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Abstract. In this paper decay and mapped elastodynamic infinite elements, based on modified Bessel
shape functions and appropriate for Soil-Structure Interaction problems are described and discussed. These
elements can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with
United Shape Functions (EIEUSF) infinite elements. The formulation of 2D horizontal type infinite
elements (HIE) is demonstrated, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite
elements can also be formulated. It is demonstrated that the application of the elastodynamical infinite
elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of
Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite
elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the
Finite Element Method is explained in brief. Finally, a numerical example shows the computational
efficiency of the proposed infinite elements. 

Keywords: soil-structure interaction; wave propagation; infinite elements; finite element method; Bessel
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1. Introduction

In static SSI analysis, the simple truncation of the far field with setting of appropriate boundary

conditions gives very often-good results. However, in dynamic cases, an artificial boundary made by

truncation makes results to be erroneous because of reflection waves. In last decades, much works

has been done on unbounded domain problems and several kinds of modeling techniques have been

developed to avoid these effects. Such techniques are viscous boundary, transmitting boundary,

boundary elements, infinite elements and system identification method. At the same time several

numerical methods for these types of problems were suggested. The basic idea of these approaches

is to divide domain Ω into two parts the bounded part Ωc and unbounded part , where for the

first one is valid . For appropriate simulations we need to set the assumption that function

 on . 

Among these approaches, using infinite elements is good way to solve Soil-Structure Interaction

problems since its concept and formulation are similar to those of Finite element method except for

Ω∞

xi ci≤
u xi( ) 0= Ω∞
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the infinite extent of the element region and shape function in one direction and there is no loss of

symmetry of the element matrices. The domain  is partitioned into a finite number of infinite

elements directly incorporated with the meshes on the bounded domain . In the numerical

models these domains very often have called near ( ) and far ( ) fields.

Infinite elements can be classified into five types: classical, decay, mapped, elastodynamical and

envelope infinite elements (Kazakov 2009).

2. Backgrounds for infinite elements

Infinite elements are widely used in the numerical simulations when unbounded domain exists.

The origin of these elements is the works (Bettess 1978, Ungless 1973). Classification of the infinite

elements is proposed in Kazakov (2009). During the last three decades much element formulations

have been suggested (Aubry et al. 2003, Genes and Kocak 2002, Kazakov 2009, Yan et al. 2000,

Zhao and Valliappan 1993).

Soil-Structure Interaction (SSI) is a typical civil engineering problem (Bathe 1982, Basu and

Chopra 2002, Fang and Brown 1995, Luco and Westmann 1972, Madabhushi 1996, Oh and Jou

2001, Pradhan et al. 2003, Todorovski et al. 2000, Tzong and Penzien 1986). The early history of

SSI is summarized in work of (Kausel 2010). 

The infinite elements can be integrated in the Finite element method codes (Kazakov 2010,

Madabhushi 1996, Wolf and Song 1996, Wolf 1988) adequately dynamic SSI simulations to be

obtained. The infinite elements as a computational technique is one of the often used since their

concepts and formulations are much closed to those of the finite elements. These elements are very

effective for models of structures containing a near field discretized by finite elements and a far

field discretized by infinite elements. In the last two decades a lot of dynamic infinite elements

were developed. Yan et al. (2000) proposes one of the most effective elastodynamical elements, the

concept of which is used in the EIEUSF formulations. A novel numerical model for unbounded soil

domain using periodic infinite elements is proposed in Bagheripour and Marandi (2005), and using

infinite elements in the wavelet theory in Bagheripour (2010). Finite and infinite elements can be

used in static analysis of different civil engineering structures (Patil 2010). The influence of the

boundary conditions on SSI models can be seen in Wang (2005). 

3. Elastodynamical infinite element with united shape functions (EIEUSF)

The displacement field in the elastodynamical infinite element can be described in the standard

form of the shape functions based on wave propagation functions (Kazakov 2005, 2010) as

, or (1)

where  are the standard shape displacement functions,  is the generalized

coordinates associated with , n is the number of nodes for the element and m is the

number of wave functions included in the formulation of the infinite element. For horizontal wave

propagation basic shape functions for the HIE infinite element, the local coordinate system of which

Ω∞

Ωc

Ωc Ω∞

u x z ω, ,( ) Niq x z ω, ,( )piq ω( )
q 1=

m

∑
i 1=

n

∑= u x z ω, ,( ) Np x z ω, ,( )p ω( )=

Niq x z ω, ,( ) piq ω( )
Niq x z ω, ,( )
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is given in Fig. 1, can be expressed as 

(2)

where  are horizontal wave functions and  are Lagrange interpolation polynomial

which has unit value at ith node while zeros at the other nodes. For HIE infinite element the ranges

of the local coordinates are:  and . Here  assures the geometrical

transformations of local to global coordinates. 

Taking into account only real parts of the wave functions the equations of the wave propagation

can be written as

or (3)

where cs, cp are the wave velocities for S-waves and P-waves respectively, and α is appropriate

constant, called attenuation factor. 

Expanding this functions in a Fourier-like series for all wave functions included in the formulation

of the infinite element the shape functions for HIE can be written as

or (4)

The coefficients Aq can be written as

or in the form (5)

Because, m is a finite number and Aq can be treated as weight coefficients, so that  for

shape functions than Eq. (4) can be expressed as

, (6)

Using this approach can be written 

(7)

Niq x z ω, ,( ) T x z η ξ, , ,( )Niq η ξ ω, ,( ) T x z η ξ, , ,( )Li η( )Wq ξ ω,( )= =

Wq ξ ω,( ) Li η( )
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Fig. 1 Local coordinate system of horizontal infinite elements (HIE) 
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and 

(8)

Then Eq. (1) can be expressed as

(9)

The procedure described by the above equations can be treated as a superposing procedure based

on a finite number of terms, where real components of the wave functions  are

preliminary shape functions or basis functions from mathematical point of view, and coefficients Aq

are generalized coordinates with only one component, corresponding to the node i or weight

coefficients from mathematical point of view.

4. Element shape functions, based on Bessel functions

The idea and concept of the EIEUSF class infinite elements are presented in (Kazakov 2005,

2009, 2010). Several EIEUSF formulations are discussed and have been demonstrated that the shape

functions, related to nodes k and l (the nodes, situated in infinity, Fig. 1) are not necessary to be

constructed, because corresponding to these shape functions generalized coordinates or weights, see

Eq. (1), are zeros. The displacements in infinity are vanished, and these shape functions must be

omitted.

For horizontal wave propagation the basic shape functions for the HIE infinite element can be

expressed using Bessel functions as 

(10)

where  are modified Bessel functions of first kind. These functions can be written as 

(11)

where  are standard Bessel functions of first kind. In Eq. (11) ψ and β are constants, chosen

in such a way that the length of the wave and the attenuation of the wave respectively, are identical

with those, if Eq. (2) is used. This means that the following two relations are valid

(12)

or

(13)

where  is the wave frequency corresponding to ω if Bessel functions are used to approximate the

displacements in the infinite element domain, and 
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(14)

because the Bessel functions of first kind decay proportionally to . Although the roots of

Bessel functions are not generally periodic, except asymptotically for large ξ, such functions give

acceptable results. And what is more, using Bessel functions one can approximate change of the

wave length in the far field region.

If the element has four nodes and eight DOF only four shape functions can be used to

approximate the displacements, related to one frequency. These functions can be written as 

(15.a)

(15.b)

and

(16.a)

(16.b)

In the above equations, Eq. (15.a) is identical to Eq. (15.b) and Eq. (16.a) is identical to

Eq. (16.b). If rotational DOF are used then the element has four nodes and ten DOF. Two additional

shape functions must be used, written as 

(17.a)

and 

(17.b)

Here  and  are Bessel functions of first kind. The Taylor series indicates that

 is the derivative of . 

The function  is linear if no mid-nodes. Finally, if mid-node on the side i-j is used, then the

Lagrange interpolation polynomials must be quadratic. Modified Bessel functions of first kind, in
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accordance with Eq. (11) (  and ), are illustrated in Fig. 2.

The continuity along the artificial boundary (the line between finite and infinite elements, see

Fig. 3 line  and line ) is assured in the same way as between two plane finite elements

(Kazakov 2008). The application of the proposed infinite elements in the Finite element method is

discussed below. 

Using the procedure, given in details in Kazakov (2005) and briefly described here, mapped

EIEUSF finite elements, based on modified Bessel functions, can be formulated, based on Eq. (18)

(18)

where .

5. Stiffness and mass matrices of the element

By analogy with EIEUSF (Kazakov 2010) and since each shape function  is

associated with only one frequency  is a generalized coordinate involving a single wave

component only. Then the component matrices  and can be written as

and 

(19)

where ;  is a linear differential operator matrix. If Bessel functions are

used, the first derivative of  is  (The Taylor series indicate that  is derivative

of ) and can be expressed as .

6. Equation of motion of the entire system

The equation of motion for the whole Soil-Structure Interaction system including far field soil

region can be written as 

(20)

where  and  are respectively displacement vector, force vector and dynamic

stiffness matrix in frequency domain. Subscripts s and b stand for the nodes along the artificial

boundary between the near and the far field soil region and for those of the structure and near field

soil region respectively. This equation can be transformed into time domain by inverse Fourier

transformation as 
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(21)

where  and  are respectively displacement and force vectors, and  are mechanical

characteristics of the far field soil region.

7. Numerical example 

Structure with rigid strip foundation on a homogeneous half-space is modeled as shown in Fig.3.

Four models of the far field are used, briefly described as:

• model 1 - elastic springs with stiffness , calculated using the Gorbunov-Possadov relation

(Kazakov 2009) modified in accordance with the mesh as ;

• model 2 - elastic springs with stiffness , calculated using the Tsitovich relation (Kazakov

2009), modified in accordance with the mesh as , where  is the

element size and b = 1- thickness of the element;

• model 3 - the far field is desctitezed by massless EIEUSF infinite elements with only one
frequency (single wave component);

• model 4 - the far field is desctitezed by massless infinite elements with Bessel shape functions.
The stiffness matrices of the infinite elements, used in models model 3 and model 4 are calculated

by EIEUSF matrix module, leading to Eq. (22) and Eq. (23). Horizontal harmonic displacements
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0  S1

g

u· s t( )

u· b t( )⎩ ⎭
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+
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⎨ ⎬
⎧ ⎫

+ +  
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⎩ ⎭
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⎪ ⎪
⎧ ⎫
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2
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kb
1
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Eb lη/0.87 d 1 υ
2

–( )⋅ ⋅⋅= lη

Fig. 3 Computational model
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with period  and amplitude  are applied on the nodes as shown in Fig. 3. 

The results for the first 10 natural periods, corresponding to the models and max displacement of

node 422, are given in Table 1. The time history of the displacements of node 422, see Fig. 3,

between 8.4 s and 8.5 s are illustrated in Fig. 4.

(22)

(23)

Tθ 0.8 s= ub

max
0.1 m=

k[ ]IE_m3

3.1278 1.5129 3.1278– 1.5129–

1.5129 3.1278 1.5129– 3.1278–

3.1278– 1.5129 3.1278 1.5129–

1.5129– 3.1278– 1.5129– 3.1278

10
5⋅=

k[ ]IE_m4

3.0258 1.1159 3.0258– 1.1159–

1.1159 3.0258 1.1159– 3.0258–

3.0258– 1.1159 3.0258 1.1159–

1.1159– 3.0258– 1.1159– 3.0258

10
5⋅=

Fig. 4 Time history of the displacements of node 422 

Table 1 Natural periods of vibration and max displacement of node 422 

Models model 1 model 2 model 3 model 4

natural periods 
of vibration

1.2608
0.7215
0.6105
0.5680
0.5448
0.3774
0.3635
0.3521
0.3521
0.3348 

1.2598
0.7215
0.5946
0.4359
0.4185
0.3515
0.3514
0.3402
0.3394
0.3123

1.2606
0.7215
0.6052
0.5514
0.5152
0.3716
0.3575
0.3511
0.3506
0.3338

1.2606
0.7215
0.6068
0.5523
0.5171
0.3722
0.3586
0.3514
0.3509
0.3329

max displacement [m] 0.4679 0.4359 0.4518 0.4522
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8. Conclusions

In this paper a formulation of elastodynamical infinite element, based on Bessel shape functions

appropriate for Soil-Structure Interaction problems is presented. This element is a new form of the

infinite element, given in (Kazakov 2005). The base of the development is new shape functions,

obtained by modification of the standard Bessel functions of first kind. The stiffness matrices of the

examined infinite elements are calculated by EIEUSF matrix module, developed by the same author.

The numerical example shows the computational efficiency of the proposed infinite elements.

Such elements can be directly used in the FEM code. The results are in a good agreement with the

results, obtained by EIEUSF infinite elements. 

The formulation of 2D horizontal type infinite elements (HIE) is demonstrated, but by similar

techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be formulated. It was

demonstrated that the application of the elastodynamical infinite elements is the easier and

appropriate way to achieve an adequate simulation (2D elastic media) including basic aspects of

Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and

infinite elements) is discussed as well and the application of the proposed elastodynamical infinite

elements in the Finite element method is explained in brief. 
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