that the analysis of these laminate requires efficient and accurate

approximation of the displacement across the thickness. Robbins and Reddy (1991) presented

dynamic and static finite element analysis of hybrid beams using discrete layerwise theory with

piecewise linear approximation of displacement across the thickness. Averill and Yip (1996)

presented thick beam theory and finite element model with zigzag theory. Mackerle (2003)

*Corresponding author, Associate Professor, E-mail: naushad7863@rediffmail.com

DOI: http://dx.doi.org/10.12989/sem.2012.42.4.471



472 M. Naushad Alam, Nirbhay Kr. Upadhyay and Mohd. Anas

presented a finite element approach for smart materials and structures. Chopra (2002) presented

state of the art review on smart structures and integrated systems. Averill (1994) presented a static

and dynamic response of moderately thick laminated beams with damage. Cho and Parmerter

(1992) presented efficient higher order plate theory for general lamination configuration. Navier

type solutions for simply supported beams are presented by Kapuria et al. (2004, 2005) which do

not provide finite element formulation of zigzag theory. Kapuria and Alam (2006) presented

efficient layerwise finite element model for dynamic analysis of laminated piezoelectric beams.

Arya et al. (2002) presented a model that uses a sine term to represent the nonlinear displacement

field across the thickness as compared to a third order polynomial term in conventional theories.

Transverse shear stress and strain are represented by a cosine term as compared to parabolic term.

They given analytical results for cross ply laminate. Akhras and Li (2007) presented spline finite

strip method for static analysis of composite plates using the higher-order zigzag theory for

composite plate. Fares and Elmarghany (2008) presented refined nonlinear zigzag shear deformation

theory of composite laminated plates using a modified mixed variational formulation. Their theory

accounts for continuous piecewise layer-by-layer linear variation approximation in the thickness

direction for the displacements. Kumari et al. (2008) presented a new improved third order theory

(ITOT) for hybrid piezoelectric angle-ply flat panels under thermal loading. The ITOT and the

existing efficient zigzag theory are assessed for simply-supported angle-ply flat hybrid panels for

static loads and for natural frequencies by comparison with 2D solutions. Kapuria and Achary

(2008) have developed a benchmark 3D solution and assessment of a zigzag theory for free

vibration of hybrid plates under initial electro-thermo-mechanical stresses. Kapuria et al. (2008) has

given a third order zigzag theory based model for layered functionally graded beams in conjunction

with the modified rule of mixtures (MROM) for effective modulus of elasticity is validated through

experiments for static and free vibration response. 

This work presents finite element model based on zigzag theory, for the analysis of composite

beams, by extending the work of Kapuria et al. (2004) for various boundary conditions. The weak

form of integration consistent with element mass matrix and stiffness matrices is derived for this

purpose. The present 1D- Finite Element model is validated by comparing the dynamic response

with 2D-Finite Element model using ABAQUS software. Cubic Hermite interpolation is used for

deflection, and linear interpolation is used for axial displacement and shear rotation. Natural

frequencies and mode shapes for composite and sandwich beams are presented. The present results

for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS.

This shows the accuracy of the developed MATLAB code for zigzag theory, for these boundary

conditions. 

2. The displacement field and variational equation

A laminated composite beam (Fig. 1) of width b, thickness h and length l, made of L perfectly

bonded orthotropic layers with longitudinal axis x, is considered. For a beam of uniform cross-

section, the mid-plane of the beam is chosen as the xy-plane.

Let the planes z = z0 and z = zL be the bottom and top surfaces of the beam. For a uniform beam,

z0 = −h/2 and zL = h/2. The z-coordinate of the bottom surface of the kth layer from the bottom is

denoted as  and its material symmetry direction 1 is at an angle  to the x-axis. The reference

plane  either passes through or is the bottom surface of the  layer.

zk 1– θk

z 0= k0
th
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The strain displacement relations for directions x, z, including geometric non linearity due to w are

(1)

The constitutive equations for the stresses are

, (2)

where,  are the stiffnesses which are given in terms of material properties and orientation of

material property axis 1 with respect to beam axis x.

The transverse deflection is approximated to be independent of z, i.e., 

(3)

For the k’th layer, longitudinal displacement u is approximated Kapuria et al. (2004) as

(4)

The functions  are expressed in terms of primary variables = =

 and  using  conditions each for the continuity of  and u at

the layer interfaces and the two shear traction free conditions  at the top and bottom surfaces

at , zL. Using these, the expression of u takes the form as

(5)

Where,
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Fig. 1 Geometry of a laminated composite beam
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,

,

, ,

The variational equation for developing element matrices of FE model is derived from the

Hamilton’s Principle 

(6)

Let  and  be the forces per unit area applied on the bottom and top surfaces of the beam in

direction z. Using the following notation for integration along thickness

(7)

and displacement field given by Eqs. (3) and (5) into the Eq.(6), reduces to the following variational

form in terms of beam variables 

(8)

where, the superscript * means the values at the ends.

The beam stress resultants F1 of  and Qx, Vx of τzx are defined by

 (9)

3. Finite element model

Two noded elements have been used for the primary displacement variables. The primary

variables  within an element are expressed in terms of their nodal values using appropriate

polynomial interpolation functions. The highest derivatives of  appearing in the variational

Eq. (8) are . To meet the convergence requirements of the finite element method

 is C0 Continuous and w0 satisfies C
1 Continuity at the element boundaries. Hence w0 is

expanded using cubic Hermite interpolation along x and linear Lagrange interpolation along x is

used for . The shear strain in Eq. (1) is dependent only on ψ0 so that the used interpolation

scheme will not undergo any shear locking. Thus at element level, each node will have four degrees
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of freedom   for the displacement. The value of an entity  at the nodes 1 and 2

is denoted by  and  respectively.

The following interpolations of  are used in terms of the nodal values and the shape

function matrices N,  

(10)

With

, , (11)

, (12)

,

,

, (13)

The integrand in the variational Eq. (8), for the case of static mechanical load, can be expressed

as

 (14)

Hence, the contribution  of one element of length  to the integral in Eq.(8) is

(15)
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, ,

(17)

 are the generalized displacement and generalized strains of the beam,  is the beam inertia

matrix and  is the generalized stress vector of the beam.  is related to  by the generalized

stiffness matrix  of the beam.  are defined in terms of material constants.

The element generalized displacement vector  is

(18)

The beam generalized displacements  are related to  by 

(19)

,

(20)

(21)

where (22)

Using Eq. (19) for  and  and Eq. (21) for  in Eq. (15),  can be expressed as

(23)
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with 

(24)

(25)

(26)

The elements of element inertia matrix Me, element stiffness matrix Ke and element load vector Pe

are listed in the appendix.

Summing up contributions of all elements to the integral in Eq. (8), the system equation can be

obtained as

(27)

in which M, K and P are assembled from the element matrices Me, Ke and Pe.

The boundary conditions for a movable simply supported end, immovable simply supported

(hinged) end, clamped end and free end are as follows:

Simply supported end

(28)

Clamped end

(29)

Free end

,

, (30)

4. Results and discussion

Three laminated beams (a) and (b) and (c) are analyzed here. The stacking order is mentioned

from the bottom. Beam (a) is a composite beam of material 1 Tang et al. (1996) consisting of four

plies of equal thicknesses 0.25 h. Beam (a) has symmetric layup [0o/90o/90o/0o]. The three layer

sandwich beam (b) has Graphite-epoxy faces and a soft core Noor and Burton (1994) with

thicknesses 0.1 h/0.8 h/0.1 h. The orientation angle , for all the plies of beams (b). Beam (c)

is an angle ply composite beam of material 1 consisting of four plies of equal thicknesses 0.25 h

having symmetric lay ups [0o, 15o, 30o, 45o, 60o, 90o].
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The material properties for the above mentioned beams are given in Table 1.

For a beam of span ‘l’ and thickness ‘h’, the thickness parameter S = l/h.

In this section, 2D-FE results are obtained for laminated composite beam (a) and (c) and

sandwich beam (b) using the ABAQUS package (2007) for dynamic response. For the 2D-Finite

element analysis using ABAQUS 6.6, composite beam (a) and (c) have been discretized into 2000

eight noded plane stress elements (CPS8R) for S = 20,50, 100, 200. Same number of elements has

been used for discretizing sandwich beam (b). The results obtained using twice the above numbers

of elements are found to be indistinguishable from these results.

A 1D-FE MATLAB program have been developed for computing flexural natural frequencies of

laminated composite beams which computes natural frequencies and mode shapes for various

boundary conditions viz., cantilever and fixed. The natural frequency of nth longitudinal mode is

non-dimensionalized as follows,

with Y0 = 10.3 GPa for beam (a) and (c) and Y0 = 6.9 GPa for beams (b),  for

ωn ωnls ρ0/Y0( )
1/2

=

ρ0 1578 kg/m
3

=

Table 1 Material properties of the beams

Property Units Material (1) Face Core

Y1

Y2

Y3

G12

G23

G31

ν12

ν13

ν23

 ρ

GPa
GPa
GPa
GPa
GPa
GPa
-
-
-

kg/m3

181.0
10.3
10.3
7.17
2.87
7.17
0.28
0.28
0.33
1578

131.1
6.9
6.9
3.588
2.3322
3.588
0.32
0.32
0.49
1000

0.0002208
0.0002001
2.760
0.01656
0.4554
0.5451
0.99

3 × 10-5

3 × 10-5

70

Table 2 2D and 1D-FE results for flexural natural frequencies  of cantilever beams 

S
Mode
n

Composite beam (a) Sandwich beam (b)

2D-FE 1D-FE % error 2D-FE 1D-FE % error

20

50

100

200

1
2
3

1
2
3

1
2
3

1
2
3

3.896
21.490
51.935

3.979
24.345
65.737

3.992
24.860
68.936

3.995
24.998
69.820

3.897
21.545
52.203

3.979
24.350
65.766

3.992
24.863
68.939

3.995
24.998
69.820

0.02
0.25
0.51

0.00
0.02
0.04

0.00
0.01
0.004

0.003
0.00
0.00

5.787
28.664
64.456

6.053
36.050
93.980

6.094
37.685
103.330

6.105
38.128
106.180

5.789
28.750
64.753

6.053
36.070
94.078

6.094
37.689
103.370

6.105
38.130
106.190

0.05
0.29
0.45

0.00
0.05
0.10

0.02
0.01
0.04

0.00
0.005
0.009

ωn
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beam (a) and (c) and for beam (b) .

First three flexural natural frequencies have been computed using this program for composite

beam (a), angle ply beam (c) and sandwich beam (b), for cantilever and fixed boundary conditions.

For converged results beam (a) has been discretized into 150 elements while beam (b) into 140

elements. All results of  have been taken with 150 elements for beam (a) and 140 elements for

beam (b). Convergence is faster for the earlier modes. The percentage error of these results from the

2D-FE results obtained by ABAQUS is listed along with 2D-FE results in Table 2 for cantilever

beams and in Table 3 for fixed beams. In Table 4 results have been presented for angle ply beam

(c) for flexural natural frequencies and their error for various thicknesses to span ratios. In Figs. 2-4,

percentage error in flexural natural frequencies is plotted against thickness parameter for cantilever

ρ0 1000 kg/m
3

=

ωn

Table 3 2D and 1D-FE results for flexural natural frequencies  of fixed beams 

S
Mode
n

Composite beam (a) Sandwich beam (b)

2D-FE 1D-FE % error 2D-FE 1D-FE % error

20

50

100

200

1
2
3

1
2
3

1
2
3

1
2
3

20.505
47.647
80.327

24.385
64.194
119.230

25.153
68.467
132.030

25.359
69.675
136.020

20.590
48.077
81.368

24.393
64.340
119.440

25.155
68.467
132.080

25.359
69.675
136.010

0.41
0.89
1.27

0.03
0.22
0.17

0.007
0.00
0.037

0.001
0.00
0.007

26.270
56.800
92.196

35.606
89.842
160.255

37.970
101.880
193.391

38.718
105.752
205.449

26.380
57.205
92.976

35.633
89.995
160.680

37.976
101.930
193.390

38.640
105.760
205.470

0.41
0.70
0.83

0.07
0.17
0.26

0.01
0.04
0.0005

0.20
0.007
0.01

ωn

Table 4 2D and 1D-FE results for flexural natural frequencies  of angle ply symmetric cantilever beam (c) 

S
Mode
n

Composite beam (c) for 45o Composite beam (c) for 60o

2D-FE 1D-FE % error 2D-FE 1D-FE % error

20

50

100

200

1
2
3

1
2
3

1
2
3

1
2
3

3.973
23.745
62.188

3.932
24.500
67.300

4.005
25.048
69.906

3.936
24.650
69.009

3.9307
22.310
56.290

3.9937
24.577
66.932

4.0031
24.970
69.402

4.005
25.072
70.070

-1.06
-6.04
-9.48

-1.54
-0.31
-0.54

-0.05
-0.31
-0.72

1.73
1.68
1.51

3.882
23.046
59.780

3.925
24.416
67.58

3.978
24.869
69.357

3.931
24.62
68.89

3.9121
21.9088
53.6531

3.984
24.452
66.315

3.995
24.906
69.140

3.998
25.024
69.915

.0.77
-5.19
-11.49

1.49
0.15
0.03

0.43
0.15
-.31

1.69
1.61
1.46

ωn
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end conditions. In Figs. 5-7, percentage error in flexural natural frequencies is plotted against

thickness parameter for fixed end conditions. Mode shapes for the first three flexural modes

obtained by 1D-FE analysis, are also compared with the same obtained by 2D-FE for cantilever and

fixed beams (a) and (b) with S = 10. These comparisons are shown in Figs. 8-11.

For cantilever beams, the maximum percentage errors in first, second and third natural frequency

are .02%, 0.26%, 0.54% (all for S = 20, beam (a)). For fixed beams, the maximum percentage errors

in first, second and third natural frequency are 0.41%, 0.92%, 1.33% (all for S = 20, beam (a)).

With , for fixed beams, the maximum percentage errors in first, second and third naturalS 100≥

Fig. 2 % error in  for cantilever beam (a) and (b)ω
1

Fig. 3 % error in  for cantilever beam (a) and (b)ω
2

Fig. 4 % error in  for cantilever beam (a) and (b)ω
3

Fig. 5 % error in  for fixed beams (a) and (b)ω
1
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frequencies are 0%, .02%, .03%. The effect of ply angle on first frequency is shown in Fig. 12 and

on second frequency is presented in Fig. 13. The plot shows that there is a marginal effect on angle

up to 30. After 30 the frequency stabilizes. The mode shapes of 1D-FE as compared in Figs. 8-11

are also very close to the same of 2D-FE (ABAQUS). In Fig. 15, the first three flexural bending

modes for fixed sandwich beam (b), with S = 20, are shown in ABAQUS environment as a screen

shot. The screen shot is giving the similar trend for beam (b) as given by 1D-FE theory. 

Fig. 6 % error in  for fixed beams (a) and (b)ω
2

Fig. 7 % error in  for fixed beams (a) and (b)ω
3

Fig. 8 Comparison of flexural mode shapes for
cantilever composite beam (a)

Fig. 9 Comparison of flexural mode shapes for fixed
composite beam (a)
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Fig. 10 Comparison of flexural mode shapes for
cantilever sandwich beam (b)

Fig. 11 Comparison of flexural mode shapes for
fixed sandwich beam (b)

Fig. 12 Effect of Ply angles on First frequency for
cantilever beam (a)

Fig. 13 Effect of Ply angles 2nd frequency for
cantilever beam (a)

Fig. 14 Effect of number of layers on frequency for cantilever beam (a)
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Fig. 15 First three flexural bending modes for fixed Composite beam (b), with S = 20 
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4. Conclusions

The present FE model is developed for dynamic analysis of laminated composite beams for

various end conditions for which exact analytical solutions are not present. The presented model is

capable of computing dynamic response for various end conditions viz. cantilever and fixed,

satisfactorily. The checking of accuracy and validation have been done by comparing the deflection

and stress results obtained by this model with that obtained by 2D-FE analysis. The 2D-FE analysis

has been done with the help of ABAQUS software package. The comparison shows that the 1D-FE

model of zigzag theory yields very accurate results for natural frequencies and mode shapes for

cantilever and clamped-clamped (fixed) boundary conditions of laminated composite and sandwich

beams with . The finite element model is free of shear locking. This work can be extended

for obtaining the 1D-FE results for zigzag theory for laminated composite beams for other kind of

loading such as static patch load, harmonic patch loads, static sinusoidal load and other end

conditions viz. propped, clamped-hinged etc.
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Appendix

 
The elements of the stiffness matrix Me are computed by exact integration as

(31)

with

(32) 

The elements of the stiffness matrix Ke are computed by exact integration as

(33)

with
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(34)

 are linearly interpolated in terms of their nodal values, i.e.

 (35)

with

 (36)

Substituting  from Eq. (20) into Eq.  (26) yields

(37)

where

 (38)

Substituting F2 from Eq. (38) into Eq. (37) yields the element load vector P
e as

(39)

Where

(40)

 

pz
1
pz

2
,

 

 

Bm
2

T
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Notations

L, Le : Number of layers, Length of Finite Element

σ, ε : Stress, Engineering Strain

σ, τij, εi, γij : Normal & Shear Stresses and Strain Components

Yi, Gij, vij, ρ : Elastic & Shear Moduli, Poission’s Ratio, density

a, b, h, S : Length, Width & Thickness of Beam, Span to thickness Ratio

u, w, ψ : Axial & Transverse Displacement and Shear Rotation

x, y, z : Axial, Width and thickness Coordinates

: coordinate of the Lower Face of kth Layer

Qii : Transformed reduced Stiffnesses

: Function of u in kth Layer

: Transverse Loads

: Inertia Element

: Stress Resultants

: Beam Stiffness Element

: Displacement and Load Vector

: Dimensionless Deflection & Natural Frequency

: Interpolation Function

: Generalized Inertia, Stress, Stiffness & Strain Matrix

: Elemental Mass, Stiffness & Load Matrix

zk 1–

R
k
z( ) R

kl
z( ),

pz

1
pz

2
F2, ,

Iij I ij Iil I il, , ,

Nx Mx Px Qx Vx, , , ,

Aij Aij,

U P,

w ωn,

N N,

Î F̂ D̂ B̂, , ,

M
e
K

e
P

e
, ,




