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Abstract. Calculating the displacements of retaining walls under seismic loads is a crucial part in
optimum design of these structures and unfortunately the techniques based on active seismic pressure are
not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic
displacements of retaining walls are studied in present research. In this regard, applying limit analysis
method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration,
critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for
two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction
angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height
of the wall all in the magnitude of seismic displacements has been investigated by the suggested method.
Two sets of ground acceleration records related to near-field and far-field domains are employed in
analyses and eventually the results obtained from the suggested method are compared with those from
other techniques.
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1. Introduction

In order to consider the economics of design and also mitigation of damage due to big

earthquakes, knowing the behavior and seismic design of retaining walls is of significant

importance. Analytical methods such as Mononobe-Okabe (1929, 1924) for calculation of active

earth pressure provide advantageous information about the seismic loads applied to the wall,

however the functionality of retaining walls after earthquakes is to a great extent dependent upon

their deformations during the quake; simply because the induced active horizontal pressure behind

the wall is a function of displacements and also direction of the wall’s movement (Wu and Prakash

2001). Although large displacements can be acceptable for some walls but the other ones might

encounter failure due to even small deformations. Therefore the analyses resulting in permanent

deformations of retaining walls provide a better index of the wall’s performance. Various methods

have been proposed for determination of the permanent deformations of retaining walls, a brief

description of which is presented here.
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Newmark (1965) assumed the failure wedge as a rigid body ready to slide emplaced on the

sliding surface. He calculated the horizontal seismic acceleration for the seismic stability of the

slope given the safety factor of one. Then by two successive integration of the difference between

accelerometer and yield acceleration, he was able to calculate the permanent displacements of the

failure wedge. Richards and Elms (1979) proposed a simple technique based on the sliding block of

Newmak for dynamic design of rigid retaining walls. The studies of Prakash and Wu (1996) show

that calculated displacements by Richards and Elms (1979) underestimate the real values.

Using finite element method, Nadim (1982), Nadim and Whitman (1983) studied the

displacements in retaining walls. Based on their studies, the seismic pressure applied to the wall can

be 30% greater than the active earth pressure in static conditions. Also, if the ratio of the main

frequency of ground motion to the frequency of backfill is greater than 0.3 then the resonance effect

in the backfill plays an important role in permanent displacements of the wall (Wu and Prakash

2001). Whitman and Liao (1985) identified the errors of modeling approach proposed by Richards

and Elms (1979). Using the results of sliding block analyses in 14 ground motions reported by

Wong (1982), they noticed that the average permanent displacements have a normal logarithmic

distribution pattern.

Among the other mathematical models for determination of walls’ displacements, the models

proposed by Rafnsson (1991), Rafnsson and Prakash (1994), Wu (1999) can be mentioned.

Considering a system with two degrees of freedom and modeling the soil as a series of springs, Wu

(1999) calculated both sliding and rotational displacements of retaining walls and verified his work

by comparing the results with the experimental data reported by Zeng (1998) obtained from

centrifuge tests. Huang (2006) studied the seismic displacements of two common bridge abutments

in Taiwan by pseudo-static approach based on the multi-wedge theory and the sliding block theory

of Newmark. In his analysis, the input ground acceleration was selected from the new and old

design codes of Taiwan and displacements were calculated under four different ground acceleration

records with and without consideration of the vertical acceleration. According to his research, the

calculated seismic displacements for cantilever abutments were in the recommended range by

design codes but in the case of gravity abutments it was more than allowable values. He also

concluded that the presence of fill in front of the abutments has an important effect on reduction of

seismic displacements.

Michalowski (2007) calculated the non-recoverable displacements of soil slopes during seismic

triggers by the kinematic approach of limit analysis. A hodograph system was used to demonstrate

the acceleration distribution in the structure for better understanding of the analysis. He concluded

that in the soils where non-associated flow rule applied, the failure acceleration was smaller than

soils with associated flow rule. Huang et al. (2009) employed a multi-wedge pseudo-static method

to determine the seismic displacements of common walls from a series of shaking table experiments

and the analytical method of Newmark (1965) based on the sliding block. Their results showed that

the ratio of horizontal displacements of the wall to the height of the wall varied from 2 to 5%

which covers a common range of displacements up to extensive failures. Eventually, they suggested

the maximum seismic displacements of retaining walls in cohesionless soils be considered about 5%

of the height of wall.

Based on limit equilibrium technique, Trandafir et al. (2009) estimated the sliding failure and

rotational failure displacements for retaining walls. They also calculated the rotational failure

displacements for reinforced embankments. According to their studies, the vertical and horizontal

seismic displacements in the crest of reinforced embankments were about 12% and 32% smaller
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than vertical and horizontal seismic displacements of the crest of failure wedge behind a retaining

wall, respectively.

Regarding the previous researchers did not calculate the seismic displacements of retaining walls

based on limit analysis method; present study suggests a new procedure for calculation of seismic

displacements based on kinematic limit analysis using upper bound theorem. In the proposed

method, besides with calculating the seismic displacements, the angle of failure wedge is also

determined under earthquake conditions for which the angle of dilation and associated flow rule

(Normality Rule) are both considered in the behavior of soil.

2. Limit analysis

Finding analytical solutions is practically difficult for many engineering problems. Finn (1967),

Chen (1975), Chen and Liu (1990) discussed purely analytical limit analysis solutions for some

geotechnical problems (Drund et al. 2006). Limit analysis is a technique for stability assessments

based on two theorems that make it possible to find upper and lower bound solutions for unknown

quantities, such as the critical height of a slope and bearing capacity of foundations. Alternatively,

material parameters can be estimated to maintain the stability of a given structure in a loading

condition (Michalowski 1998). Lower and upper bound estimates of the collapse load factor can be

obtained by both analytical and computational methods. In the case of lower bound solutions,

statically admissible stress fields have to be assumed, whereas in the case of upper bound solutions,

a kinematically admissible velocity fields must be assumed. In the latter case, this can be done by

establishing a failure mechanism.

The lower bound theorem in its general form was independently established by Feinberg (1948)

and proved by Hill (1948) by applying the principle of maximum plastic work to a finite volume of

perfectly plastic material. A more complete statement of both lower and upper bound theorems and

their proof was presented by Hill (1951) three years later. Drucker et al. (1952) first noted that the

stress state remains constant at plastic collapse and threfore proved that the lower and upper bound

theorems of limit analysis are also valid for elastic-plastic materials (Yu 2006). 

The material involved in the analysis obeyed a convex yield condition, such as Mohr-coulomb

criterion

(1)

 

where c and φ are the cohesion and internal friction angle of soil, respectively. Plastic deformations

are governed by the normality (or associative) flow rule as follows 

(2)

where λ is a positive scalar multiplier,  is the yield criterion, and  and  are the plastic

strain rate and the stress tensor, respectively.

The upper bound theorem, which uses a rigid perfectly plastic soil model, states that the internal

energy dissipated by any kinematically admissible velocity field can be equated to the work done by

external loads, and so enables a strict upper bound on the actual solution to be deduced. The lowest

possible upper bound solution is sought with an optimization scheme by trying various possible
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kinematically admissible fracture surfaces. A kinematically admissible velocity field is the one that

satisfies compatibility, a plastic flow rule and the velocity boundary conditions (Yang 2007). It is

useful to write this theorem in a mathematical form as

(3)

 

In this equation, the left-hand side is the rate of the internal work or energy dissipation and in the

right hand side the first term shows the unknown distributed load on boundary, S, and the second

term shows the work rate of the given distributed forces per unit volume such as weight or inertial

forces. Distributed loads on boundary S moving with velocity Vi (kinematic boundary condition) and

distributed forces per unit volume are in the kinematically admissible velocity field .  is the

stress state which is in agreement with selected mechanism (satisfies the yield condition where

plastic deformation occurs) (Michalowski 2007). The strain rate  represents any set of strains or

deformations compatible with real or virtual displacement rate  of the points of the

applications of the external forces Ti or the points of displacements corresponding to the body forces

Xi (Chen 1975).

In recent years, several studies have been devoted to study the seismic stability of slopes and

retaining walls (Michalowski 1998, You and Michalowski 1999, Sadrekarimi et al. 2008,

Anastasopoulos et al. 2010, Gursoy and Durmus 2009, Haciefendioglu et al. 2010, Kim et al. 2008,

Cocco et al. 2010).

 

 

3. Suggested formulation for calculating the permanent displacements

The proposed formulation in this research is based on kinematic limit analysis and upper bound

theorem. The assumptions are as follows:

1. The failure wedge has been considered as a single planar block.

2. The Newmark sliding block method is used to estimate the seismic displacements.

3. The backfill is dry and cohesionless with no inclination and it follows the associated flow rule.

4. The retaining wall is considered as a rigid gravity wall which can tolerate sliding and rotational

movements.

 

3.1 Calculation of critical failure angle in seismic conditions

A retaining wall with the height of H having a horizontal backfill with an internal friction angle

of φ is considered. Internal friction angles of δ and φb between the wall and soil are taken into

account, along the wall and in the foundation, respectively. The failure wedge is assumed as rigid

and the Mohr-Coulomb failure criterion and associated flow rule are assumed to be valid. Inertial

force of earthquake has been applied to both wall and soil in pseudo-static condition under

horizontal and vertical accelerations of kh and kv, respectively.

In order to calculate the active pressure on the wall and determination of critical failure angle, the

applied forces to the failure wedge and kinematic boundary conditions are considered as shown in

Fig. 1. In this figure, V and V0 are velocity vectors of the failure wedge and retaining wall,

respectively, and V1 is the relative velocity between the wall and failure wedge.
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Based on associated flow rule, the sliding vector, V, makes the angle of φ with the failure surface

and the sliding vector, V1, makes the angle of δ with the direction of wall and soil, assuming

. The rate of internal work or dissipated energy (D) is determined as follows

(4)

 

where c is the cohesion of soil and assume to be zero.

Based on the upper bound theorem of limit analysis and Eq. (3), the rate of work for external

force is equal to

(5)

(6)

 

Where Xi is the force in the unit of volume,  is the work rate of the gravity forces of the

wedge and  is the active force perpendicular to the wall.

Regarding Fig. 1(b), where the velocity vectors in the initial failure wedge and their relations are

depicted, the correlation between V and V0 is determined as follows

(7)

 

Substituting Eqs. (4) to (7) into Eq. (3) we obtain

(8)

Regarding the absence of surface load (Ti = 0), the first term in Eq. (3) has been eliminated

making the left hand side of Eq. (8) equal to the second term in Eq. (3).

 The weight of failure wedge, w, is equal to 
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Fig. 1 (a) Applied forces to the wall, (b) Hodograph of velocities
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(9)

 

To calculate an upper bound for the active force in Eq. (8), the inequality is changed to equality.

Substituting Eq. (9) in Eq. (8), it can be written

(10)

 

Assuming c = 0 and simplifying the Eq. (10), the active force is determined as follows 

(11)

 

where Pae is the active force making the angle of δ with the wall and Paen is the active force,

perpendicular to the wall.

In common analyses of the slides, inclination angle, α, is usually given. In order to obtain the best

estimation (i.e., least upper bound), the active force as a function of α needs to be maximized,

hence 

(12)

Since determination of α based on other parameters is mathematically difficult, the solution of

Eq. (12) is proposed for δ as a function of α and φ.

(13)

(14)

(15)

(16)

 

Eq. (13) has been solved by trial and error for different values of α resulting in the critical failure

wedge of the retaining wall.

3.2 Permanent displacements of the wall

The first step in estimating the permanent displacements of the wall by upper bound theorem is

calculating the ky. A gravity wall with granular backfill and height of H is shown in Fig. 2(a).

In order to calculate the failure acceleration, two blocks have been considered. The first block is

the failure wedge behind the wall and the second block is the gravity wall itself. According to

associated flow rule, the velocity vector makes a certain angle with the failure lines in kinematic

boundary conditions.
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Mentioned angle is equal to the internal friction angle of soil (φ) along the failure wedge. This

angle along the wall and soil, and the failure line in the foundation is equal to δ and φb,

respectively. The relation between velocities is illustrated in Fig. 2(b). In Fig. 2, V1 and V2 are

velocity vectors of failure wedge and retaining wall, respectively and V12 is the relative velocity

between the wall and failure wedge.

Considering Fig. 2(a) and Eq. (3), the rate of external work and rate of internal work (dissipation

of energy), are determined as follows

(17)

 and  are the rates of work done by gravity force in the soil block and in the wall block,

respectively. These two rates are calculated by Eqs. (18) and (19)

(18)

(19)

 

Rate of work done by the surface force is equal to zero in Eq. (3). The right hand side of the

inequality (17) is equal to the rate of work done by volumetric forces. Assuming at the time of

failure, the ground motion acceleration is reached the yield acceleration ( ); it can be written

(20)

 

Regarding the Fig. 2(b), following relation can be concluded

(21)

 

Substituting Eq. (21) into Eq. (20), the vertical component of yield acceleration is calculated as
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 Fig. 2 Single-block initial failure mechanism: (a) initial velocities, (b) Hodograph of velocity 
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(22)

where D is the rate of internal work done by cohesion of soil. ww and w are the weights of wall and

failure wedge, respectively. w is defined in Eq. (9) and ww equals to 

(23)

 

In order to predict permanent displacement of retaining wall two mechanisms proposed. In

mechanism I, with assumption of wall’s foundation be incompressible, the dilatancy angle becomes

zero. This assumption made because in granular soils, dilatancy is typically less than that predicted

with associative law (Michalowski 2007). However, in mechanism II without considering this

assumption, the dilatancy angle becomes equal to friction angle. However if the soil does not obey

associative flow rule completely, or contains water or cohesion, this approach should be modified

and other parameters should be considered in the formula. Moreover, because in medium density

backfill, the value of δ is between  and  (Das 1983), in these calculations δ is being equal to

.

When the earthquake acceleration exceeds the yield acceleration of structure ( ), two

mechanisms might occur. In mechanism I, as shown in Fig. 3(a), the wall only experiences the

sliding failure and moves with the acceleration of . Soil block also moves with the acceleration

of  in this mechanism. In the second mechanism (II) the wall experiences both sliding and

rotational displacements (Fig. 4(a)) and thus the wall and soil block move with accelerations of 

and  respectively. 

The relation between the acceleration vectors in mechanisms I and II are demonstrated in

Figs. 3(b) and 4(b), respectively. Mentioned mechanisms do not act like the incipient process which

leads to inequality in Eq. (3) and consequently  and  are real accelerations and the real

velocities would be obtained by one integration from these accelerations. A second integration does

lead to determination of displacements parallel to the principal accelerations for retaining walls and

ky
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Fig. 3 Displacement mechanisms of the wall (a) Mechanism I, (b) Hodograph of acceleration for the
mechanism I 
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soil block.

The sliding process occurs along the failure surfaces during the seismic quakes. These failure

surfaces are brought about when the earthquake acceleration reaches the yield acceleration of

structure. Sliding surfaces in this analysis are considered as a thin layer of soil (shear band).

Considering the backfill soil satisfies the associated flow rule and dilation is not zero, in both

mechanisms the acceleration vector  and consequently direction of sliding surface make the

angles of  with the failure surface in which ψ is the dilation angle of soil. 

In mechanism I assuming the sliding failure, acceleration vectors  and  and therefore the

direction of sliding are parallel to the failure surface. In mechanism II assuming of rotational and

sliding displacement, the acceleration velocities  and  and consequently direction of sliding

will make the angles of  and  with the failure surface, respectively. The rate of

balance of work of all forces applied to both blocks, can be written as follows 

For mechanism I

(24)

 

For mechanism II

 (25)

 

where  and  are obtained from Eqs. (18) and (19).

Inertial forces in two blocks are caused by accelerations (  and ) and their directions are

opposite to the direction of acceleration vectors hence their rate of work would be negative. But in

the Eqs. (24) and (25) they appear with positive sign in the left side. Regarding Figs. 3(b) and 4(b)

it can be written 
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Fig. 4 Displacement mechanisms of the wall (a) Mechanism II, (b) Hodograph of acceleration for the
mechanism II 
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 (For mechanism I)  (26)

(For mechanism II)  (27)

Substituting Eq. (20) in Eqs. (24) and (25) it can be written:

For mechanism I

(28)

 

For mechanism II

(29)

 

Substituting Eqs. (21) and (26) into Eq. (28) and also Eqs. (21) and (27) into Eq. (29) and

rearranging the terms, acceleration of wall block in the foundation is obtained as:

For mechanism I

(30)

 

For mechanism II 
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 Fig. 5 Algorithm used to determine the yield acceleration
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where C and C' are constants dependent on the geometry of mechanism and material properties.

Finally by two successive integration from Eqs. (30) and (31), sliding displacement in mechanism

(I) and sliding and rotational displacement of the wall in mechanism II are calculated as:

For mechanism I

 (32)

 

For mechanism II 

 (33)

 

Since ky is a function of α and the critical angle of failure (α) is also dependent on kh, Eqs. (13)

and (22) are solved simultaneously by trial and error based on the algorithm shown in Fig. 5.

 

4. Obtained results from the suggested method

In this section using the obtained formulation from section 3 and considering the mechanism I

(sliding displacement of retaining wall), the effect of soil and wall properties and also the maximum

acceleration of earthquake on permanent displacements of retaining walls are investigated.

 

4.1 Effect of maximum earthquake acceleration coefficient on permanent displacements

of retaining walls

A retaining wall with the height of H = 10 m and specific weight of concrete  is

considered. A horizontal backfill (i.e., zero inclination angle or ) with the height of 10 m and

internal friction angle of  and specific weight of soil  and also  is

assumed. Internal friction angle between the soil and foundation of wall is considered as

 and the backfill is considered as cohesionless soil (c = 0). Since the frequency

components of different accelerometers are not the same, in order to investigate the effect of

maximum earthquake acceleration coefficient, the accelerometer related to Northridge-1994
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Fig. 6 Effect of the maximum acceleration coefficient of earthquake on the permanent displacements of
retaining wall
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earthquake has been employed instead of using several records with different PGAs. This record is

scaled for different maximum accelerations (Fig. 7).

Using Eq. (13) and the algorithm shown in Fig. 5, ky and C are obtained for the mentioned wall

and backfill as 0.103 and 0.9422, respectively (coefficient in Eq. (30)). Fig. 6 demonstrates the

increasing trend of seismic displacements of the wall as km increases.

 

4.2 The effect of backfill’s internal friction angle on displacements of retaining wall

Fig. 8 shows the permanent displacements of retaining wall for different internal friction angles.

These variations are studied for walls with different heights. As can be observed from Fig. 8, for a

known internal friction angle, displacements increase as the height of wall increases. These results

are obtained for the record shown in Fig. 7.

 

4.3 The effect of height of the wall on seismic displacements of the retaining wall

It is anticipated that for a certain φ and under a constant accelerometer, as the height of the wall

increases, permanent displacements also increase which is consistent with the curve obtained from

calculations in part 3 of this paper. In order to investigate the effect of internal friction angle of the

foundation (φb), the displacements have been estimated under the Northridge-1994 accelerometer for

φ = φb and φb = 0.86φ. Obtained results are shown in Figs. 9 and 10.

Fig. 7 Record of Northridge earthquake

 Fig. 8 Effect of internal friction angle of backfill on permanent displacements of retaining wall 
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According to these figures, permanent displacements of the wall have been increased with

decrease in φb. The displacements are shown in logarithmic vertical axis in all three plots. Fig. 11

illustrates the effect of φb on permanent displacements of the retaining wall.

 

Fig. 9 The effect of height of the wall on displacements of retaining wall φ = φb

Fig. 10 The effect of height of the wall on displacements of retaining wall φb = 0.86φ

 Fig. 11 Effect of φb on permanent displacements of the wall
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4.4 Investigating the permanent displacements of wall for far-field and near-field domain

earthquakes

For the analyses of this section, 7 records from far-field domain have been compared with 5

records from near-field domain which maximum accelerations are scaled for the values of 0.2, 0.3

and 0.4 g. The retaining wall and backfill are assumed similar to section 4.1. These records are

shown in Figs. 12 and 13, respectively. 

According to the results obtained from suggested method (mechanism I) the effects of these

records on displacements of retaining wall are investigated in Figs. 14 and 15, respectively. In all of

these records, the displacements increase with increase in maximum acceleration.

In Fig. 16, a comparison has been made between displacements of retaining wall under far-field

and near-field records. As can be observed in the Fig. 16, near-field domain records induce greater

permanent displacements in the retaining wall compared with far-field domain records with the

same maximum acceleration.

 Fig. 12 Far field records
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  Fig. 13 Near field records

 Fig. 14 Permanent displacement of retaining wall under far-field domain earthquakes

 Fig. 15 Permanent displacements of retaining wall under near-field domain earthquakes
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5. Comparison of results with those reported by other researchers

For the mentioned retaining wall in section 4.1, the critical failure angle (α) has been calculated

using the suggested method (Eq. (13)). The results from present formulation compare very well with

those reported by Zarrabi-Kashani (1979) as can be observed in Table 1. Table 2 shows a

comparison between ky calculated from current method and ky obtained from Michalowski (2007)

method and there is a good agreement between them.

 Fig. 16 The effect of record type on permanent displacements of retaining wall

Table 1 Comparison between critical angle of failure obtained from suggested method and Zarrabi-Kashani
(1979) method Specific weight of backfill  

kh

Height of the 
wall

H (m)

α
Zarrabi-
Kashani
(1979)

α
 Proposed 
method

Specific 
weight of 
backfill 

γs (kN/m)

Friction angle 
of granular 

backfill
φ (Degrees)

Specific 
weight of 
concrete

γc (kN/m3)

Inclination 
angle of 
backfill

β (Degrees)

0.1 10 50.53 50.5 20 30 24 0

0.2 10 46.10 45.8 20 32 24 0

0.25 10 44.78 44.2 20 34 24 0

0.3 10 43.51 42.6 20 36 24 0

Table 2 Comparison between ky obtained in this paper with the ky calculated by Michalowski (2007) method

km 
Northridge
earthquake

 Height of 
the wall
 H (m)

 Inclination 
angle of 
backfill 

β (Degrees)

 Specific 
weight of 
concrete

γc (kN/m3)

Friction angle 
of granular 

backfill
φ (Degrees)

Specific 
weight of 
backfill  

γs (kN/m3)

ky

 proposed 
method

ky

Michalowski
(2007)

 0.344 g

 3  0  24  30  20  0.181  0.180

 5  0  24  30  20  0.169  0.169

 7  0  24  30  20  0.163  0.163

 10  0  24  30  20  0.159  0.159



 Prediction of seismic displacements in gravity retaining walls based on limit analysis approach 263

In order to compare the displacements calculated from suggested method with those from other

researchers two models have been considered of whose properties are noted in Table 3. These two

models have been analyzed and permanent displacements of retaining wall under different

accelerometers (Figs. 17 and 7) are determined. Obtained results in the first model only include

sliding displacements of the wall and in the second model both sliding and sliding-rotational

displacements are included. 

Permanent displacements of the retaining wall from the first model calculated by suggested

method under mechanism I are compared with the method proposed by Huang (2006) in Fig. 18.

Table 3 Properties of the two models used in analyses

 Model
δ 

(Degrees)

 Height of 
the wall
 H (m)

Inclination 
angle of 
backfill  

β (Degrees)

 Specific 
weight of 
concrete

γc (kN/m3)

Friction 
angle of 
granular 
backfill

φ (Degrees)

Specific 
weight of 
backfill  

γs (kN/m3)

ww

 (kN /m)
φb

 (Degrees)

 1  15  8.1  0  24  30  19  669.16  25.8

 2  22  4  0  24  33  21.6  130.08  23.3

Fig. 17 Records of accelerations used in analysis of model 1

Fig. 18 Comparison of wall’s displacements from the first model obtained by the suggested method under
mechanism I and the method proposed by Huang (2006) 
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This model has been analyzed under accelerometers whose maximum accelerations are scaled for

the values of 0.2 g, 0.3 g, 0.4 g, 0.5 g, 0.6 g and 0.624 as shown in Fig. 17 and permanent

displacements of the retaining wall are compared. The results of present method are a little greater

than those reported by Huang (2006) in both cases. 

Table 4 shows the sliding and sliding- rotational displacements of model 2 estimated by the

suggested method and those obtained using work principles by Wu (1999), Richards and Elms

(1979), Whitman and Liao (1985) under the Norhridge-1994 earthquake. Obtained displacements

from the current formulation are greater than those from other studies. In other words, present

values can be considered as an upper bound for those reported by other researchers.

Fig. 19 shows the effect of height on permanent displacements of retaining wall under the

Northridge-1994 earthquake. Obtained results from the suggested method considering mechanism I

are compared in Fig. 19 with those reported by Richards and Elms (1979), Whitman and Liao

(1985) methods. In this study , ,  and .
Even here obtained displacements from the suggested method are greater than the other results or

in other words, present results are an upper bound for those reported by other researchers.

φ φb 32= = δ 2/3φ= γs 20 kN/m
3

= γc 24 kN/m
3

=

Table 4 Comparison of permanent displacements of the retaining wall obtained by current method and the
studies of other researchers

Proposed 
method

(Sliding-
Rotational)

Wu (1999)
(Sliding-

Rotational)

Proposed 
method

(Sliding)

Wu (1999)
(Sliding)

Richards and 
Elms (1979)

Whitman and 
Liao (1985)

ky 0.097 - 0.097 - 0.155 0.1

Displacement (m) 0.167 0.166 0.150 0.062 0.095 0.118

Fig. 19 Analysis of displacements calculated by the suggested method and the other methods for retaining
walls with different heights 
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6. Conclusions

In this paper using the upper bound theorem of limit analysis and presenting a new formulation,

permanent displacements, and critical failure wedge and yield acceleration of retaining walls are

determined. In this method, the soil properties such as dilatancy angle, associated flow rule and

geometry of model are all taken into account in calculating the displacements of retaining wall. Two

mechanisms are considered in determination of permanent displacements of retaining wall. The

mechanism I calculates the sliding displacements and mechanism II calculates the sliding-rotational

displacements.

The effect of height of wall, internal friction angle of soil (φ), friction angle between soil and wall

(φb, δ) and maximum acceleration applied to the structure amax in permanent displacements of

retaining wall are also considered. Eventually, permanent displacements of the retaining wall

estimated from the suggested method based on mechanisms I and II are compared with the results

reported by other researchers.

Obtained results from suggested formulation reveal that by increase in the height of wall, decrease

in φ and φb, increase in amax and reduction in the distance of structure from the fault (applying the

near-field domain records) permanent displacements of retaining wall increase. Also permanent

displacements in mechanism II are greater in comparison with mechanism I. The yield acceleration

obtained from current method using the presented algorithm led to very close values as reported by

Michalowski (2007) which shows the precision of suggested formulation. The critical failure angle

calculated from present method resulted in values close to those reported by Zarrabi-Kashani

(1979).

Comparison of permanent displacements calculated based on suggested method and for

mechanism I, with the proposed method by Huang (2006) shows that the trend of variations in these

methods are the same. However the suggested method is an upper bound for that proposed by

Huang (2006). Also the obtained results from current formulation and for the mechanism I are an

upper bound for sliding displacements calculated by Richards and Elms (1979), Whitman and Liao

(1985) and Wu (1999). Calculated displacement from mechanism II is very close to the sliding-

rotational displacement reported by Wu (1999).

It can be concluded that present formulation which is based on the upper bound theorem of limit

analysis is of great capability in calculating the permanent displacements of retaining walls.
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