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Abstract. This paper attempts to determine the inclination of the compression strut within variable
angle truss models for RC beams loaded in shear-flexure through a proposed semi-analytical approach. A
truss unit is used to analyze a reinforced concrete beam, by the principle of virtual work under the truss
analogy. The inclination of the compression strut is then theoretically derived. The concrete contribution is
addressed by utilizing the compatibility condition within each truss unit. Comparisons are made between
the predicted and published experimental results of the seventy one RC beams with respect to the shear
strength and the inclined angle of the compression strut at this state to investigate the adequacy of the
proposed semi-analytical approach.
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1. Introduction

The truss analogy has been widely used as the basis of most shear design procedures for
reinforced concrete (RC) beams (Collins ef al. 1991, Ramirez et al. 1991, Li and Tran 2008, Wong
and Kuang 2011). The inclined compression struts of the truss are assumed to represent the concrete
stress blocks between adjacent cracks at the failure stage as shown in Fig. 1. The compression struts
transfer external loads in the transverse direction to the tension ties. These tension ties provide the
shear resistance in this truss analogy. The top and bottom chords of the truss consist of concrete
stress blocks and longitudinal reinforcement, respectively. The chords are assumed to not contribute
to the shear capacity of RC beams.

According to the aforesaid classical truss analogy, shear reinforcement ratio and inclination of
compression strut € are two key quantities directly related to obtaining the shear capacity of RC
beams. For simplicity, Ritter et al. (1899) and Morsch et al. (1902) assumed the compression struts
to be inclined at 45° corresponding to the first shear cracking angle. The ACI 318 code adopted this
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Fig. 1 Truss analogy for cracked beams subjected to shear and flexure

assumption. However, this assumption may lead to an underestimation of the contribution from the
shear reinforcement, especially when the shear strength of lightly reinforced concrete beams are
required to be determined. Consequently, Ramirez and Breen (1991) and Priestley ef al. (1994)
suggested taking 30° as the strut inclination. This approach uses a constant strut angle over the
entire shear span of beams. However, all empirical results indicate that cracks form at variable
orientations and at different regions of a beam, indicating the varying directions for diagonal
compression. Hence, a variable angle of inclination would be more realistic. On this basis, variable
angle truss models have been conceptually developed by Regan er al (1969). However,
quantification of the variable strut inclinations through mathematical or mechanical approaches has
not been explicitly determined by these conceptual models. Also, little has been said about how
these variable angle truss models can be related to a design process.

In the ACI 318 code (2008), the stirrup contribution is determined through a rational approach.
The concrete contribution represents the difference between the stirrup contribution and the shear
strength. A similar approach is taken by some other codes, in which, most of the concrete
contribution terms are achieved through regression analysis of data from tested beams. A
mechanical model considering some influential factors would provide a proper means to represent
model codes for the shear carried by concrete.

Kim and Mander (1999) proposed a differential variable angle truss model in order to develop a
comprehensive theory for modeling inelastic shear and flexural behavior. The model estimates the
stiffness of a diagonally cracked short column in which the disturbed region prevailed. Numerical
integration schemes were introduced to find the stiffness solution and then implemented on a truss
model to determine the positions of the transverse ties and the dimensions of the compression struts.
Decoupled shear and flexural analysis was performed on a few variable angle truss models to
determine the deflection response and inclination of struts. Concrete tensile members were used to
represent the concrete contribution to strength. Kim and Mander (1999) provided a valuable
mathematical methodology to deal with the variable angle truss model of short columns. However,
their formulations and solutions are limited to the disturbed region of short columns. By applying
Kim and Mander (1999)’s method, the authors propose a rational approach to compute the
inclination of compression struts in a variable angle truss model for shear-critical RC beams
subjected to shear and flexure.

2. Inclination of strut in variable angle truss model

Fig. 2 shows the shear transfer mechanism for a typical region along a beam member. This
transfer mechanism can be reasonably represented by the truss analogy as shown in Fig. 3. Under
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Fig. 2 Shear transfer mechanism for a typical region along a beam member
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Fig. 3 Typical truss unit analyzed by the principle of virtual work

this analogy, truss units can be formed along the shear span of a cracked slender beam member. In
each truss unit, the inclined diagonal strut transfers the shear force to the vertical tension tie. The
top and bottom chords are responsible for its flexural resistance. The rigidity and stiffness of each
truss unit are then determined by deconstructing the beam shear span. The stiffness of the truss unit
is the summation of all the members that form the unit. Using this stiffness, the external work done
by each truss unit can be determined. This allows the inclination angle of struts to be examined by
minimizing the external work done.

The principle of virtual work is used in the analysis of each truss unit where the axial rigidity of
each member forming the truss unit is the most important part and must be studied with care.
Consider again the typical truss unit subjected to a shear force V' as shown in Fig. 3, it is assumed
that the shear reinforcement is uniformly distributed over the length of the member. Under this
smeared shear reinforcement assumption, the axial rigidity of the tension tie is

(EA), = cotOp,nE A, (M

where (EA), is the axial rigidity of the tension tie; @ is the inclination of compression strut; p,, is
the shear reinforcement ratio; » is the modular ratio of E/E,.; E is the modulus of elasticity for
steel; E,. is the modulus of elasticity for concrete; Ay, is the effective sectional area for shear of RC
beam.

For the inclined strut, the cross-sectional area is determined geometrically. Conventionally, it is
taken as
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Ay = byjdcos @ 2

where A4,,,, is the cross-sectional area of the inclined strut; 5,, is the beam sectional width; jd is the
flexural lever arm.
Then the axial rigidity of the strut is

(EA), = b,jdcosOE,. = cosOE A 3)

ctrsa

where (EA), is the axial rigidity of the strut.

For flexural members, the bottom tensile member is assumed to be at the centroid of the bottom
longitudinal bar, while the top compression member is assumed to be at the centroid of the concrete
stress block. Hence, the height of the truss is the internal lever arm jd. A distinction in axial rigidity
should also be made between the bottom tensile member and top compressive member. For the
tensile member, the concrete in the region is normally cracked and does not contribute significantly
to axial rigidity as compared to the regional reinforcement. In addition to concrete stiffness, there is
a rigidity contribution from the compression reinforcement located at the top compression member.
Usually, the centroid of the compression reinforcement differs from that of the concrete stress block.
For simplicity, in this paper, the compression reinforcement is assumed to be at the centroid of the
concrete stress block. This simplification may cause a slightly different external work done of the
compression reinforcement when the centroid of the stress block for concrete is deeper or shallower
than that of the position of the longitudinal reinforcement. Thus, the axial rigidity of the bottom
tensile member is

(EA)T = EsAs = psnEcAg (4)

where (EA); is the rigidity of the bottom tensile member; A, is the area of bottom longitudinal
reinforcement; p, is the bottom longitudinal reinforcement ratio, p, = A,/(b,h); A, is the gross
sectional area of reinforced concrete beam.

For the top compression member, the axial rigidity is taken as

(EA)c = (¢b,,—AE.+AJE, = cb E.+(n—1)AE, = (%er;(n— 1))EcAg %)

where (EA). is the axial rigidity of the top compression member; ¢ is the depth of concrete stress
block at the ultimate moment capacity of the beam section; / is the beam sectional depth; A, is area
of top longitudinal reinforcement; p, is the top longitudinal reinforcement ratio, p, = A./(b,,h) .

These two equations describe the dimensioning of the top and bottom chord members of the truss.
Member forces of the truss are found by applying conditions of static equilibrium. As shown in

Table 1, principle of virtual work is then applied to determine the deformation of the truss unit.
The deformation of the truss unit is the sum of the member deformations, thus

n 2 2
A lJr/_)‘—v4 (%—cot@) cotd (—;) cotd
A:ZM: sin_ @ J jdV—i—j ¥ 6)
—EA  p,ncotfE A, (c-i-p’( 1))EA pnE.A,
< n—
h s c‘lg

where / is the updated shear span length; V is the applied shear force.
Eq. (6) is configured in such a way that the first term is the deformation contribution from shear
members (struts and ties) and the second term is that from flexural members. The drift angle is
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Table 1 Analysis by the principle of virtual work

Member force Unit load Length Axial rigidity
Member F f I (EA)
1 vV 1 jd cotlp,nE A,
s L Jd_
2 “sin0 sind sin@ cosbEcA,,
3 (L—cotH)V i—coté’ Jjdcotd (£+p'(n—l))EA
gd jd h e
4 L 14 L Jjdcotd pnE A
jd jd ¢

determined by dividing the deformation by the length of the truss unit, thus

n 2 2
o e ()
A sin @ i v Vet J

“- jdcotf B 2 OE A pnE.A 2

) C , s c

pwnCO c‘tsa (E_'_ps (n_l))EtAg g
Therefore, the stiffness of one typical truss unit about the drift angle is
K = V_ 1 (8)
@ Pult ! ? A%
1+ - (— —cot 9) (_)
sin' @ vyd 4 J
pneot” OE A pnkE.A,

c ’
e (;l—i—ps (n_l))EcAg

The first term of Eq. (8) represents the shear stiffness of a typical truss unit while the second term
represents its flexural stiffness. The first term of Eq. (8) is the same as the shear stiffness presented
by Dilger et al. (1966) for 90° shear reinforcement of a general truss model. By deriving this shear
stiffness term on a typical truss unit in the way shown in Eq. (8), it may not only be taken as shear
stiffness for a constant angle truss model, but may also be used as a general description of shear
stiffness. Together with the flexural stiffness derived in the expression, a variable angle truss model
can be developed.

As noted previously, the inclination of the compression strut 8 is very important as it affects the
shear capacity as well as the stiffness (Eq. (7)) of a RC beam. A theoretical determination of the
angle 6 is needed. From the above analysis, the external work due to an applied unit shear force on
the typical truss unit is the total deformation obtained. Thus

n 2 2
1+ '[‘)’—2 (L —cot 6?) cotf (L) cotd
EWD = Ax1 = sin ¢ Jd a+ I ©)
p,hncotbFE A, pnk.A,

c ’
(Z 2 (}’l— 1))EcAg
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The diagonal compression is assumed to develop in the orientation that requires a minimum
amount of external energy. Hence, the angle & that minimizes Eq. (9) is the inclination of strut. By
differentiating Eq. (9) with respect to 6 and minimizing the external work done the inclination of
strut is found

d(EWD) _
do

Carrying out the differentiation of Eq. (10) leads to the following solution for the crack angle &

. @@

(10)

1 1 ) 2
+ tan* 6 + + ¢
i ) e , T
(Z_'_ps (I’l— 1))E0Ag
(L)
+ J tan 0 3 +E‘j’4 -0 an
(Crpron-n)Ea,  ((Grpr-n)Ea, ~

Eq. (11) is a four degree-one variable equation in 6. An analytical solution of this equation is
possible; however, a trial and error procedure is sufficient.

The solutions of & vary along the shear span of the beam as the variable /, which represents the
available shear span length, is different for each truss unit. For a particular shear level, the solution
procedure starts from the loading point and moves towards the support in a shear span. According to
Eq. (11), @ for the first truss unit can be found by substituting the total shear span length a to the
variable /. With this @ value, a check of jdcot& which represents the length of this unit truss can be
done. If the result shows that jdcotd is smaller than a, the solution procedure should continue for the
next truss unit by updating the variable / with a new value (a — jdcot6). Then 6 for the next truss unit
can be obtained with Eq. (11) again. The process will be terminated when the check shows that the
variable / used to calculate € for a new truss unit is smaller than the length (jdcoté) of this newly
formed truss unit (i.e., available shear span length is not enough for a new truss unit). So the
solutions of the inclination of struts for truss units along the shear span of the beam differ in a
decreasing manner when moving towards the support as the variable / gets smaller. Moreover, when
the shear increases, a few variables such as ¢ in Eq. (11) are also affected, and hence the solutions of
the inclination of struts are different. Thus, a continuous profile of struts orientation development can
be found in this analysis. Fig. 4 shows the results of this analysis at the ultimate stage of a RC beam.
The beam and the crack pattern were extracted from Bresler and Scordelis (1963).

{1

Fig. 4 Comparison of calculated 6 and observed angle of cracks for Beam A-2 (Bresler et al. 1963)
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In summary, this theoretical method has two distinct characteristics for the evaluation of 6. Firstly,
inclinations of the struts calculated from this method are different along the shear span from the
load point to the support (i.e., different inclination of strut for different truss unit). This effectively
produces a variable angle truss model for the reinforced concrete beam. Secondly, inclination of the
struts can vary with increasing shear force level. Thus, the change of direction in the development
of diagonal compression can be seen. This intends to correspond with the crack patterns observed in
most of the RC beam tests.

3. Strain compatibility

Shear carried by concrete has long been recognized as an important portion of the shear strength
of a reinforced concrete member. Some research has tried to use other parameters to represent this
concrete contribution. But amongst all these parameters, transverse tensile stress and strain have
prevailed (Vecchio et al. 1986). In this paper, the concrete contribution is assumed as the amount of
force transferred across cracks, as shown in Fig. 5. Transverse tensile stress and strain were used to
indirectly incorporate this amount of force transferred across cracks into the shear strength of
reinforced concrete beams through the compatibility conditions. By assuming a uniform distribution
of transverse reinforcement along cracks and that the tensile strain in the transverse direction is
equal to the strain in the transverse reinforcement, the tensile strain in the transverse direction can
be calculated as

Vs
| S e 12
& A E jdcot@ (12)

where g, is the strain in y-direction; V; is the shear strength contribution from shear reinforcement; s
is the spacing of transverse reinforcements.

The principal stress directions are the direction of inclined strut (&). At this stage, the element has
a compressive stress along the strut direction and a tensile stress perpendicular to it. However, the
directions of the principal strains deviate from the principal stress directions. Vecchio and Collins
(1986) have summarized a number of experimental data and found that the direction of the principal
strains only differed from the principal stresses by +10°. Therefore, it is reasonable to assume that
the principal stress and strain directions for an infinitesimal element of concrete coincide with each
other. The principal strain in the compressive direction is readily determined by the stress and
geometrical condition of a strut as illustrated in Fig. 5, thus

Fig. 5 Local stresses and strains at a crack
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Fig. 6 Compatible strain conditions in a RC element
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& = (13)
where &, is the principle compressive strain in concrete.

With the known values of 6, g, and &, a Mohr’s circle can then be constructed as shown in Fig. 6
to calculate the tensile strain g, given below

_ 2(82 + &) (14)

“ - lcos26| + 1 —4

This equation takes into consideration that § may be more than 45°.

Many researchers including Walraven et al. (1981) have concentrated on the experimental
relationships between the shear carried by concrete v, and the tensile strain &. Vecchio and Collins
(1986) derived the equation for the limiting value of shear stress transferred across the crack; the
equation further used by Walraven et al. (1981) in his study is given below

0.18,/f, 2
= —A/f+1.64fc,~—0.82#
0.31+24—2 .
+
@16 0.31+24—2
a +16

(15)

c

where ¢ is the maximum aggregate size in millimeters; f;; is the compressive stress on crack
surface (assumed as zero in this model); /. is the compressive strength of concrete and w is the
average crack width over the cracked surface. The crack width can be taken as

W= &8y (16)
Where
g — a17)
¢ sin@ cosb
+
Smx Smy

and where s, and s,, are the indicators of the crack control characteristics of the longitudinal and
transverse shear reinforcement, respectively. Bhide and Collins (1989) used the provision of the
CEB-FIP Code (1978) for calculating the crack spacing
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5, = 2(cx + S—) +0.25k T (18)
10 Ps
K d,,

Sy = 2(cy+ 1_6) + O.25k1;”j (19)

where k; is equal to 0.4 for deformed reinforcing bars or 0.8 for plain reinforcing bars; c, is the
distance to longitudinal reinforcement; ¢, is the distance to shear reinforcement; dp, is the bar
diameter of longitudinal reinforcement; d, is the bar diameter of shear reinforcement.

The calculated v, from Eq. (15) is the shear stress transferred at cracks surface. In the truss model
proposed in this paper, crack surface can be approximated along the strut direction. Hence the shear
strength contributed from concrete is
= % v.sind = jdb,v, (20)

sin@d

Additional contribution to the truss unit from transverse reinforcement can be defined as
V, = cot0d, f14 @1
A

This paper is based on the premise that the stirrups yield when shear failure occurs in the slender
RC beams. As we know, the height of the compressive zone of the section decreases rapidly after
the stirrups yielding, and there is a rapidly increasing compressive stress of the diagonal concrete
strut, till the strut crushes. Because all the shear failure modes belong to brittle failure, the actual
shear strength at shear compression failure is a little higher than the shear force at stirrups yielding.
The shear force at stirrups yielding is taken as the shear strength, which is a little conservative for
design but without sacrificing accuracy.

4. Solution algorithm for shear strength

In the previous sections of this paper, inclinations of struts and concrete contribution have been
addressed for the variable-angle truss model theoretically. The method to develop the variable-angle
truss model and treatment of the concrete contribution can be verified by predicting the shear
strength of RC beams subjected to shear. The strength of each truss unit of the variable-angle truss
model is made up of two portions: ¥V and V.. V is the shear reinforcement contribution which will
cause a deformation in each truss unit. Consequently, it mobilizes V. (the shear carried by concrete)
in the truss unit. At a low shear level, V. calculated from Eq. (20) may be larger than the applied
shear force. This probably explains why the concrete has not been cracked and only part of the V.
mechanism has been utilized. At this point, shear reinforcement might not participate in the shear
resistance. At a higher shear level, V. is fully utilized first and then followed by the shear
reinforcement subjected to the shear stress generated. With an increase in the load level, the
transverse reinforcements may eventually yield. In this model, each truss unit is assumed to reach
its shear strength when the transverse reinforcements of that truss unit yield. The yield strain of
steel is assumed as f,/E; to calculate V. at the failure state. The compression softening of the
concrete and tension stiffening of the reinforcement were ignored implying that original properties



468 Bing Li and Cao Thanh Ngoc Tran

‘ Input beam parameters ]

!

Calculate ¢ from bending theory
(compressive stress block)

T

;

Calculate € using Eq.(11)

l

Calculate V using Eq.(21)

l

Assume V,

l

>| Next truss Calculate transverse tensile strain &, using Eq.(13) and (14)

l

Calculate v, using Eq. (15)

l

Calculate new V, using Eq. (20)

14

unit

=V +V,

l

Obtain new /

[ < jdcot@ ?

V, =min(V,,;)

Fig. 7 Flowchart showing the solution algorithm for shear strength

of steel and concrete were used in the model. The shear strength of RC beams is defined as the
minimum value of the shear strength of every truss unit of RC beams. The step-by-step solution
process is summarized in the flowchart shown in Fig. 7. The MatLab (Rudra et a/. 2006) program

was used to solve the flowchart.



Table 2 Experimental verification

Beam No. A b h a a p' P Pu ex) _exL Voo Vvode  Vep Vg

(MPa) (mm) (mm) (mm) 4 (%) (%) (%) \0,./ “Ousir B(M (N)  &N) Vs Viscrr

Bresler ef al. A2 243 305 559 2285 44 0.5 189 0.10 1.05 139 136 2445 181.1 135 132
(1963) A3 351 307 561 3200 62 015 225 0.0 09 14 132 2335 2123 110 1.16

Al 226 305 552 1830 3.7 0.8 143 0.0 085 106 1.02 2295 1561 147 097

A2 259 305 552 2285 46 0.8 178 0.10 1.1 1.5 136 2195 1663 132 099

A3 435 305 552 3200 6.5 0.8 2.14 004 1.8 144 126 2100 1780 1.18 118

Vecchio ef al. Bl 226 229 552 1830 3.7 024 190 0.5 087 117 101 2170 1428 152 1.04
(2004) B2 259 229 552 2285 46 024 190 0.5 09 135 114 1825 1496 122  1.06

B3 435 229 552 3200 65 024 238 006 1.09 146 132 1710 1487 115 L1l

Cl 226 152 552 1830 37 036 167 020 099 15 12 1410 1085 130 110

2 259 152 552 2285 46 036 286 020 071 106 092 1450 1229 118 122

S.6.8110 465 152 406 711 20 006 123 0.14 128 158 1.02 149.1 956 1.56 133

Al'll\;%‘gavlvégez””- S-8-110 551 152 406 711 20 006 123 0.14 106 124 083 1935 1024 189 16l
(1989.1992) g 11410 730 152 406 711 20 006 123 014 095 098 074 1446 1157 125 114
RS 267 152 305 914 34 034 146 021 103 153 119 796 730 109 105

Placas ef al RO 296 152 305 914 34 034 146 043 108 19 144 1045 909 115 127
(2003) RI6 316 152 305 979 36 295 415 043 093 135 137 1397 99.1 141 119
R28 316 152 305 979 36 295 415 083 087 148 125 1793 122 147 119

V362 275 457 915 2553 3.0 003 092 008 1.15 132 1.08 4875 3693 132 114

V363 275 457 915 2553 3.0 0.03 092 008 097 113 089 5115 3680 139  1.19

Torr(lng(s)ze)’ al. V182 275 229 486 1276 3.0 0.13 091 015 1.1 154 125 1721 1238 139 101
VI82c 275 229 486 1276 3.0 0.3 091 0.5 1.06 147 122 153.0 1244 123 089

VI83 275 229 48 1276 3.0 0.3 091 033 099 171 118 2767 1581 175  1.59

Karay(‘fgg;)e’ a  Boy 260 200 300 900 35 059 197 013 112 131 128 848 713 119 122
Cladera et al. (2005) H60/3  60.8 200 400 1080 3.1 0.3 2.01 024 104 136 1.17 2590 1533 1.69 1.15
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Table 2 Continued

Beam No. ./ b h a a p' p P ) _exL Voo Vot Ve Ve

(MPa) (mm) (mm) (mm) 4 (%) (%) (%) ewode 6,451 49( o &N (&KN) p 0 Vierr

S2-1 725 250 350 730 2.5 026 234 0.11 098 0.78 2603 1595 1.63 1.53

S22 725 250 350 730 25 026 234 013 102 085 086 2325 1663 140 1.19

$23 725 250 350 730 25 026 234 0.16 1.08 098 097 2533 171.1 148 1.6

S2-4 725 250 350 730 2.5 026 234 0.6 108 098 093 2194 171.1 128 101

$2-5 725 250 350 730 25 026 234 021 088 088 081 2821 180.1 157 1.12

S3-1 674 250 350 730 2.5 026 141 0.0 097 088 083 2092 1339 156 121

Kong ef al $32 674 250 350 730 25 026 141 0.10 097 088 0.83 1781 1339 133  1.03
(1998) S3-3 674 250 350 730 2.5 026 234 0.10 088 068 069 2286 159.1 144 130
S3-4 674 250 350 730 25 026 234 0.0 088 068 0.69 1749 159.1 1.10 1.0l

$3-5 674 250 350 720 24 026 3.15 0.0 1.10 083 083 2966 1647 180 1.62

S3-6 674 250 350 720 24 026 3.5 0.10 1.10 083 083 2829 1647 172 154

S5-1 894 250 350 880 3.0 026 234 0.16 105 1.09 1.05 2417 1746 138 1.12

S5-2 894 250 350 800 27 026 234 016 1.1 106 106 2599 181.1 144 120

$53 894 250 350 730 25 026 234 0.16 078 071 0.7 2438 1865 131  1.13

S-59-ACI  82.0 150 360 1625 5.0 029 381 0.14 063 082 077 965 1399 069 1.05

S-59-TH 750 150 360 1625 5.0 029 3.81 0.19 095 135 134 1193 1437 083 112

Ozcebe et al S-59-TS 820 150 360 1625 5.0 029 3.81 028 084 132 118 1254 169.5 0.74 093
(1999) S39-ACI 73.0 150 360 975 3.0 029 381 0.14 1.06 097 091 111.8 1415 079 120
S39-TH 73.0 150 360 975 3.0 029 3.81 021 1.1 124 112 1429 1489 096 120

S39-TS  73.0 150 360 975 3.0 029 3.81 028 094 105 109 1792 1629 1.10 125

Narazi‘ggg)e’ ags4 433 85 150 262 20 091 199 021 099 093 098 320 291 110 1.08
Johnson ef . Beam 7 513 305 610 1670 3.1 0.69 220 0.07 143 114 12 3177 2692 118 1.11
(1989) Beam 5 558 305 610 1670 3.1 0.9 220 0.14 123 13 129 4330 3115 139 095
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Table 2 Continued

B eam N o. f;’, b h a C_’ p.v’ p.v ,0 w ) exE ) Vexp VModel ﬁg_ &&

(MPa) (mm) (mm) (mm) 4 (%) (%) (%) QM,,de 6. isure 6'( o) KN)  (KN) oy Ve

A65200 609 200 370 900 2.8 031 199 0.14 083 068 085 1750 1316 133 145

A65-140 621 200 370 900 2.8 031 199 020 111 128 122 1500 1500 1.00 1.1

A65-110 609 200 370 900 2.8 031 199 026 055 069 069 1880 1649 1.14 1.16

Rahal eral.  A6595 621 200 370 900 2.8 031 199 030 093 122 1.17 2200 1760 125 127
(2004) B65-160 651 200 370 900 3.0 031 332 0.8 083 088 083 2080 1351 154 1.54

B65-140 651 200 370 900 3.0 031 332 020 096 102 1 2350 1366 172 16l

B65-125 664 200 370 900 3.0 031 332 023 127 14 136 2420 1432 169 154

B65-110 664 200 370 900 3.0 031 332 026 092 102 101 2700 1508 179  1.69

S1-25-05 243 210 400 1020 3.0 037 234 028 111 147 134 1660 1277 130 092

$2.25-25 253 250 400 1020 3.0 031 196 024 101 13 121 1940 1416 137 094

$3-25-50 273 300 400 1020 3.0 026 1.64 0.19 085 107 093 199.0 1567 127 084

Raéaéoeé)al $4-25-75 253 350 400 1020 3.0 022 140 017 092 1.17 108 2440 1605 152 099
$2-40-25 431 250 400 1020 3.0 031 196 024 106 136 124 2570 169.1 152  1.02

S$3-40-50 416 300 400 1020 3.0 026 1.64 019 1.08 135 135 262.0 1782 147 1.04

S4-40-75 422 350 400 1020 3.0 022 140 017 1.05 133 129 2640 1872 141  1.02

NIN 360 375 750 2150 32 0.06 251 008 1.14 098 099 457.0 3570 128 135

MIN 670 375 750 2150 3.1 006 2.51 008 119 098 1.03 4050 4709 086 1.10

HIN 870 375 750 2150 3.1 006 2.51 008 1.18 097 098 4830 5194 093 135

N2S 360 375 750 2150 3.1 006 251 008 118 105 1.02 3630 3490 1.04 111

Y"(‘iggeé)al N2N 360 375 750 2150 3.1 006 251 012 096 092 097 4830 3659 132 127
M2S 670 375 750 2150 3.1 006 2.51 0.2 081 078 077 5520 4800 1.15 149

M2N 670 375 750 2150 3.1 006 251 016 12 129 1.4 689.0 5104 135 1.8

H2S 870 375 750 2150 3.1 006 251 012 105 101 093 5980 5339 112 132

HON 870 375 750 2150 3.1 006 2.51 023 097 118 099 721.0 6555 1.10 1.03

Average 097 115 1.06 124 1.14

CoV 015 027 02 024 0.8

Note: CoV= coefficient of variation.
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5. Comparison with test results

The validation of the proposed truss approach is demonstrated by comparison with published
experimental results from previous investigations with respect to the shear strength and inclination
angle of compression strut at this state. Details of the RC beams can be found in Table 2. These
beams encompass a wide range of sizes and material properties. The beams selected were shear-
critical flexural members. The shear strength of RC beams in the proposed model is governed by
the strength of the transverse reinforcements plus the shear transferred across the cracks. In order to
verify the proposed model, only the lightly shear-reinforced beams with aspect ratios larger than 2
were selected. The reinforced concrete beams with aspect ratios smaller than 2 or thin web, in
which the diagonal cracking strength govern the shear strength of the beams, were excluded.
Among the shear-critical flexural beams, only those with cracking patterns provided were selected.
The model does not apply to beams which are over-reinforced, and to beams with inadequate
transverse reinforcement.

5.1 Inclination angle of compression strut

Fig. 8 shows the comparison between calculated inclinations of struts and the experimentally
recorded crack patterns for sample beams presented in Table 2. In these graphs of Fig. 8, the strut
inclinations are observed to have similar orientations as the cracks developed. The analytical results
revealed that the proposed variable-truss angle model was capable of capturing crack patterns of RC
beams with satisfactory accuracy. To further demonstrate the capacity of the proposed variable-truss
angle model in capturing the inclination angle of compression struts along the RC beams, the
maximum inclination angle of compression strut observed from the experiments was compared with
the analytical result as showed in Fig. 9. Overall, the average value of the experimental to predicted
shear-critical angle by the proposed approach is 0.97.

A1 (Vecchio et al. 2004)

il

7

—

S2-2 (Kong ef al. 1998)

Fig. 8 Comparison of calculated 6 and observed angle of crack for sample beams
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Fig. 9 Correlation of maximum experimental and predicted inclination of compression strut based on the
proposed method

The inclined angle of shear-critical beams in the database calculated based on the proposed model,
AASHTO (2004), and CSA (2004) are shown in Table 2. The mean ratio of the experimental to
predicted angle and its coefficient of variation are 0.97 and 0.15, 1.15 and 0.27, 1.06 and 0.20 for
the proposed model, AASHTO (2004), and CSA (2004), respectively. Comparison of available
models with experimental data indicates that the proposed model produce better mean ratio of the
experimental to predicted strength than the AASHTO (2004), and CSA (2004). The results of the
calculated angles by Eq. (11) are shown to be consistent with the experimentally observed angles of
the shear-critical RC beams.

5.2 Shear strength

The shear strengths from the proposed method and experimental results were compared as shown
in Fig. 10. The average value of the experimental to predicted shear strength by the proposed model
is 1.24, showing a fairly good correlation between the proposed variable-truss angle model and the
experimental data. Importantly, most of the analytical results based on the proposed method were on
the safe side as illustrated in Fig. 10. This is due to not taking into account the dowel action and
shear carried by the compression zone in the concrete contribution. The proposed model could be
used to give a lower bound for the shear capacity of the available experimental data.

Beside the analytical results according to the proposed variable-truss angle model, the predicted
shear strengths based on modified compression field theory (MCFT) (Bentz et al. 2000) are also
presented in Fig. 11. The Response program (Bentz ef al. 2000) was used to calculate the predicted
shear strengths. While it can be seen that MCFT (Bentz ef al. 2000) shows good accuracy with the
average value of the ratio being 1.14, it is of interest to explore the development of a new model that
is able to explain the shear behavior of RC beams. It is believed that the method presented in this
paper gives a physical significance to the parameters being calculated. The shear strengths of shear-
critical beams in the database calculated based on the proposed model, MCFT (Bentz et al. 2000),
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Fig. 10 Correlation of experimental and predicted shear strength based on the proposed method
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Fig. 11 Correlation of experimental and predicted shear strength based on MCFT (Bentz et al. 2000)

Table 3 Verification of different shear procedures for shear-critical RC beams

I/Mndel VMCF T VA Cl VECZ -03
Average 1.24 1.14 1.27 1.59
CoV 0.24 0.18 0.20 0.43
Minimum 0.69 0.84 0.70 0.70
Maximum 1.89 1.62 1.79 2.65

Note: CoV = coefficient of variation.
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ACI 318 (2008), and EC2-03 (2003) are summarized in Table 3. The mean ratio of the experimental
to predicted strength and its coefficient of variation are 1.24 and 0.24, 1.14 and 0.18, 1.27 and 0.20,
and 1.59 and 0.43 for the proposed model, MCFT (Bentz ef al. 2000), ACI 318 (2008), and EC2-03
(2003), respectively. Comparison of available models with experimental data indicates that MCFT
(Bentz et al. 2000) and the proposed model produce better mean ratio of the experimental to
predicted strength than the ACI 318 (2008) model and EC2-03 (2003). The truss model of EC2-03
(2003) does not incorporate the concrete contribution. This leads to very conservative results when
compared with experimental tests of shear-critical reinforced concrete beams.

To investigate the validity and applicability of the proposed model across the range of several key
parameters including compressive strength of concrete, aspect ratio, and transverse reinforcement
ratio; the ratio of experimental shear strength to shear strength calculated from the proposed model
versus compressive strength of concrete £/, aspect ratio a/d, and transverse reinforcement ratio p,
are plot in Fig. 12. The good correlation between the experimental and predicted strengths across
the range of compressive strength of concrete, aspect ratio, and transverse reinforcement ratio
indicates that the proposed model well represents the effects of these key parameters.
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Fig. 12 Variation of experimental to predicted strength ratio as a function of key parameters
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6. Conclusions

In this paper, a theoretical method to compute the inclination of struts and predict the shear
strength of RC beams is proposed. The predicted developments of inclinations of compression struts
along the shear span of the RC beams agreed fairly well with the experimental results. There is also
good correlation between the shear strengths obtained and the published experimental data with the
average ratio of experimental to predicted shear strength of the 71 RC beams being 1.24. This
proposed method provides a useful tool for obtaining the shear strength of RC beams.
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