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A numerical solution for a finite internally cracked plate 
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Abstract. This paper provides a numerical solution for a finite internally cracked plate using hybrid
crack element method (HCE). In the formulation, an inclined crack is placed in any place of a rectangular
element and the complex variable method is used. The complex potentials are expressed in a series form,
and several undetermined coefficients are involved. The complex potentials for the cracked rectangle are
first suggested in this paper. Based on a variational principle, the element stiffness matrix can be
evaluated. The next steps are same as in the usual finite element method. Several numerical examples
with computed stress intensity factor and T-stress are presented.
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1. Introduction

Generally, the potential energy principle is used to formulate the element stiffness matrix in the

finite element method (FE). It is evident that the admissible displacement field in each element

should be such that it is not only continuous within the element but also compatible at the

interelement boundaries. In earlier years, the concept of separately assuming displacements and

stresses over different parts of the continuum was suggested (Pian 1964). The hybrid stress element

(HSE) method was thus formulated. The relaxation of requirements of interelement displacement

continuity and traction reciprocity in hybrid element method may provide some flexibility in the

process of solution. Many possibilities of formulating the hybrid finite element were proposed (Day

and Yang 1982, Pian and Chen 1982, Pian et al. 1983). A linear plane element was suggested,

which is based on the hybrid Trefftz method (Choi et al. 2006). Four- and eight-node quadrilateral

finite element models are devised for plane Helmholtz problems (Sze et al. 2010). Mixed 4-node

elements based on the Hu-Washizu functional are developed for stress and strain representations in

various coordinates (Wisniewski and Turska 2009). 

Similar methods have been proposed more recently (Long et al. 2009). A 4-node hybrid stress-

function membrane element with drilling degrees of freedom was developed based on the principle

of minimum complementary energy (Cen et al. 2011). It was proved that the suggested hybrid
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stress-function membrane element exhibited much improved numerical accuracy and robust performance.

In particular, the element performs well even when the element shape degenerates into a triangle or

concave quadrangle.

A collection in the field of the hybrid finite element method was published (Atluri et al. 1983). A

hybrid-Trefftz element containing an elliptic hole was suggested (Dhanasekar et al. 2006). In the

formulation, the trial functions for the assumed displacement-stress field are derived from an

elasticity solution, which satisfy the traction free condition along the elliptic hole automatically. 

The hybrid crack element (HCE) method was suggested by some pioneer researchers (Tong et al.

1973, Tong and Rossettos 1977). Summary and theoretical background for the hybrid and mixed

finite element methods can be found from (Atluri et al. 1983). After using conformal mapping,

complex potentials were derived to model the displacement-stress field for an edge cracked element.

Nine-node and seventeen-node supper-elements with linearly varying displacement between two

neighboring nodes were suggested (Tong et al. 1973). Similar derivation based on the complex

potential not using conformal mapping was suggested (Cheung and Chen 1991). A formulation of

HCE was suggested, which was based on the Williams expansion form at the vicinity of a crack tip

(Karihaloo and Xiao 2001, Xiao and Karihaloo 2004, 2007). 

The merit of the hybrid method including HCE is to assume displacements and stresses over different

parts of the continuum separately (Tong et al. 1973, Tong and Rossettos 1977, Atluri et al. 1983). One

possibility in the formulation of HCE is to assume an elasticity solution in the cracked region and to

assume some displacement mode along the boundary. In the assumed displacement mode along the

boundary, there are some undetermined coefficients or generalized coordinates (Tong and Rossettos 1977).

Several crack problems were solved by using boundary integral equation method (Hong and Chen

1988, Chen et al. 1998, Chen and Hong 1999).

In the present paper, the assumed displacement mode along the boundary is called the displacement

family on the element boundary. Since each term in displacement family takes a definite form of

displacement along the boundary, the relevant boundary value problem can be formulated and

solved by using the variational theorem. Finally, after using HCE method, the element stiffness

matrix for the cracked element is obtainable. After the element stiffness matrix is obtained, the next

steps are same as in the usual finite element formulation. 

This paper provides a numerical solution for a finite internally cracked plate using hybrid finite

element method. In the formulation, an inclined crack is placed in any place of a rectangular

element. The crack face is of traction free. Based on a previous study (Chen 1983), complex

potentials for the cracked rectangle are derived, which satisfy (a) all governing equations of plane

elasticity, (b) the traction free condition along crack face. The complex potentials are expressed in a

series form, and several undetermined coefficients are involved. As knowledge of author, those

complex potentials are first suggested in this paper. Based on a variational principle, the element

stiffness matrix can be evaluated. The next steps are same as in the usual finite element method.

Several numerical examples with computed stress intensity factor and T-stress are presented.

2. Analysis

2.1 General for formulation of element stiffness matrix for HCE

Some formulations for HCE (hybrid crack element) were proposed by (Tong et al. 1973, Tong
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and Rossettos 1977, Cheung and Chen 1991, Karihaloo and Xiao 2001, Xiao and Karihaloo 2004,

2007). Generally, the formulation of HCE relies on the usage a variety of variational principles in

elasticity (Hu 1955, Washizu 1982). In fact, the same result for the formulation of HCE can be

obtained by different ways and the final result may be the same. In order to make a complete

statement for the method, a compact description for the formulation of HCE is presented below,

which may have a slight difference with the those previously suggested. 

It is known that the key point in the FE (finite element) formulation is to derive the element

stiffness matrix by a variety of methods. In this case, without losing the generality, we can assume

that the HCE is surrounded by many interelement boundaries with displacement boundary condition.

From the previously published papers (Tong et al. 1973, Tong and Rossettos 1977, Chen 1983,

Dhanasekar et al. 2006, Xiao and Karihaloo 2007, Cen et al. 2011), the following simplified variational

functional  for the cracked element in Fig. 1(a) is introduced

(1)

Here, one term cited in some references is deleted because no traction boundary for the cracked

element is assumed. 

In Eq. (1),  denotes the interelement boundaries of the cracked region Ωe. The displacement

and traction components defined in the cracked region Ωe as well as on the boundary  are denoted by

Π
e

Π
e 1

2
--- uiσijnj s ũiσijnj sd

sin
e∫+d

sin
e∫–=

sin
e

sin
e

Fig. 1 (a) A rectangular cracked element, (b) boundary node arrangement for the element
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 and  (Fig. 1(a)). In addition, particular displacement components  are defined on the

boundary  only. In Eq. (1),  denotes the direction cosines of the outward normal with respect

to a boundary point.

In the formulation, one may define and introduce two types of physical quantities. The first one is

for components  and , which is defined on the region Ωe as well as its boundary  (Fig.

1(a)). We assume that those components ui and σij satisfy all governing equations of plane elasticity.

Thus, we have used the Trefftz method in the formulation of HCE.

In the rectangular cracked element and its boundary as shown in Fig. 1(a), the displacement and

stress components are expressed by the following form

, (defined in Ωe and on its boundary )  (2)

, (defined in Ωe and on its boundary )  (3)

where xk (k = 1, 2, … nx) are some undetermined coefficients. In Eqs. (2) and (3),  and  are

some particular elasticity solution for the cracked element (Fig. 1(a)), which will be described later

in detail. In Eqs. (2) and (3), Nx is called the number of displacement-stress modes for the cracked

element in the region Ωe and on the interelement boundary . In the formulation of displacement

and stress family shown by Eqs. (2) and (3), the rigid motion of displacement for the element

should be excluded in the summation.

The second one is for displacement component family , which is defined along the boundary

 only. The displacement family  can be expressed in the form

 (defined on ) (4)

where  (n=1, 2, … ) are some undetermined coefficients, and (n = 1, 2, … ) are some

particular boundary displacement along the boundary , which will be described later in detail. In

Eq. (4),  is called the nodal displacement parameter along the boundary . In the formulation,

the following stability condition  must be satisfied (Tong et al. 1973, Tong and Rossettos

1977, Xiao and Karihaloo 2007).

Substituting Eqs. (2), (3) and (4) into Eq. (1) yields

(5)

where

, (k, n=1, 2, … ) (6)

, (k=1, 2, … , n=1, 2… ) (7)

In Eq. (6), the relation  is actually obtained from the Betti’s reciprocal theorem for two

elasticity solutions.

 Eq. (5) may be written in a matrix representation form

(8)
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From the condition , or  (k = 1, 2, … ), we will find

 (9)

and

 (10)

where H−1 denotes an inverse matrix with respect to the matrix H. Since the matrix H is symmetry,

or , we have

 (11)

Substituting Eqs. (10) and (11) into Eq. (8) yields

 (12)

where 

 (13)

This matrix K is the element stiffness matrix for the HCE.

2.2 Derivation for the displacement-stress family ui and σij using complex variable 

Derivations for the displacement-stress family shown in Eqs. (2) and (3) are introduced below,

which depend on the usage of the complex variable function.

The complex variable function method plays an important role in plane elasticity. Fundamental of

this method is introduced. In the method, the stresses ( ), the resultant forces (X, Y) and

the displacements (u, v) are expressed in terms of complex potentials  and  such that

(Muskhelishvili 1963) 

,

(14)

(15)

(16)

where , , a bar over a function denotes the conjugated value for the function,

G is the shear modulus of elasticity,  in the plane stress problem,  in

the plane strain problem, and ν is the Poisson’s ratio. Sometimes, the displacements u and v are

denoted by  and , the stresses  and  by  and , the coordinates x and y by

x1 and x2. 

It is assumed that the crack center is placed at some place of a rectangular plate, and the crack

has an inclined angle α. In this case, we first study the problem in the  coordinates (Fig.

1(a)). The relevant complex potentials are denoted as  and  (where ). From

Eq. (15), the traction free condition along the crack face can be written as (Muskhelishvili 1963) 

 (along the crack face) (17)
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From a previous publication, two types of the expansion forms which satisfy the condition (17)

were suggested (Chen 1983). In that paper, the expansion form for  and  was obtained.

In fact, from obtained complex potentials  and , the complex potential  can be

obtained accordingly. 

For two types of the expansion form, the first type can be expressed as 

(18)

(19)

where

 (taking the branch ) (20)

In Eqs. (18) and (19),  (k=1, 2, …, M) are 2M undetermined coefficients.

The second type is expressed as 

 (21)

(22)

In Eqs. (21) and (22),  (k = 1, 2, … M) are 2M undetermined coefficients. Note that, the pair

 represents a rigid motion of body. Therefore, this pair

should be excluded in the group.

From the complex potentials in the  coordinates, we will obtain relevant complex potentials

in the oxy coordinates by (Muskhelishvili 1963) 

 (23)

where

 (with ) (24)

We may write two types of the expansion form in the following unified form

 (with ) (25)

In fact, the coefficients in Eq. (25) are composed of following coefficients 

(26)

 (27)

Note that, in Eq. (27) the coefficient d1 has been excluded. In addition, the complex potential

pairs  (m = 1, 2, … ) have been defined previously from Eqs. (18) to

(23). From the complex potential pair , , the relevant displacement and stress fields

are denoted by  and . The proposed expansion form is used to formulate the element

stiffness matrix. In the present study, we choose M = 15 and  ( ). Obviously, it
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is the key point to derive the displacement-stress family. Those derivations are first suggested in this

paper. 

2.3 Assumption for displacement family  along the boundary 

As claimed previously, the displacement family is expressed as  (defined along ).

In the present study, 24 nodes are assumed along the outer boundary  (Fig. 1(b)). This family

is obtained in the following way. Except for one node, let all nodes preserve in a fixed position. In

the meantime, one allows one node, for example, the 10th node, to shift a unit length in x- or y-

direction, respectively. Thus, the total undetermined coefficients in Eq. (4) is 48 (=2×24). Therefore,

we have . Clearly, the stability condition  ( ) is satisfied in the

present study.

When the 10th node has a unit shift δ( ) in x- or y-direction respectively, the relevant scheme

is indicated in Fig. 1(b). This situation can be described by the following equations

, (for u1, , along the interval form node “11” to “10”) (28a)

, (for u1, , along the interval form node “10” to “9”) (28b)

, (for u1, along other intervals on boundary) (28c)

and

, (for u2, , along the interval form node “11” to “10”) (29a)

, (for u2, , along the interval form node “10” to “9”) (29b)

, (for u2, along other intervals on boundary) (29c)

Note that the expression  is for a unit displacement at 10th node in x-direction, and

 is for a unit displacement at 10th node in y-direction. In a real computation, we can choose

.

2.4 Solution technique

Once the element stiffness matrices for many cracked elements are obtained, the assembling of

matrices can be carried out in a usual way. In addition, the applied loading can be reduced to some

forces on nodes (Bathe 1996). Once all the element stiffness matrices were assembled, the three

degrees of freedom from the rigid motion are eliminated by three support conditions at the

boundary points.

Suppose the studied problem is composed of two cracked elements as shown in the Example 2

below (Fig. 2(b)). From the solution for problem, we can get the “q” and “x” vectors for two

cracked element. In fact, the “x” is composed of the coefficients, or  and  (k = 1, 2,

…M) in the expansion form shown by Eqs. (18) to (23) . Finally, we can evaluate the SIFs and T-

stresses at the left crack tip “A” and right crack tip “B” by (Chen et al. 2003, Chen et al. 2008) 

ũi sin
e

ũi qnũ
n( )

n 1=

N
q

∑= sin
e

sin
e

Nq 48= Nx Nq 3–≥ Nx 59 Nq, 48= =
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ũ
19( )

s( ) δ
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2d
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ũ
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d s–

2d
----------= s d≤

ũ1
19( )
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ũ
20( )

s( ) δ
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ũ
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s( ) δ
d s–

2d
----------= s d≤

ũ
20( )

s( ) 0=

ũ
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ũ
20( )
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ak bk ck, , dk
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(30a)

(30b)

(31a)

(31b)

3. Numerical examples

Four numerical examples are introduced below. In the first example, the computed results for SIFs

are compared with previously obtained results. The computed results for other three examples,

particularly, the results for T-stresses, may not be available in other references. In computation, the

plane strain condition is assumed, and ν = 0.3.

K1 iK2–( )A 2 2π( )
1 2⁄

z1 a+ φ1′
z
1

a–→
lim z( ) 2 πa( )

1 2⁄
ak ibk+( )

k 1=

M

∑ a–( )
k 1–

= =

K1 iK2–( )B 2 2π( )
1 2⁄

z1 a– φ1′
z
1

a→
lim z( ) 2 πa( )

1 2⁄
ak ibk+( )

k 1=

M

∑ a
k 1–

= =

TA 4 kck a–( )
k 1–

k 1=

M

∑=

TB 4 kcka
k 1–

k 1=

M

∑=

Fig. 2 (a) An incline crack in a rectangular plate, (b) two inclined crack in a rectangular plate, (c) two cracks
in a stacking position in a rectangular plate, (d) three cracks in series in a rectangular plate 
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Example 1

In the first example, we assume that the rectangular cracked plate with ratio h/b = 2 has a uniform

loading “p” on the two tops (Fig. 2(a)). The crack with length “2a” has an inclined angle α.

The calculated stress intensity factor and the T-stress at the tip “A” are expressed as

(32)

(33)

In the case of (a) a/b changes from 0.1, 0.2, …0.8, (c) α changes from 0, , , …. to

, computed results for SIF and T-stress are listed in Table 1. Comparison results are also listed

in Table 1.

From tabulated results, we see that in some particular cases, the SIF and T-stress can reach a

comparatively larger value. For example, in the case of a/b = 0.8 and α = 0, we have 

= 1.7749 and = -2.1281. It is known that for a single crack in an infinite plate with

remote loading , we have = 1 and = -1. In addition, in the case of , we

find = 1 for all ratios of a/b. Clearly, this result coincides with the exact solution. In addition,

the computed results from other source are also attached in the Table 1 (Murakami 1987). It is

found that for the case of , deviations from different sources are not significant.

Example 2

In the second example, we assume that the rectangular cracked plate with two inclined cracks has

K1A F1A a b α,⁄( )p πa K2A, F2A a b α,⁄( )p πa= =

TA GA a b α,⁄( )p=

π 12⁄ 2π 12⁄

π 2⁄

F1A a b α,⁄( )

GA a b α,⁄( )

σy

∞
p= F1A GA α π 2⁄=

GA

a b⁄ 0.6≤

Table 1 Non-dimensional stress intensity factor F1A(a/b,α), F2A(a/b,α), and T-stress GA(a/b,α) for a rectangular
cracked plate under the loading p (see Fig. 2(a) and Eqs. (32), (33))

F1A(a/b, α)

α = 0 π/12 π/6 π/4 π/3 5π/12 π/2

a/b=

0.1 1.0059 0.9388 0.7554 0.5043 0.2525 0.0677 0.0000

0.1* 0.9391 0.7557 0.5046 0.2527 0.0678

0.2 1.0241 0.9567 0.7719 0.5172 0.2600 0.0699 0.0000

0.2* 0.9577 0.7730 0.5182 0.2605 0.0701

0.3 1.0563 0.9879 0.7997 0.5387 0.2722 0.0735 0.0000

0.3* 0.9904 0.8025 0.5406 0.2730 0.0736

0.4 1.1063 1.0346 0.8396 0.5689 0.2891 0.0783 0.0000

0.4* 1.0402 0.8456 0.5719 0.2896 0.0783

0.5 1.1807 1.1003 0.8930 0.6087 0.3102 0.0840 0.0000

0.5* 1.1128 0.9046 0.6119 0.3099 0.0837

0.6 1.2928 1.1912 0.9633 0.6597 0.3351 0.0903 0.0000

0.6* 1.2183 0.9840 0.6611 0.3332 0.0896

0.7 1.4702 1.3193 1.0591 0.7249 0.3629 0.0966 0.0000

0.7* 1.3780 1.0910 0.7210 0.3590 0.0957

0.8 1.7749 1.5184 1.2026 0.8063 0.3920 0.1029 0.0000

0.8* 1.6530 1.2450 0.7850 0.3880 0.1020

*from (Murakami 1987) 
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a uniform loading “p” on the two tops (Fig. 2(b)). Two cracks with length “2a” have an inclined

angle α. 

In computation, we assume c/b = 0.5 and a/b = 0.4. The calculated stress intensity factor and the

T-stress at the tips “A” and “B” are expressed as

(34)

K1A F1A α( )p πa=  K1B, F1B α( )p πa=

K1B F1B α( )p πa K2B, F2B α( )p πa= =

Table 1 Continued

F2A(a/b, α)

α = 0 π/12 π/6 π/4 π/3 5π/12 π/2

a/b =

0.1 0.0000 0.2502 0.4339 0.5017 0.4350 0.2514 0.0000

0.1* 0.2502 0.4339 0.5018 0.4352 0.2516

0.2 0.0000 0.2510 0.4364 0.5066 0.4410 0.2556 0.0000

0.2* 0.2510 0.4367 0.5072 0.4417 0.2560

0.3 0.0000 0.2529 0.4409 0.5145 0.4506 0.2623 0.0000

0.3* 0.2527 0.4417 0.5162 0.4521 0.2631

0.4 0.0000 0.2567 0.4475 0.5252 0.4635 0.2712 0.0000

0.4* 0.2560 0.4497 0.5290 0.4660 0.2721

0.5 0.0000 0.2644 0.4558 0.5383 0.4793 0.2816 0.0000

0.5* 0.2619 0.4617 0.5458 0.4827 0.2825

0.6 0.0000 0.2795 0.4649 0.5540 0.4980 0.2933 0.0000

0.6* 0.2726 0.4800 0.5674 0.5022 0.2939

0.7 0.0000 0.3081 0.4721 0.5739 0.5198 0.3056 0.0000

0.7* 0.2900 0.5080 0.5950 0.5240 0.3060

0.8 0.0000 0.3599 0.4760 0.6022 0.5444 0.3182 0.0000

0.8* 0.3070 0.5500 0.6300 0.5490 0.3190

*from (Murakami 1987) 

GA(a/b, α)

α = 0 π/12 π/6 π/4 π/3 5π/12 π/2

a/b=

0.1 -1.0067 -0.8730 -0.5070 -0.0061 0.4963 0.8649 1.0000

0.2 -1.0277 -0.8941 -0.5278 -0.0235 0.4857 0.8617 1.0000

0.3 -1.0658 -0.9307 -0.5610 -0.0503 0.4699 0.8571 1.0000

0.4 -1.1274 -0.9843 -0.6044 -0.0842 0.4514 0.8521 1.0000

0.5 -1.2245 -1.0560 -0.6551 -0.1236 0.4331 0.8483 1.0000

0.6 -1.3813 -1.1443 -0.7123 -0.1682 0.4195 0.8472 1.0000

0.7 -1.6478 -1.2466 -0.7845 -0.2174 0.4156 0.8499 1.0000

0.8 -2.1281 -1.3837 -0.9034 -0.2606 0.4269 0.8566 1.0000
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 (35)

In the case of α changing from 0,  to , the computed results are listed in

Table 2. From tabulated results, we see that in some particular cases, the SIF and T-stress can reach

a comparatively larger value. For example, in the case of α = 0, we have = 1.4718, 

= 1.6829, = -1.1287 and = -1.6751. Simply because the tip “B” is located near the

boundary, we have .

Example 3

In the third second example (Fig. 2(c)), we assume that the rectangular cracked plate with two

parallel cracks has a uniform loading “p” on the two tops. Two cracks have a length “2a”.

In computation, we assume (a) h/b = 0.5, 1.0, 1.5 and 2 and (b) a/b = 0.1, 0.2,…0.9. The computed

stress intensity factor and the T-stress at the tip “A” are expressed as

 (36)

(37)

The computed results are listed in Table 3. From tabulated results, we see that in some particular

cases, the SIF and T-stress can reach a comparatively larger value. For example, in the case of h/b =

0.5 and a/b = 0.9, we have = 3.1934, = 0.9827, = -3.4789.

On the contrary, for a shorter crack case, for example, in the case of h/b = 0.5 and a/b = 0.1, we

have =1.0245 ( ), = 0.0036 ( ), = -1.0202 ( ).

Example 4

In the fourth example (Fig. 2(d)), we assume that the rectangular cracked plate with three cracks

in series has a uniform loading “p” on the two tops. Three cracks have a length “2a”.

In computation, we assume (a) h/b = 1.0, 1.5, 2.0 and 2.5 and (b) a/b = 0.1, 0.2, …0.9. The

calculated stress intensity factor and the T-stress at the tip “A”, “B” and “C” are expressed as

 (38)

TA GA α( )p TB, GB α( )p= =

π 18 2π 18 …,⁄,⁄ π 2⁄

F1A α( ) F1B α( )

GA α( ) GB α( )

F1B α( ) F1A α( )>

K1A F1A h b⁄ a b⁄,( )p πa K2A, F2A h b⁄ a b⁄,( )p πa= =

TA GA h b⁄ a b⁄,( )p=

F1A h b⁄ a b⁄,( ) F2A h b⁄ a b⁄,( ) GA h b⁄ a b⁄,( )

F1A h b⁄ a b⁄,( ) 1≈ F2A h b⁄ a b⁄,( ) 0≈ GA h b⁄ a b⁄,( ) 1–≈

K1A F1A h b⁄ a b⁄,( )p πa  K1B, F1B h b⁄ a b⁄,( )p πa  K1C, F1C h b⁄ a b⁄,( )p πa= = =

Table 2 Non-dimensional stress intensity factor F1A(a/b, α), F1B(a/b, α), F2A(a/b, α), F2B(a/b, α) and T-stress
GA(a/b, α), GB(a/b, α) for a rectangular cracked plate with two inclined cracks under the loading p
(see Fig. 2(b) and Eqs. (34), (35))

F1A F1B F2A F2B GA GB

α =

0 1.4718 1.6829 0.0801 -0.1094 -1.1287 -1.6751

π/18 1.4195 1.6650 0.2607 0.0939 -1.0125 -1.7630

π/9 1.2925 1.5218 0.4313 0.3737 -0.8105 -1.6312

π/6 1.0883 1.2352 0.5583 0.5872 -0.5324 -1.0153

2π/9 0.8445 0.9312 0.6162 0.6622 -0.2012 -0.4657

5π/18 0.5947 0.6429 0.6015 0.6536 0.1482 -0.0015

π/3 0.3667 0.3811 0.5180 0.5528 0.4749 0.4523

7π/18 0.1841 0.1897 0.3800 0.3992 0.7419 0.6884

4π/9 0.0570 0.0510 0.2035 0.2258 0.9221 0.8942

π/2 0.0006 0.0010 0.0000 -0.0001 0.9994 0.9916
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(39)

The computed results are listed in Table 4. From tabulated results, we see that in some particular

cases, the SIF and T-stress can reach a comparatively larger value. For example, in the case of h/b

TA GA h b⁄ a b⁄,( )p  TB, GB h b⁄ a b⁄,( )p  TC, GC h b⁄ a b⁄,( )p= = =

Table 3 Non-dimensional stress intensity factor F1A(h/b, a/b), F2A(h/b, a/b) and T-stress GA(h/b, a/b) for a
rectangular cracked plate with two parallel cracks in a staking position under the loading p (see Fig.
2(c) and Eqs. (36), (37))

F1A(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

0.5 1.0245 1.0949 1.2041 1.3473 1.5278 1.7604 2.0696 2.4946 3.1934

1.0 1.0094 1.0375 1.0851 1.1537 1.2478 1.3770 1.5643 1.8749 2.5781

1.5 1.0065 1.0265 1.0615 1.1146 1.1920 1.3059 1.4838 1.7965 2.4743

2.0 1.0059 1.0240 1.0562 1.1061 1.1805 1.2927 1.4702 1.7749 2.3681

F2A(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

0.5 0.0036 0.0257 0.0738 0.1458 0.2385 0.3556 0.5115 0.7261 0.9827

1.0 0.0005 0.0038 0.0122 0.0265 0.0464 0.0699 0.0939 0.1132 0.1191

1.5 0.0001 0.0005 0.0015 0.0032 0.0055 0.0080 0.0102 0.0116 0.0113

2.0 0.0000 0.0000 0.0001 0.0003 0.0005 0.0007 0.0010 0.0010 0.0006

GA(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

0.5 -1.0202 -1.0695 -1.1240 -1.1697 -1.2224 -1.3308 -1.5745 -2.1035 -3.4789

1.0 -1.0110 -1.0439 -1.0993 -1.1805 -1.2973 -1.4736 -1.7651 -2.3237 -3.7567

1.5 -1.0079 -1.0325 -1.0761 -1.1445 -1.2493 -1.4149 -1.6966 -2.2355 -3.4457

2.0 -1.0066 -1.0274 -1.0654 -1.1269 -1.2242 -1.3815 -1.6486 -2.1292 -3.0265

Table 4 Non-dimensional stress intensity factor F1A(h/b, a/b), F1B(h/b, a/b), F1C(h/b, a/b) and T-stress GA(h/b,
a/b), GB(h/b, a/b, GC(h/b, a/b) for a rectangular cracked plate with three cracks in series under the
loading p (see Fig. 2(d) and Eqs. (38), (39))

F1A(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

1.0 1.0115 1.0456 1.1003 1.1726 1.2604 1.3654 1.5018 1.7210 2.2432

1.5 1.0057 1.0230 1.0524 1.0957 1.1568 1.2450 1.3819 1.6244 2.1600

2.0 1.0049 1.0199 1.0463 1.0868 1.1467 1.2366 1.3787 1.6236 2.1044

2.5 1.0048 1.0197 1.0462 1.0872 1.1485 1.2403 1.3824 1.6145 2.0261
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Table 4 Continued

F1B(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

1.0 1.0114 1.0447 1.0976 1.1681 1.2564 1.3686 1.5253 1.7916 2.4464

1.5 1.0058 1.0236 1.0545 1.1008 1.1674 1.2649 1.4189 1.6993 2.3392

2.0 1.0049 1.0202 1.0474 1.0895 1.1527 1.2489 1.4044 1.6808 2.2440

2.5 1.0049 1.0198 1.0466 1.0885 1.1519 1.2485 1.4021 1.6614 2.1384

F1C(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

1.0 1.0090 1.0348 1.0746 1.1254 1.1864 1.2647 1.3858 1.6273 2.2977

1.5 1.0051 1.0206 1.0477 1.0889 1.1494 1.2406 1.3891 1.6671 2.3146

2.0 1.0048 1.0197 1.0462 1.0871 1.1486 1.2427 1.3959 1.6713 2.2395

2.5 1.0047 1.0193 1.0453 1.0859 1.1476 1.2423 1.3939 1.6528 2.1353

GA(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

1.0 -1.0138 -1.0549 -1.1192 -1.2000 -1.2945 -1.4136 -1.6012 -1.9877 -3.0755

1.5 -1.0057 -1.0243 -1.0581 -1.1114 -1.1929 -1.3220 -1.5432 -1.9699 -2.9345

2.0 -1.0042 -1.0184 -1.0464 -1.0940 -1.1717 -1.2996 -1.5180 -1.9102 -2.6391

2.5 -1.0039 -1.0170 -1.0436 -1.0895 -1.1652 -1.2885 -1.4904 -1.8210 -2.3411

GB(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

1.0 -1.0121 -1.0413 -1.0732 -1.0906 -1.0801 -1.0370 -0.9753 -0.9728 -1.5224

1.5 -1.0049 -1.0179 -1.0357 -1.0550 -1.0740 -1.0954 -1.1412 -1.3023 -1.9373

2.0 -1.0035 -1.0126 -1.0260 -1.0429 -1.0652 -1.1012 -1.1785 -1.3736 -1.8828

2.5 -1.0032 -1.0114 -1.0242 -1.0417 -1.0680 -1.1132 -1.2014 -1.3838 -1.7542

GC(h/b, a/b)

a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h/b =

1.0 -1.0068 -1.0225 -1.0348 -1.0285 -0.9917 -0.9233 -0.8439 -0.8453 -1.4741

1.5 -1.0014 -1.0052 -1.0105 -1.0162 -1.0227 -1.0353 -1.0778 -1.2445 -1.9091

2.0 -1.0012 -1.0048 -1.0109 -1.0201 -1.0352 -1.0656 -1.1399 -1.3375 -1.8663

2.5 -1.0012 -1.0046 -1.0109 -1.0215 -1.0414 -1.0814 -1.1673 -1.3541 -1.7466
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= 1.0 and a/b = 0.9, we have = 2.2432 (at tip “A”), = 2.4464 (at tip

“B”) and = 2.2977 (at tip “C”). Clearly, three values for SIF are in the same level.

However, in the same condition of h/b = 1.0 and a/b = 0.9, for the T-stress, we have =

-3.0755 (at tip “A”), = -1.5224 (at tip “B”) and = -1.4741. Clearly,

three values for T-stress are not in the same level.

4. Conclusions

Some particular features in the present study are emphasized. First of all, the crack in an element

can be located in an arbitrary position with an arbitrary inclined angle. By using complex variable

method, the displacement-stress family ui and σij in the cracked rectangle are derived accordingly. In

the author’s knowledge, this formulation can only be achieved by using the complex variable

method in the crack problem (Chen 1983). In an earlier formulation by Chen (1983), the crack is

located in a horizontal position. Therefore, the way for deriving the complex potentials in this paper

is more difficult than in the previous case. 

This paper provides the expansion form of complex potentials shown by Eqs. (18) to (23), which

are key points in the present study. As claimed above, the obtained expansion form satisfies: (a)

traction free condition along crack, (b) all governing equations of plane elasticity. Thus, the

assumed displacement-stress state within the cracked element belongs a type of Trefftz formulation.

Particularly, for such a complicated case, or an inclined crack in any position of rectangular

element, the mentioned displacement-stress family is impossible to obtain by real variable analysis.

The computed results in this paper provide not only the SIF but also the higher order term, for

example, the T-stress component.

Usually, in the boundary value problem of a single crack in cracked plate, the boundary collocation

technique was used. It is known that the collocation scheme may affect the computed results.

However, the variational principle is used in the HCE method. Therefore, using HCE method is

more reasonable for the studied problem. 

Secondly, sufficient terms for the displacement-stress family are adopted in formulation. This will

model the stress field for the cracked rectangle more accurately. For the single crack case shown by

Fig. 2(a), the comparison has been made for different sources of computation. It is proved from

tabulated results in Table 1 that the computed results in this paper are sufficient accurate.
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