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Abstract. This paper presents a comparison between two different procedures to deal with the
geometric nonlinear analysis of space trusses, considering its structural stability aspects. The first
nonlinear formulation, called positional, uses nodal positions rather than nodal displacements to describe
the finite elements kinematics. The strains are computed directly from the proposed position concept,
using a Cartesian coordinate system fixed in space. The second formulation, called corotational, is based
on the explicit separation between rigid body motion and deformed motion. The numerical examples
demonstrate the performances and the convergence of the responses for both analyzed formulations. Two
numerical examples were compared, including a lattice beam with postcritical behavior. Despite the two
completely different approaches to deal with the geometrical nonlinear problem, the results present good
agreement.
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1. Introduction

Geometry changes due to the application of external loads are a critical aspect related with the

space trusses collapse. As a consequence, the lack of equilibrium induced by the steady state

variation becomes an important issue to be evaluated. Another point is the inconsistency between

the numerical models and the mechanical behavior of the structure, which can lead to wrong

hypothesis regarding the nonlinear phenomenon. The investigations about such issues are still not

complete and several models and nonlinear methods have been proposed so far by different authors,

e.g., Saka (2007), Saffari et al. (2008) and Hrinda (2010). With the same objective, Thai and Kim

(2009) preformed an inelastic analysis of space trusses considering both geometrical and material

nonlinearities. Recently, Zhou et al. (2009) proposed a method for analysis of prestressed space

trusses taking into account the influence of the initial imperfections of members with special interest
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in the stability of the structure.

On the other hand, the unstable equilibrium situation does not necessarily represent loss of the

strength capacity of the structure. This will mainly depend on the instability nature, i.e., whether it

is local or global. A deep understanding about such behavior is essential for the structural design of

space trusses. Mathematically, the nonlinear instability analysis is characterized through response

bifurcations of nonlinear differential equations that govern the problem.

The nonlinear analysis is of fundamental importance, since the linear analysis is not able to reflect

in a satisfactory manner the real behavior of structures in full service or at the collapse. The

geometric nonlinearity is characterized by finite strains followed by changes in the stiffness of the

structure for a given level of applied load. Thus, the original and the deformed configurations are

quite different and the principle of superposition of effects can not be applied. Therefore, the

equilibrium equations must be rewritten considering the deformed configuration. A general solution

consists of the equilibrium equations linearization; applying an iterative corrective algorithm based

on an appropriate convergence criterion.

It is also necessary to adopt a kinematical description in order to map the displacement of the

structure in the space through its strain history. Three kinematical descriptions designed to treat the

geometrical nonlinear problem are commonly found in the literature: the Eulerian, the Lagrangian

and the corotational descriptions. In the Eulerian approach, the motion is performed in terms of the

spatial coordinates and it is commonly used in the analysis of fluid mechanics problems in which

attention is focused on the motion of the material through a stationary control volume (Bathe 1996).

The Lagrangian approach, Fig. 1, describes the kinematics of the deformation in terms of the

coordinate system, fixed in space, and three configurations: an original configuration C0, at a time

t0 = 0, a current or intermediate configuration C1, at a time t1 = t + ∆t and a final configuration C2, at

a time t2 = t. In problems involving structural solids using step by step procedures, where the

interest is focused in the history of deformation of the body, the Lagrangian description is

particularly appropriate. Finally, the corotational approach is based on a explicit separation of the

rigid body and the deformed motions (Cook 2001). This separation aims to represent the

nonlinearity by the rigid body motions. Therefore, considering some pre-requisites, linear models

can be adopted for the finite element description of the deformation history.

Fig. 1 Lagrangian kinematical description
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The specific purpose of this paper is to compare the classical corotational description and a

particular case of the Lagrangian formulation, originally presented in Coda and Greco (2004), for

reticulated structures under the finite element approach, considering structural stability aspects.

These two different numerical formulations will be used here to simulate the geometrical nonlinear

behavior of trusses. The positional concept describes the elements kinematics in terms of a global

coordinate system, without matrix transformations and strain measure separations. Philosophically,

these two formulations are antagonistic. Finally this work aims to prove the invariance of the

nonlinear equilibrium for both formulations, whatever the spatial description adopted.

2. Positional formulation

Generally, structural problems are solved by formulations based on equilibrium considerations,

such as the Principle of Virtual Work. This is a successful technique for the analysis of trusses

undergoing large displacements, before and after the loss of stability (Toklu 2004). The formulation

described in this paper, and named positional, is derived from another, but equivalent, approach, i.e.,

the application of the principle of minimum potential energy. This technique presents a physical

sense, instead of a pure mathematical sense. The positional formulation is based on Finite Element

Method and it can be classified as a total Lagrangian formulation with exact kinematics. Moreover,

instead of displacements, the kinematics of the positional formulation deals with nodal positions.

The stiffness matrix is represented by the Hessian matrix and the calculation of the strain follows

directly from the proposed concept.

2.1 Formulation

For a conservative structural system, associated with a reference system fixed in space, the

principle of minimum potential energy establishes a total potential energy (Π) as follows

 (1)

where X is the set of positions independent of each other, which may be occupied by a body

material point and F represents the independent applied forces. It is interesting to note that the

applied force potential energy may not be zero in the initial configuration. Considering an isotropic,

homogeneous and elastic material, governed by a logarithmic strain measure, the structural strain

energy (U) can be written for the reference volume V, in a Lagrangian sense.

 (2)

where  is the logarithmic strain measure and  is its associated stress conjugate. This stress

tensor is related with the Cauchy’s stress tensor (σ) by the stretching ratio (λ) and the Young’s

modulus (E), as presented in Greco and Ferreira (2009). The term u represents the specific strain

energy.

At this point, the geometry of the studied body should be mapped to know its relation with the

adopted strain measurement. Fig. 2 presents the general kinematics for a space truss finite element.

Π U ΣFX–=

U u Vd
V
∫ σln εd ln Vd

ε
ln

∫
V
∫= =

εln σln
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The truss finite element kinematics shown in Fig. 2 can be parameterized in terms of a

dimensionless coordinate ξ (varying from 0 to 1). 

 (3)

(4)

(5)

The formulation does not involve transformations among systems of local coordinates for global

coordinates. Indeed, no local system of coordinates is used in the positional formulation. The

nonlinear position formulation used here adopts the stretching ratio concept, defined by the relation

between the deformed length (ds) and the initial length (ds0).

 (6)

The logarithmic strain measure can be used to obtain a geometrically nonlinear formulation that

considers materials with large strains.

 (7)

Thus, the total strain energy can be written in terms of the non-dimensional space, considering

constant cross-section area over the finite elements.

 (8)

The integral in Eq. (8) along the finite element length (along ξ) yields the exact solution. Since

the strain energy is written in terms of nodal positions, the total potential energy can be

x X1 X2 X1–( )ξ+=

y Y1 Y2 Y1–( )ξ+=

z Z1 Z2 Z1–( )ξ+=

λ
ds

s0d
-------

s/ ξdd

s0/ ξdd
---------------= =

εln ln λ( )=

U l0EA
λ
2

2
----- λ–⎝ ⎠
⎛ ⎞ ξd

0

l

∫ l0u ξd
0

l

∫= =

Fig. 2 Space truss finite element at initial configuration (Ω0) and deformed configuration (Ω)
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differentiated to obtain the equilibrium equation. 

An arc-length procedure is adapted to the positional formulation to compare results with the

corotational formulation. The arc-length procedure is very suitable for nonlinear responses involving

critical points analyses. After the positions or the displacements have reached certain limit, the signs

of the prescribed values and the residual vector must be changed. The residual vector is defined by

Eq. (9). 

 (9)

In order to make easier finding responses after critical points, the decomposition of Bathoz and

Dhatt (1979) is used together with the arc-length scheme proposed by Crisfield (1981). It is

important to note that, in this study, the applied forces are independent of space. The residual vector

 is nonlinear in terms of nodal positions.

3. Corotational formulation

In the corotational formulation (Cook 2001), the reference configuration is built by two parts: one

that corresponds to the initial configuration Co and that is kept fixed throughout the analysis, and

another one named corotationed configuration, CR. This configuration varies from element to

element and can be obtained through the displacement of rigid body related to configuration C0. The

coordinate system moves together with the element and the strains are measured with respect to

local coordinate system of the configuration CR. 

3.1 Kinematical description

Considering, initially, a finite element of a bar moving itself in the tridimensional space and

admit, as an initial hypothesis, that the local axis of the element  in initial configuration

Co coincide with the global, material and spatial coordinate systems, designated by  and

, respectively. It is also assumed that the origin of the system of the local axis in Co is

situated in half of the original length of the element, designated by L0. The element bar moves from

initial configuration C0 to current configuration C, whose local axis are designated as .

Thus, the corotationed configuration CR is obtained by the rigid body motion of the configuration

Co. The coordinate system moves together with the element to the configuration C, positioning itself

symmetrically with respect to current configuration. It can also be observed in Fig. 3, that the

corotationed local axis  coincide with the local axis  in C.

Any point P0 with coordinates  at the initial configuration C0, moves toward the point PR

with coordinates  at the corotationed configuration CR. Thus, it moves toward the point P

with coordinates  in C. The vector of total displacement u of the particle, in global

coordinates, can be calculated as

    (10)

The vector of total displacement consists of two parts: one part related with the displacement of

rigid body (uR) and another part related with the deformational displacement (uD). 

∂Π
∂Xi
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1
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(11)

In the corotational formulation the equations of the deformational movement are written in

relation to the local coordinates  at the configuration C, resulting in

    (12)

3.2 Coordinate system

The system of the local coordinates  at the current configuration C and at the global

configuration  are related to each other by the following expression 

    (13)

The relation expressed in Eq. (13) is illustrated at Fig. 3, being u0 the vector that represents the

displacement from the point O0 in C0 to point O in C. 

The rotation matrix R, that appears in Eqs. (12) and (13), can be defined in term of the co-sine

directors ( ) of the bar element at the current configuration C (local axis direction xe), in

relation to the global coordinate system, Fig 4. This matrix, with order 3 for spatial trusses, is used

to transform coordinates from the global system  to the local system . The

deformational displacements  are used to obtain the internal force vector and tangent stiffness

matrix. It should be noted that it is an orthogonal matrix.

3.3 Deformational displacements

The deformational displacements are obtained in terms of local coordinates, as defined previously

u uR uD+ xR X–( ) x xR–( )+= =

x
e

y
e

z
e, ,( )

uD

e
RuD=

x
e

y
e

z
e, ,( )

x y z, ,( )

x
e

R x u0–( )=

Cx Cy Cz, ,

X Y Z, ,( ) x
e

y
e

z
e, ,( )

uD

e

Fig. 3 Bar element in the initial and final configurations
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in Eq. (12). In the case of plane trusses, the coordinate of the particle PR at configuration CR can be

defined by the following equation 

 (14)

The coordinates of the particle P at the current configuration C, as shown in Fig. 3, can be

expressed by 

   (15)

Considering the previous equations, one has

 (16)

Finally, one can obtain the deformational displacement in relation to local coordinates through the

transformation of the coordinates, defined in Eq. (12).

 (17)

In the case of spatial trusses, the coordinates of the particle PR at the configuration CR and P at

the configuration C are defined analogously to the two-dimensional case. 

xR
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⎧ ⎫ Cx  Cy–
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X

Y⎩ ⎭
⎨ ⎬
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Fig. 4 Position of a particle PR at the configuration CR
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3.4 Deformational movement as a function of the nodal displacements

The deformational displacements previously defined for a generic point are particularized for the

extremity nodes of the bar elements. In the specific case of the plane trusses, the nodal coordinates

of the element at the configuration C0 in relation to local axis are X2 = –X1 = ½ L0 and Y2 = Y1 = 0.

Where L0 is the initial length of the element. The displacements of the extreme nodes can be

defined by

 (18)

Similarly, the deformational movement can be expressed in terms of the nodal displacements.

Thus, the Eq. (17) can be equally written in terms of nodal displacements, as follows 

(19)

As the displacement field of the element is linear in X and in Y, the element remains straight at

the current configuration C, therefore, it is possible to write

 (20)

The next step is to define the values of the cosine directors  in terms of nodal

displacements and then finding the length of the element (L) at the current configuration, as shown

in Fig. 5. It is necessary to emphasize that in this deduction, the current configuration has not been

aligned with global axis. 

Thus, it is necessary to make the rotation of the nodal displacements in terms of system of local

axis in the current configuration . Once known the nodal displacements rotated, it is

possible to define the other kinematical variables involved in the corotational formulation in terms

of the geometric relations.

It is assumed a linear relation between the pars of conjugate stress and strain in the initial and

final configurations. Considering this hypothesis and defining the cross section area of the elements

at the configurations C0 e C as being, respectively, A0 e A, the strain energy of a truss element at the

initial and current configurations can be defined by 
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   (21)

Finally, it is necessary to emphasize the importance of choosing the appropriate measurement of

strain for the approach of nonlinear problems, as can be seen in Bathe (1996). Depending on the

type of analysis different measures of strain can be used. It is possible that the structure undergoes

large displacements and small strains. In this case, the initial and final configurations are very

similar. So the strains can be infinitesimal, and the measure of strain will not influence the quality

of response. On the other hand, the structure can undergo large displacements and deformations.

Now the strains must be finite and different strains measures may produce quite different responses

to the same structural analysis.

The corotational formulation presented in this paper uses the same logarithmic strain measure

used in the positional formulation, shown in Eq. (7).

4. Numerical applications

The following examples compare the numerical results obtained from the positional formulation

and from the corotational formulation.

4.1 Two-member plane truss

The first numerical example is a plane truss of two finite elements, as shown in Fig. 5. The

dimensions of the structure are given meters. The structure is loaded by a vertical downwards force.

The adopted physical and geometric properties are E = 7.17 × 1010 N/m2 and A = 0.6 × 10−4 m2. 

Fig. 6 shows the response of the structure for several loading levels. It is possible note that, due to

its configuration, this structure is very susceptible to reversal of the equilibrium caused by the snap-

through phenomenon. The arc-length responses converge, showing the full snap-through curve. It

was used an arc-length parameter of 0.05 m (∆S) for the both nonlinear formulations. The responses

of the positional and the corotational implemented formulations are compared with ANSYS®

software numerical responses. The commercial software uses the corotational formulation, with arc-

U0

1

2
--- EA0εX

2
X

e
d

0

L
0

∫=

Fig. 5 Two-member plane truss geometry and boundary conditions
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length procedure, and the logarithmic strain measure for nonlinear analyses. It is also presented the

linear response that is valid only at the beginning of the analysis.

For the nonlinear formulations, it was adopted the arc-length procedure presented in the paper of

Crisfield (1981) that uses the equation of the circumference, Eq. (22), forcing an equal increment in

the arc-length for every iterations of the step.

  (22)

The results of two implemented formulation and of ANSYS® software were very close, despite

the different approaches used to solve the nonlinear equilibrium.

Fig. 7 shows three different configurations of the deformed structure representing important

moments in the analysis. At the first configuration, Fig. 7(a), it can be observed a small

displacement (7 cm), the structure is close to the initial configuration and therefore it is in the linear

regime. At a certain level of loading the structure begins to exhibit behavior essentially nonlinear as

shown in Fig. 7(b). The displacement was greater in the second case (30.5 cm) but not enough to

the loss of the structural stability. The analysis continues until the load reaches a position that

triggers the reversal of the structural behavior due to a larger displacement (2.25 m). Thus, the

structural members that were initially compressed, to reach the new equilibrium configuration, are

now fully tensioned, as shown in Fig. 7(c).

It should be noted that, for both formulations, positional and corotational, the iterative steps were

evaluated with only two iterations during the nonlinear equilibrium solutions. Oscillations of the

arc-length response may occur at critical points, when the gradient of the strain energy and the

Laplacian of the strain energy are singular (Greco and Venturini 2006). In this case, the critical

point is a limit point, instead of a bifurcation point. The equilibrium was obtained due to the

adopted maximum number of iteration, i.e., fifty iterations. The adopted arc-length parameter is

equal to the maximum arc-length (∆S = ∆S max = 0.05 m) and the adopted minimum arc-length is

equal to 0.005 m. 

u∆ u∆⋅ S∆( )2=

Fig. 6 Force x vertical displacement at central node
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4.2 Lattice beam

The structure of this example, which can be found originally in Noor and Peters (1980), consists

of 28 nodes and 76 bars with the dimensions given in Fig. 8, with units in meters. The response

comparison among the considered formulations and ANSYS® response regards to the vertical

displacements of the node number 10. The physical and geometric properties are given as follows:

Cross-sectional area of the longitudinal members = 0.8 × 10−4 m2

Cross-sectional area of the transversal members = 0.6 × 10−4 m2

Cross-sectional area of the diagonal members = 0.4 × 10−4 m2

E = 7.17 × 1010 N/m2 (Young’s modulus)

It was also used an arc-length parameter of 0.05 m (∆S) for the both nonlinear formulations. The

structure is analyzed for two different boundary conditions, with or without lateral bracing. For the

case with lateral bracing, it is assumed that all nodes in the direction of the Z coordinate will be

supported. The fundamental solution, presented in Fig. 9 was obtained for the case lateral bracing.

On the other hand, no lateral support is considered for the secondary path. The analyses were

performed by the corotational and positional formulations.

It can be observed in Fig. 9 that both implemented formulations have practically presented the

same results. The ANSYS® solution was close to the other solutions up to the limit point.

Afterwards, the ANSYS® response presented slightly crescent numerical divergences from the other

Fig. 7 Deformed configurations of the structure 



746 M. Greco, R.C.G. Menin, I.P. Ferreira and F.B. Barros

numerical responses. At the vicinity of force 100 kN it is observed a critical point related with a

response bifurcation. It also can be observed that the bracing at the Z direction decreases the global

structural stiffness. The fundamental solution is associated with the first limit point, while the

secondary solution is associated with a buckling phenomenon. The buckling occurs before the limit

point which is assumed as the limit load for practical applications. In Fig. 10, for the case without

lateral bracing, it is observed only one change of slope after a maximum value is achieved. On the

other hand, for lateral bracing, Fig. 11, there is a considerable reduction of the effort and it is

observed two changes of slope. Both of the illustrated cases refer to traction efforts.

In Fig. 12, for the case without lateral bracing, it is possible to note the reversal of efforts in the

longitudinal element (b), starting as compressive forces and ending as traction ones. For the case

with lateral bracing, Fig. 13, this is not observed anymore and there is a substantial increase of the

traction effort. Such different behavior can be explained by the redistribution of the efforts caused

by the existence of the lateral bracing.

Figs. 14 to 17 present the deformed configurations of the lattice beam, obtained from the

Fig. 8 Lattice beam geometry and boundary conditions

Fig. 9 Positional x Corotational, with displacements observed at node 10
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positional formulation, for the ultimate applied force of the analysis (250 kN). It is possible to

observe the buckling effects in the secondary solution.

Figs. 18 and 19 present the normalized residues at four vertical positions of node 10, in

logarithmic scale, obtained from the positional and from the corotational formulations. These figures

Fig. 10 Normal forces in the longitudinal element
(a) without brancing

Fig. 11 Normal forces in the longitudinal element
(a) with brancing 

Fig. 12 Normal forces in the transversal element (b)
without brancing

Fig. 13 Normal forces in the transversal element (b)
with brancing

Fig. 14 Perspective of the deformed structure (fundamental solution)
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point to the high accuracy of the formulations, both working with quadratic rate of convergence due

to the full Newton-Raphson procedure used. In these figures, the free caption refers to the

secondary solution (not supported in the Z direction). The corotational formulation presents less

iteration than the positional formulation. Nonetheless, at critical points the positional formulation

presents better reliability for the numerical calculation.

Fig. 15 Lateral view of the deformed structure (fundamental solution)

Fig. 16 Perspective of the deformed structure (secondary solution)

Fig. 17 Inferior view of the deformed structure (secondary solution) 

Fig. 18 Normalized residues at four vertical positions of node 10, obtained from the positional formulation
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5. Conclusions

Two nonlinear formulations were algebraically developed and implemented, using FORTRAN

codes, and its numerical performances were compared with ANSYS® software numerical responses.

The relatively new positional formulation, combined with its computational implementation, has

shown satisfactory results when compared to the classical corotational formulation. Two numerical

examples were analyzed, representing a plane and a spatial truss with severe nonlinear geometric

behavior. For both examples, there were no notable differences between the results of the

formulations. The ANSYS® numerical responses present differences after the limit point of the

lattice beam numerical example. In general terms, the positional formulation is considerable simpler

than the corotational formulation. Thus, the numerical evaluation performed by the positional

formulation can be potentially faster than the numerical evaluation performed by the corotational

formulation, due to its simplicity, being very appropriate for complex structural analysis with high

dimension matrix operations. On the other hand, in the case of the corotational formulation, the

reuse of the computational code for other materials constitutive laws formulations is an evident

advantage. To derive a numerical formulation for new materials or phenomena using the positional

concept, the new terms must be included at the initial functional of energy, leading to a considerable

amount of algebraic deployment.
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