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Abstract. This paper examines the problem of a penny-shaped crack in a thermoporoelastic body. On
the basis of the recently developed general solutions for thermoporoelasticity, appropriate potentials are
suggested and the governing equations are solved in view of the similarity to those for pure elasticity.
Exact and closed form fundamental solutions are expressed in terms of elementary functions. The
singularity behavior is then discussed. The present solutions are compared with those in literature and an
excellent agreement is achieved. Numerical calculations are performed to show the influence of the
material parameters upon the distribution of the thermoporoelastic field. Due to its ideal property, the
present solution is a natural benchmark to various numerical codes and simplified analyses.
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1.  Introduction

Biot (1941) proposed the theory of poroelasticity to study the coupling behavior of two-phase

media. This triggered tremendous academic interests in the following 70 years. On the basis of the

generalized Hooke’s law, Biot (1955) developed the theory of anisotropic poroelasticity. To account

for the thermal effect, arising in deep drilling and nuclear storage facilities, thermoporoelasticity

model was founded (Coussy 1995, Abousleiman and Ekbote 2000).

Fundamental solutions in poroelasticity, due to its practical significance, have been a hot point in

the last decades. Following the work of Nowacki (1966), Cleary (1977) derived the fundamental
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solutions for quasi-static problem. Then, Cheng and Liggett (1984a, b) employed Laplace transform

to derive a quasi-static poroelastic fundamental solution. Later, time harmonic Green’s functions

were given by Norris (1985). Chen (1994a, b) derived the time domain Green’s functions for two-

and three-dimensional dynamic poroelastic problems. More recently, Gatmiri and Nguyen (2005)

presented closed-form fundamental solutions for two-dimensional saturated soil with incompressible

fluid. The state-of-the-art in fundamental solutions in poroelasticity was comprehensively reviewed

by Gatmiri and Jabari (2005a, b), who also pointed out the merits and drawbacks of the previous

works.

The crack problems enjoy a high level of popularity in both thermoelasticity and poroelasticity.

Boone and Detournay (1990) investigated the response of a vertical crack contained in a semi-

infinite impermeable elastic layer. The plain strain fracture problems of poroelasticity were studied

by Atkinson and Craster (1991). Gordeyev (1995) examined a disk-shaped crack in a transversely

isotropic poroelastic material saturated with fluid. Adélaïde et al. (2003) presented an analytic

solution of hydrostatic-elastic problem considering the interaction of wetting fluid with a penny-

shaped circular crack. For an axisymetrically loaded external circular crack located in a transversely

isotropic medium, Singh et al. (1987) examined the thermoelastic behavior via Hankel transform.

Recently, Liu and Kardomateas (2005) utilized two-dimensional theory of anisotropic

thermoelasticity and conducted a solution for the thermal stress intensity factors due to the

obstruction of a uniform heat flux by an insulated line crack. It is seen that most of the previous

works was limited to two-dimensional analyses (Gordeyev 1995, Liu and Kardomateas 2005, to

name a few) or to isotropic cases (Boone and Detournay 1990, Atkinson and Craster 1991, etc.).

Combining the general thermoelastic solutions with the potential theory method initiated by

Fabrikant (1989), Chen et al. (2004) derived fundamental solutions of a penny-shaped crack

problem subject to a point temperature load, which made a breakthrough in crack analyses in

thermoelasticity. For advances before 2004 in potential theory analyses of multi-field coupled

problems, the reader is referred to the review article by Chen and Ding (2004).

 Exact analyses play an important role in digging out the physical essence of the problem, hence

benchmarks to numerical codes and simplified models. There are some analytical solutions, such as

Gibson’s footing (Gibson 1967, Gibson and McNamme 1968) and Mandel problems (Cheng and

Detournay 1988, Abousleiman et al. 1996), which can be relied on for validating finite element

implementations for modeling poroelasticity. More recently, Li et al. (2010) provided another one

for a uniformly loaded penny-shaped crack contained in a thermoporoelastic medium. Li et al.

(2010) considered that axisymmetric problem to discuss the validity of the general solutions and

pointed out that the nonaxisymmetric problem can be also treated by the method present therein. In

this sense, the present paper is a continuation yet a promotion of the previous work. Moreover, to

the authors’ best knowledge, no three-dimensional fundamental solutions for a thermoporoelastic

medium containing a penny-shaped crack were reported in literature.

This paper aims to develop an exact 3D analysis for a penny-shaped crack under the action of

point mechanical, thermal and pressure loads applied symmetrically on the crack surfaces. Due to

the symmetry characteristic, the original problem is transformed into a mixed boundary-value

problem of a half space. Then appropriate potential functions are given and the governing integral

and integro-differential equations are presented. In view of the mathematical similarity of the

governing equations to those available in literature, the equations are successfully solved. The exact

and closed-form fundamental solutions in terms of elementary functions are derived via the

superposition principle. The behavior of the crack tip is analyzed and the stress intensity factor is
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given explicitly. The validity of the present solutions is studied both analytically and numerically.

An excellent agreement has been observed. Numerical calculation is performed to investigate the

effect of material properties on the thermoporoelastic field. In view of the rareness of the exact

solutions in thermoporoelasticity, the present results can serve as a benchmark to various numerical

codes and approximate analyses.

 

2. Governing equations

The constitutive equations of transversely isotropic thermoporoelastic media are given by Coussy

(1995) and are listed in Appendix A. The equations governing the displacement field can be easily

derived by inserting Eq. (A1) into the equilibrium equations in terms of stress components.

Introducing a complex displacement , these governing equations can be put in a

compact form as

(1)

 

where ,  and the overbar denotes the complex conjugate

value. The physical meanings of all the quantities involved in Eq. (1) are given in Appendix A.

Assuming that the rate of both fluid mass content and entropy vanishes and that the loading

involved varies slowly with time, we employ an uncoupled thermoporoelastic theory. Hence, if the

medium is in a steady-state, the equations governing the pressure and temperature fields are the

following two quasi-Laplace equations

(2)

(3)

 

where  and  are coefficients of permeability and thermal conductivity.

 

3. General solution

The general solution to Eqs. (1)-(3), recently developed by Li et al. (2010), can be recast into the

following form
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positive real part of the following algebraic equation (Ding et al. 2006)

(5)

 

The constants contained in Eqs. (4) and (5) are listed in Appendix B. The potential functions

 in Eq. (4) are quasi harmonic functions, i.e. 

, (6)

 

with  and .

It should be pointed out that the general solution presented in Eq. (4) is valid only for the case of

distinct . Different forms should be utilized for other cases. A detailed discussion can be

found in Li et al. (2010).

From Eqs. (A1) and (4), we can derive the expressions of the stress field

,

, (7)

 

where , ,  and the constants  are given in

Appendix B.

As pointed out by Li et al. (2010), three-dimensional analyses of the mixed boundary-value

problems associated with cracks and punches by virtue of the potential theory method proposed by

Fabrikant (1989) can be conveniently conducted on the basis of the general solution. To show the

practical significance of the potential theory method conjugated with the general solution in Li et al.

(2010), we consider in the following section a penny-shaped crack which is embedded in an infinite

thermoporoelastic medium 

4. Generalized potential theory method for penny-shaped crack problem

 

We now consider a penny-shaped crack with its surface parallel to the plane of isotropy contained
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(8)

 

where δ is the well known Dirac Delta function.

The problem can be solved if appropriate potential functions are found. To this end, we assume

that

, (9)

 

where eij are constants to be determined, and 

, (10)

where ω1, ω2 and ω3 are the crack opening displacement , pressure gradient 

 and temperature gradient , respectively;  is the distance between

the points  and . Hereafter  represents the distance between the

corresponding points.

All the zero boundary conditions in Eq. (8) can be met by setting
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Fig. 1 A schematic diagram for a penny-shaped crack and the coordinate systems. S represents the subsection
occupied by the penny shaped crack
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where  is the Kronecker delta. The satisfaction of the non-zero boundary conditions leads to

(12)

, (13)

 

where ,  and . Making use of Eq. (13), we arrive at 

(14)

 

where

(15)

which can be viewed as the generalized mechanical load. Here, we just list the main results and a

detailed derivation has been given by Li et al. (2010).
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5. Potential functions
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, (18)

 

The integrals in Eqs. (16) and (17) are deliberately put in identical forms to those in elasticity

without any simplification by virtue of the property of Dirac Delta function. This is just because of

the purpose of using Fabrikant’s results by an analog.

Inserting Eq. (16) into Eq. (10)1 gives arise to 
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It is evident that  is a Green’s function, whose expression has been shown in

Fabrikant (1989) as
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sake of the completeness of the present paper.
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6. Exact fundamental thermoporoelastic solution

In view of the structure of Eq. (9), we separate the thermoporoelastic field into two parts. The

first part corresponds to the potential function Ω1 and the second part to Ωj . We can

combine Ω2 and Ω3 together, because of the similarity between the temperature and pressure fields.

For the problem concerned in the present study, we can derive the thermoporoelastic field X (say)

by employing directly the results shown in Fabrikant (1989) and Chen et al. (2004). X can be

expressed as the sum of two terms

(24)
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, , , (27)

 

which definitively removes the seeming contradiction.

Of course, we can obtain the fundamental pressure and temperature fields independently by using

the potential theory method to solve the corresponding mixed boundary-value problem. For an

arbitrarily distributed pressure load  acting on the crack surface, Li et al. (2010) showed

that 

(28)

 

with . On letting , we immediately

arrive at the expression of  in Eq. (27), hence validating the present pressure field. The
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If the stress intensity factor is defined as

(32)

 

then we derive that

(33)

 

where Eq. (15) has been used.
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If the mechanical load  is solely considered, Eq. (25) agrees with Fabrikant’s result in

elasticity. Setting  and , we get the same result as Chen et al. (2004) with an

exception of coefficients. However, for a specific material, numerical computation reveals an

excellent agreement, which will be shown later.

At the present stage, we have at least two ways to check the validity of the present solutions. The

first choice is to construct the thermoporoelastic field for a uniformly loaded crack by integrating

the corresponding physical quantities in Eqs. (24)-(27). The results thus obtained are then compared

with those in Li et al. (2010), who has treated this special case. The other option is to set  and

 to zero and compare the solutions to those given by Chen et al. (2004). The following sections

will be devoted to the validity of the present solutions.

 

7. Uniformly loaded crack

Now consider a penny-shaped crack under the action of uniformly distributed mechanical, thermal

and pressure loads, i.e., ,  and ,

where  is a prescribed constant. For convenience, the symbol  equal to

 is introduced to denote the generalized mechanical load. The

thermoporoelastic field in this case can be derived through an integration of the corresponding

fundamental solutions in the previous section, for example

,
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,

(35)

 

where , ( ) are defined in Eq. (C2). The results in Eq. (34) are

identical to those presented in Li et al. (2010). Although the integrals involved in Eq. (34) are quite

tedious, however they are basic and the handbook (Gradsbteyn and Ryzbik 2004) is very useful to

work them out. 

 

8. Numerical results and discussions

Numerical results are present in this section, which consists of two parts. The first part is devoted

to the verification of the theomoporoelastic field presented in previous sections. The other part

studies the influence of the anisotropy of media on the corresponding physical quantities in terms of

the ratios E'/E and ν'/ν, which characterize the anisotropy of the porous media.

In the following analyses, the loads under consideration are applied at the point =

. The radius of the crack a and the Young’s modulus E in the isotropic plane are

respectively taken to be the reference scales of the length and stress.

It is stressed that all the numerical calculations involved were performed under the condition

, ( ).

8.1 Verification of the themoporoelastic field

To show the consistency of the present solutions with Chen et al. (2004), we made numerical

calculations for a penny-shaped crack subjected to a point thermal load oC only. Table 1

gives the material constants for a deep-water Gulf shale of Mexico (Kanj and Abousleiman 2005),

whose physical meanings are given in Appendix A. In this case, the solution in the section should

be identical to those given by Chen et al. (2004), as pointed out in section 6.
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Table 1 Material parameters used in numerical analysis

Parameter Value Unit

E (E') 1854 (927) [MPa]

G' 185.40 [MPa]

ν (ν') 0.22 (0.44) -

κ11 (κ33) 0.1 (0.3)

λ11 (λ33) 2.65 (4.00)

6 × 10−6  (1.2 × 10−5)
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Fig. 2 and Fig. 3 show the variation of the dimensionless temperature  and the normal stress

component  with the spatial coordinates, respectively. It is seen that the present solutions agree

well with those in Chen et al. (2004).

Table 2 lists the stress intensity factor KI for various  due to the thermal load. A good

agreement is again observed in view of the negligible relative difference. By means of comparing

various physical quantities in table and figure forms, the validity of the present solutions is

achieved. 

T/Θ3

0

σz/E

φ φ0–( )/π

Fig. 2 The dimensionless temperature  as a function of (a) ρ/a and of (b) z/a. In (a), the mark (•)
denotes the position where the point load is applied. The corresponding  is 1, which is not shown
for simplicity

T/Θ3

0

T/Θ3

0

Fig. 3 The dimensionless stress  as a function of (a) ρ/a and of (b) z/a. In (a), the mark (•)
indicates the point where the concentrated force is applied. The corresponding  is infinite, which
can not be shown

σZ/E ×10
5( )

σz/E
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8.2 Effect of anisotropy 

Once the correctness of the proposed solutions is confirmed, we can employ the solutions to

analyze the effect of the physical parameters, among which E'/E and ν'/ν are of high significance.

The following two subsections are devoted to influence of these two parameters, respectively. Under

this situation, we exert three types of loads with the following magnitudes: ,

= 101325 Pa and oC. For readers’ convenience, the loads  denote the

force, pressure and temperature, respectively. It is noted that  is a standard atmosphere in

magnitude and these loads  are often encountered in practice. 

In the following analyses,  and  represent the

stress intensity factor due to the mechanical, pressure, thermal and the generalized mechanical loads,

respectively. It is also noted that the displacement involved results from  applied at

=  simultaneously, if not stated otherwise.

8.2.1 Influence of the ratio E'/E

To examine the influence of E'/E on the thermoporoelastic field, we treat E' as a variable while

other material constants are identical to these in Table 1.

Fig. 4 plots the variation of the stress intensity factor KI with E'/E.  is not sensitive to the

material constants. This observation has been made by Fabrikant (1989) for pure elasticity and by

Chen and Ding (2004) for multi-field coupling materials. It is seen that  and 

change significantly with E'/E; the sign of  changes as E'/E increases. The resultant

 are therefore varies significantly with the Young’s modulus E' along the z- direction.

Fig. 5 presents the distribution of the quantity  on the plane with 

for E'/E equal to 0.5, 1.0, 5 and 20. It is clearly shown that E'/E is an important parameter changing

the pattern of the displacement. For completeness, the curve of  as a function of E'/E is

given in Fig. 6, where significant changes are again observed, especially in the range .
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Table 2 Comparison of the stress intensity factor with those given by Chen et al. (2004)

KI × 10−3

Relative error (%)
    Present                   Chen et al. (2004)

0.0 -5.71190263384547 -5.70405132152740 0.1374520

0.1 -4.77674128585335 -4.77017533116283 0.1374587

0.2 -3.23816495811846 -3.23371380476813 0.1374555

0.3 -2.15636353981846 -2.15339939024326 0.1374546

0.4 -1.51753616919305 -1.51545014709516 0.1374625

0.5 -1.14238059576696 -1.14081026739772 0.1374624

0.6 -0.915946229280748 -0.914687164452968 0.1374632

0.7 -0.777009023835998 -0.775940949346910 0.1374573

0.8 -0.693523031429236 -0.692569724526042 0.1374600

0.9 -0.648768296104223 -0.647876517956539 0.1374612

1.0 -0.634655848205055 -0.633783480169711 0.1374562

Note: Relative error is defined as 

φ φ0–

π
------------

Present Chen et al. 2004( )–

Present
--------------------------------------------------------------------- 100%×
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Fig. 5 The distribution of  for (a) E'/E = 0.5, (b) E'/E = 1.0, (c) E'/E = 5 and
(d) E'/E = 20

lg w ρ φ0 z, ,( )/w 0 φ0 0, ,( )[ ]

Fig. 4 The stress intensity factor KI as a function of E'/E 
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Fig. 6 The dimensionless displacement /a
at the origin as a function of E'/E

w 0 φ0 0, ,( ) Fig. 7 The stress intensity factor KI as a function of
ν'/ν

Fig. 8 The distribution of  for (a) ν'/ν = 0.1, (b) ν'/ν = 1.0, (c) ν'/ν = 1.5 and
(d) ν'/ν = 2.0 (d) 

lg w ρ φ0 z, ,( )/w 0 φ0 0, ,( )[ ]
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 8.2.2 Influence of the ratio ν'/ν

In order to investigate the effect of the parameter ν'/ν, the material constants in Table 1 remain

unchanged, except for ν' as a variable changing from 0 to 0.5. Parallel to the analyses in subsection

8.2.1, the dependency of KI,  and  upon ν'/ν are given in

Figs. 7, 8 and 9, respectively. All the physical quantities change significantly with ν'/ν, with an

exception of  which is a constant as expected. 

From an overall point of view, the anisotropy of the materials has a significant influence on

distributions of the thermoporoelastic field. Of course, the dependencies of the corresponding

quantities upon ν'/ν are quite different from these upon E'/E (see Fig. 6 and Fig. 9, for example),

since E'/E and ν'/ν are conceptually different parameters quantifying the anisotropy of the media.

 

9. Conclusions

In the present study, a penny-shaped crack problem is considered in the domain of

thermoporoelasticity. By using the general thermoporoelastic solution recently proposed by Li et al.

(2010) and the potential theory method, the exact and closed form fundamental solutions expressed

in terms of elementary functions are derived. The validity of the present solutions is thoroughly

discussed in analytic and numerical ways. By comparing with the results available in literature, an

excellent agreement has been observed. Hence the solution in this paper can naturally serve as a

benchmark to check various numerical codes and approximate theories. This point should be

highlighted in view of the rareness of exact solutions in thermoporoelasticity.

Based on the present solutions, numerical simulations can be easily performed to analyze the

influence of various physical parameters on the thermoporoelastic field, especially the singularity

behavior at the crack tip. It is found that the anisotropy of the material has a significant influence

on the thermoporoelastic field.

It should be pointed out that the potential theory method conjugated with the thermoporoelastic

general solution (Li et al. 2010) can deal with mode II and III problems. Under that condition, the

lg w ρ φ z, ,( )/w 0 φ0 0, ,( )[ ] w 0 φ0 0, ,( )

K Θ1

0
0 0, ,( )

Fig. 9 The dimensionless displacement /a at the origin as a function of ν'/ν  w 0 φ0 0, ,( )
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corresponding potential functions will take on a completely new form and extra mathematical

difficulties will be encountered. This will be reported in another paper.
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Appendix A

If we assume that the z-axis is perpendicular to the material symmetry plane in the Cartesian coordinates
, the constitutive equations for a transversely isotropic thermoporoelastic medium read (Coussy 1995)

, (A1)

where P and T are variations in the pore pressure and temperature, respectively; P = 0 and T = 0 correspond
to the stress-free state; Conditional symbols  and  are used to denote components of displacement
and stress, respectively; cij,  and  are elastic moduli, Biot’s effective stress coefficients
and thermal constants, respectively. 
The material coefficients in Eqs. (A1) can be denoted by the engineering constants as follows (Kanj and

Abousleiman 2005) 

(A2) 

where E is the drained Young’s modulus in the plane of isotropy (  plane), and E' the drained Young’s
modulus perpendicular to that plane, i.e., along the z-direction. Assuming that the solid skeleton is micro-
homogeneous and micro-isotropic, we can express α1 and α3 in terms of cij and the bulk modulus of the solid
grain Ks according to

, (A3)
 
Furthermore β1, β3 and βm are related to the linear expansion coefficients in the isotropic and transverse

planes of the material (α1 and α3) and the volumetric expansion coefficient αf of the pore fluid as

(A4)
 

where φ' is the porosity.

Appendix B

Here, we present the constants involved in the general solution. 
In Eq. (4), the constants are defined as

(B1)
 

where δij is the Kronecker delta, and
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with

(B3)
 
The constants in Eq. (7) read

 

(B4)

It is noted that the identity  holds.
 

Appendix C

The derivatives of the Green’s function Π1 read (Fabrikant 1989)
 

(C1)

 

 

γj3 γj1sj, j 1 4–=( )=
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where 

(C2)

The derivatives of  Π2 are listed as follows (Chen et al. 2004)
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(C3)

with .

 

ς ρ/ρ0( )e
i φ φ
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