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Abstract. This paper presents a theoretical analysis for the free vibration of rectangular tanks partially filled
with an ideal liquid. Wet dynamic displacements of the tanks are approximated by combining the orthogonal
polynomials satisfying the boundary conditions, since the rectangular tanks are composed of four rectangular
plates. The classical boundary conditions of the tanks at the top and bottom ends are considered, such as
clamped, simply supported, and clamped-free boundary conditions. As the facing rectangular plates are
assumed to be geometrically and structurally identical, the vibration modes of the facing plates of the
tanks can be divided into two categories: symmetric and antisymmetric modes with respect to the planes
passing through the center of the tanks and perpendicular to the free liquid surface. The liquid displacement
potentials satisfying the Laplace equation and liquid boundary conditions are derived, and the wet
dynamic modal functions of a quarter of the tanks can be expanded by the finite Fourier transform for
compatibility requirements along the contacting surfaces between the tanks and liquid. An eigenvalue
problem is derived using the Rayleigh-Ritz method. Consequently, the wet natural frequencies of the
rectangular tanks can be extracted. The proposed analytical method is verified by observing an excellent
agreement with three-dimensional finite element analysis results. The effects of the liquid level and
boundary condition at the top and bottom edges are investigated.

Keywords: hydroelastic vibration; rectangular tanks; liquid-coupled vibration; Rayleigh-Ritz method;
orthogonal polynomials; Gram-Schmidt process

 

 

1. Introduction

Rectangular tanks have been used for liquid storage in many engineering fields. For instance, a

rectangular spent fuel storage tank filled with cooling water should meet the most stringent safety

requirements. It should be designed to withstand a wide variety of external impacts such as

earthquakes. The fresh water storage tank in bulk carriers is a rectangular steel shell structure and

the water level of the tank will gradually decrease during voyage. As the dynamic characteristic of

the water storage tank is changed, the response due to the external loading such as vibratory

loadings from engines and sea waves will also change. Hence the dynamic characteristics of liquid-

filled rectangular tanks are of considerable practical interest.

Many investigators (Cheung and Zhou 2000, Ergin and Uğurlu  2003, Hashemi et al. 2010, Kerboua et
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al. 2008, Liang et al. 2001, Uğurlu et al. 2008, Yadykin et al. 2003, Zhou and Cheung 2000) have

developed some approximate solutions to predict the changes in the natural frequencies when a

rectangular plate is in contact with a liquid. Also, an analytical method to calculate the natural

frequencies of two identical rectangular plates coupled with a bounded fluid was suggested (Jeong

et al. 2003, Jeong and Kim 2009). However, to date, there has been minimal research regarding a

flexible rectangular tank filled with a liquid. Zhou and Liu (2007) developed a theory on the three-

dimensional dynamic characteristics of flexible rectangular tanks partially filled with liquid using a

combination of the Rayleigh-Ritz method. The admissible functions in the reference were selected

as a beam function with an internal point support, and the free surface boundary condition is

suggested at the center of the liquid-filled tank for the antisymmetric modes. However, this seems to

be an inappropriate assumption. 

This paper will present a theory to calculate the wet natural frequencies of rectangular tanks with

several classical boundary conditions, partially filled with an ideal liquid, using the Rayleigh-Ritz

method and finite Fourier transform based on the orthogonal polynomial functions and appropriate

displacement potential function of the liquid. The proposed method will be verified by performing

three-dimensional finite element analyses. The effect of the liquid depth on the natural frequencies

will be discussed. In the finite element analysis, as the liquid depth of the tanks increases, the

number of liquid elements increase drastically. Hence, an increase of the liquid depth requires much

calculation time in the finite element analysis. However, the proposed theoretical method can reduce

the computation time to calculate the wet natural frequencies of the liquid–filled rectangular tanks

regardless of the liquid depth.

2. The Rayleigh-Ritz approach

2.1 Dynamic displacement of rectangular tanks

A liquid-filled rectangular tank has a height of a, length of b, width of c, and thickness of h as

depicted in Fig. 1. The ideal liquid of the depth, d, is partially contained in the tank. Since the

liquid storage tank is composed of four rectangular plates, the vibration modes of the tank can be

classified into two types of modes, according to the relative displacement between the plates facing

each other: that is, out-of-phase and in-phase modes. From another point of view, the vibration

modes can be categorized into four types of modes according to whether the deformed shapes are

symmetric or antisymmetric with respect to the planes passing through the center of the tank. That is to

say, S-S (Symmetric-Symmetric) modes, S-A (Symmetric-Antisymmetric) modes, A-S (Antisymmetric-

Symmetric) modes, and A-A (Antisymmetric-Antisymmetric) modes as illustrated in Fig. 2. The

symmetric modes indicate a reflection symmetric pattern; on the contrary, antisymmetric modes

show a rotation symmetric configuration. The S-S modes are symmetric with respect to the x- and

y-axes, simultaneously, the S-A modes are symmetric with respect to the y-axis and antisymmetric

with respect to the x-axis, the A-S modes are antisymmetric with respect to the y-axis and

symmetric with respect to the x-axis, and the A-A modes are all antisymmetric with respect to the

x- and y- axes.

Therefore, the whole liquid-contained tank can be analyzed by taking into account a quarter of the

liquid-contacting rectangular tank, as shown in Fig. 3. The two semi-plates of the quarter can be

regarded as a line-supported rectangular plate by introducing a new coordinate system, namely a ξ-z
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Fig. 1 A rectangular tank partially filled with a liquid

Fig. 2 Mode category of a rectangular tank partially filled with a liquid
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plane. Each mode shape of the plate in the ξ–z plane can be approximated by a combination of a

finite number of admissible functions, , and the corresponding unknown coefficients, qmn

 (1)

where  and ω is the circular natural frequency of the dry or wet tanks. It is essential to

select a set of admissible functions to describe the vibtatory motion of the rectangular tanks.

Generally, the sinusoidal and hyperbolic funtions have been used as the admissible functions for the

dynamic analysis of clamped rectangular plates. However, note that the required precision of the

mode shape parameters drastically increases as the number of modes increases. Additionally, as the

admissible functions, the sinusoidal functions are not compatible with the liquid motion when a tank

is simply supported at the top and bottom edges. That is to say, the sine functions to describe

transverse displacements of the simply supported rectangular tank in the vertical direction are not

compatible with the cosine functions to present the liquid motion written by the first derivative of

the displacement potential function. Therefore, a set of orthogonal polynomial functions is

introduced as the admissible functions. The indices m and n in Eq. (1) indicate the m-th order

polynomial in the ξ-direction and the n-th order polynomial in the z-direction, respectively. The

transverse modal function can be defined by a multiplication of the ξ- and z-directional admissible

functions,  and 

 
 (2)

 
The admissible functions,  and  are assumed to be a set of orthogonal polynomials

Wmn ξ z,( )

w ξ z t, ,( ) qmnWmn ξ z,( )exp iωt( )
n 1=

N

∑
m 1=

M

∑=

i 1–=

Hm ξ( ) Fn z( )

Wmn ξ z,( ) Hm ξ( )Fn z( )=

Hm ξ( ) Fn z( )

Fig. 3 Theoretical model of a rectangular tank partially filled with a liquid
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satisfying the geometric and natural boundary conditions. 

(3)

(4)

where the frequency parameters Amk and Bnj are the coefficients determined by the boundary

condition and the normalization of the admissible functions. The non-dimensional variables are

defined as  and . The numbers of expanding terms k and j indicate the

exponents of the polynomials. Since the admissible functions are orthogonal with respect to the

others, and the coefficients Amk and Bnj are normalized with respect to the length of (b + c) / 2 and a,

respectively, Eqs. (5) and (6) can be obtained.

 

(5)

(6)

where, similarily, the indices u and v also indicate the u-th polynomial in the ξ-direction, and the v-

th polynomial in the z-direction, respectively.

2.2 Determination of orthogonal admissible functions

The first admissible functions can be obtained from the boundary conditions of the L-shape plates

in the cross section. The orthogonal polynomials in the interval [0, (b + c)/2] will be classified into

the four categories according to the relative mode shapes. Moreover, the selected plate in the

transformed coordinates ξ-z is assumed to be line-supported along ξ = b/2 in order to idealize the

corners of the rectangular tanks, regardless of the category. So

(7)

Obviously, no restriction is applied along the corners except the displacement constraint of Eq.

(7). Hence, the slope along the corners need not be zero. In addition, it would be interesting to

observe the symmetry in the dynamic deformation of the dry or wet system. The boundary conditions of

the folded L-shape plate to simulate a quarter of the tank will be written for S-S modes

(8)

for S-A modes (9)

Hm ξ( ) Amk
2ξ

b c+
-----------⎝ ⎠
⎛ ⎞

k

k 0=

Q

∑ Amkζ
k

k 0=

Q

∑= =

Fn z( ) Bnj
z

a
---⎝ ⎠
⎛ ⎞

j

j 0=

P

∑ Bnjη
j

j 0=

P

∑= =

2ξ b c+( )⁄ ζ= z a⁄ η=

Hm ξ( )Hu ξ( ) ξd
0

b c+( ) 2⁄

∫

  0    if  m u≠

b c+

2
-----------  if  m u=

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Fn z( )Fv z( ) zd
0

a

∫
0 if n ν≠

a if n ν=⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Hm ξ( )
ξ b 2⁄=

0=

dHm ξ( )
dξ

------------------
ξ 0=

dHm ξ( )
dξ

------------------
ξ b c+( ) 2⁄=

0= =

dHm ξ( )
dξ

------------------
ξ 0=

Hm ξ( )
ξ b c+( ) 2⁄=

0= =
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for A-S modes (10)

and for A-A modes (11)

The admissible functions for the z-direction can be defined for several classical boundary conditions

along the top and bottom edges of the tank; for the case of the clamped boundary condition at both

edges

 (12)

For the clamped–free boundary condition, the slope and deformation at the bottom edge must be

zero, simultaneously. At the same time, the bending moments and shear forces at the top edge of

the tank must disappear. Thus

(13)

When the top and bottom edges of the tank are simply supported, the displacements and bending

moments must be zero

(14)

The first normalized polynomials of the ξ-axis can be derived from a set of boundary conditions

written in Eqs. (8)-(11). For S-S modes

 G1 (15)

for S-A modes (16)

for A-S modes (17)

and for A-A modes (18)

in which G1 is a constant for the normalization. The generalized constant for the normalization is

given as

 , m = 1, 2, 3… (19)

The successive polynomials can be generated from the recursive formulas based on the Gram–

Hm ξ( )
ξ 0=

dHm ξ( )
dξ

------------------
ξ b c+( ) 2⁄=

0= =

Hm ξ( )
ξ 0=

Hm ξ( )
ξ b c+( ) 2⁄=

0= =

Fn z( )
z 0=

dFn z( )
dz

----------------
z 0=

Fn z( )
z a=

dFn z( )
dz

----------------
z a=

0= = = =

Fn z( )
z 0=

dFn z( )
dz

----------------
z 0=

d
2
Fn z( )

dz
2

------------------

z a=

d
3
Fn z( )

dz
3

------------------
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0= = = =
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Schmidt process (Dickinson and Di Blasio 1986, Cupial 1997) when a zero slope boundary

condition need not be preserved at the boundary.

(20)

(21)

where

(22, 23)

To simulate the clamped edges at the top and bottom of the tank, the recurrence formulas of Eqs.

(20) and (21) for the generation of the higher terms, , should be modified to preserve the zero

slope boundary condition in addition to the zero displacement boundary condition at both ends.

Therefore, it is necessary to use a modified version of the recurrence formulas of Eqs. (20) and

(21), as written by Eqs. (24) and (25).

(24)

(25)

where

(26)

(27)

The normalized orthogonal polynomials in the ξ-direction are obtained by the recursive

formulas. All the displacement of the orthogonal admissible functions is zero at ξ = (a + b)/2 to

simulate the vertical edges of the tank. Although the tank with the simply supported boundary

condition may be formulated using a simple sinusoidal function in the vertical direction, the

liquid motion in the tank cannot be described as an appropriate sinusoidal function satisfying

simultaneously both the compatibility requirement along the wet surface and the liquid boundary

condition at the bottom of the tank. Therefore, the polynomial functions, as admissible functions,

are appropriate for the liquid-filled tank with the simply supported boundary condition instead of

the sinusoidal function. Similarly, the first polynomial of the z-axis for the clamped boundary

condition at both ends can be determined as

(28)

The successive orthogonal polynomials can be generated from the recursive formulas based on the

modified Gram–Schmidt processes of Eqs. (24)-(27). The first normalized polynomials of the z-axis

for the other boundary conditions are given as
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------------------------------------------------------  Lp
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b c+( ) 2⁄

∫

Hp 2– ξ( ){ }2 ξd
0

b c+( ) 2⁄

∫
-----------------------------------------------------------------=,=

Fp z( )

F2 z( ) 2z
3

3z
2

– K2–( )F1 z( )=

Fp z( ) 2z
3

3z
2

– Kp–( )Fp 1– z( ) LpFp 2– z( ),–= p 3 4 …, ,=

Kp

2z
3

3z
2

–( ) Fp 1– z( ){ }2 zd
0

a

∫

Fp 1– z( ){ }2 zd
0

 a

∫
--------------------------------------------------------------,= p 3 4…,=

Lp

2z
3

3z
2

–( )Fp 1– z( )Fp 2– z( ) zd
0

a

∫

Fp 2– z( ){ }2 zd
0

a

∫
------------------------------------------------------------------------,= p 3 4 …, ,=

F1 z( ) 3 70 z
2

2z
3

– z
4

+( )=



672 Kyeong-Hoon Jeong

 for the simply supported boundary condition, and (29)

 for the clamped-free boundary condition (30)

2.3 Natural frequencies of dry rectangular tanks

The out-of-phase and in-phase modes are obviously symmetric and antisymmetric with respect to

x = 0 and y = 0, not only for the dry tanks but also for the liquid–filled ones, since the tanks and

liquid are symmetric in conjunction with the geometry and boundary conditions, as shown in Fig. 2.

The symmetric dry or wet vibrational modes can only be obtained by a combination of the

symmetric admissible functions. In the same way, the antisymmetric modes can only be constructed

by a combination of the antisymmetric admissible functions. A sufficiently large finite number of

terms, N and M, must be considered to obtain a converged solution, and a vector q of the unknown

coefficients is introduced to perform numerical calculations

 (31)

where N indicates the number of admissible functions in the vertical direction (z) to be considered,

and M represents those in the lateral direction (ξ).

To begin with, the kinetic and potential energies of the system should be defined to apply the

Rayleigh-Ritz method using the admissible functions previously mentioned. The reference kinetic

energy T*, corresponding to a quarter of the rectangular tank, can be obtained by using the

orthogonal property of the admissible functions

(32)

where ρ is the mass density of the rectangular tank. The matrix Z in Eq. (32) is an 

diagonal matrix which can be given as

 (33)

The maximum potential energy V of a quarter of the rectangular tank can be computed by

integrating the derivatives of the admissible modal functions

  (34)

where the flexural rigidity of the tank is given as . The constants, m and E are

the Poisson's ratio of the tank and modulus of elasticity, respectively. Inserting the orthogonal

admissible functions into Eq. (34) gives the maximum potential energy of a quarter of the rectangular

tank in a matrix form

F1 z( ) 30 z
2

z–[ ]=

F1 z( ) 45 104⁄ 6z
2

4z
3

– z
4

+[ ]=

q q11  q12  q13…q1N  q21  q22  q23…qMN{ }T=

T
* ρh

2
------q

T
Zq=
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Z WmnWuv ξd zd
0

b c+( ) 2⁄

∫
0

a

∫=

V
D

2
----

∂2Wmn

∂ξ2
---------------
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∂ξ2
--------------

⎩ ⎭
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⎧ ⎫

+
0
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0
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+µ
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--------------
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--------------

∂2Wmn

∂z2
---------------+

⎩ ⎭
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⎧ ⎫
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---------------
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∂ξ∂z
--------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

+ dξdz
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 (35)

where U is also an  matrix that can be derived as

 (36)

and

, (37, 38)

, (39, 40)

, (41, 42)

, (43, 44)

where the apostrophe ( ) in the above equations indicates a derivative with respect to the

corresponding variable. The relationship between the reference kinetic energy multiplied by its

square circular frequency and maximum potential energy is used to extract the natural frequencies

of the dry tank. The Rayleigh quotient for the dry rectangular tank is given as . Minimizing

the Rayleigh quotient with respect to the unknown parameters q, the non-dimensional Galerkin

equation yields

 (45)

2.4 Displacement potential of the liquid

 

Since an ideal liquid partially contained in the rectangular tanks is assumed to be incompressible,

inviscid, and irrotational, the velocity potential of the liquid can be given as the Laplace equation in

the Cartesian coordinate

  (46)

For convenient formulation, the velocity potential Φ is separated into the harmonic time and space
functions of the displacement potential, φ

 (47)

The vertical liquid displacement at z = 0 should vanish because the bottom wall of the tanks is rigid.

(48)

When the gravity effect on the liquid-coupled system is neglected, the displacement potential at

the free surface will be zero

 (49)

We can get some important information from the dynamic symmetry of the liquid-coupled system.

V
D

2
----q

T
Uq=
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∫= Ξ1nv Fn z( )Fv z( ) zd
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a

∫=

Λ2mu Hm ξ( )Hu ξ( ) ξd
0

b c+( ) 2⁄

∫= Ξ2nv Fn″ z( )Fv″ z( ) zd
0

a

∫=

Λ3mu Hm″ ξ( )Hu ξ( ) ξd
0

b c+( ) 2⁄

∫= Ξ3nv Fn z( )Fv″ z( ) zd
0

a

∫=

Λ4mu Hm′ ξ( )Hu′ ξ( ) ξd
0

b c+( ) 2⁄

∫= Ξ4nv Fn′ z( )Fv′ z( ) zd
0

a

∫=

′

V T
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DUq ω
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ρhZq– 0{ }=

∇2Φ x y z t, , ,( )
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---------

∂2Φ

∂y2
---------
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---------+ + 0= =
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z d=
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The S-S modes requires zero liquid displacement along x = 0 and y = 0. Thus

 (50)

The displacement potential satisfying both the Laplace equation of Eq. (46) and the boundary

condition of Eqs. (48)-(50) can be written as

(51)

where

 (52-54)

(55, 56)

where Rrs and Grs are unknown coefficients that can be determined by the compatibility condition at

the wet surface between the tank and liquid. The liquid boundary conditions and corresponding

displacement potentials for S-A, A-S and A-A modes are summarized in Appendix A.

Along the liquid-contacting surfaces, the transverse displacement of the tank must be identical to

the dynamic liquid displacement normal to the interface surface, and thus the compatibility conditions

yield the following for the S-S modes

(57)

 (58)

where .

Substituting Eqs. (2) and (51) into Eqs. (57) and (58) results in

(59)

(60)

Multiplication of   and  into Eqs. (59) and (60),

respectively, and integration along the wet surfaces to perform the finite Fourier transform, give

relationships between the unknown coefficients for the S-S modes

(61, 62)

where the parameters  and Jr are defined in Appendix A. Now, the displacement
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∑
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potential can be described in terms of the unknown coefficients, qmn, in the admissible functions of

the tanks. For the other modes, the unknown coefficients, Rrs and Grs, can be determined by the

same process as described in Appendix A.

2.5 Natural frequencies of wet rectangular tanks

As the reference kinetic energy of the liquid in the tanks for the S-S modes can be evaluated from

its boundary motion, the reference kinetic energy of the liquid is given as

(63)

where ρo is the mass density of the contained liquid. By substituting Eqs. (2), (51), (61) and (62)

into Eq. (63), one can obtain

(64)

where the coefficients,  and , are defined in Appendix A. By the same method, for the S-A

modes, A-S modes, and A-A modes, the reference kinetic energy of the contained liquid can be

formulated as listed in Appendix A.

The reference total kinetic energy multiplied by its square circular frequency should be equal to

the maximum potential energy of the liquid-coupled system. Minimizing the Rayleigh quotient with

respect to the unknown parameters, q, eventually the eigenvalue equation is obtained, and the wet

natural frequencies can be calculated by making the determinant of Eq. (65) zero. 

(65)

3. Examples and discussion

3.1 Examples for theoretical calculation and finite element analysis

The eigenvalues of Eq. (65) were calculated using commercial software, Mathcad, (version 14) in

order to find the natural frequencies of rectangular tanks partially filled with water. The frequency

equation derived in the previous sections involves infinite series expansions of algebraic terms and a

finite number of admissible functions. In the theoretical calculation, the series expansion terms r and

s were set at 30, and the numbers of admissible functions were 10 in the ξ-direction and 10 in the

z-direction regardless of the symmetry of the vibrational modes, which gave converged solutions.

In order to check the validity of the proposed theory, three-dimensional finite element analyses

were also carried out for the liquid-coupled system using a commercial computer code, ANSYS

(release 10.0). Finite element models were constructed with the tank geometry, boundary conditions,

and material properties used in the theoretical calculation. The aluminum tank was 360 mm in
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height, 300 mm in length, 240 mm in width, and 3 mm in thickness. The liquid depth in the z-

direction was considered for two water levels, that is, d = 0 mm (dry condition) and d = 180 mm

(50% water level). The physical properties of the aluminum tank material were as follows: modulus

of elasticity = 69.0 GPa, Poisson's ratio = 0.3 and mass density = 2700 kg/m3. The liquid contained

in the tanks had a density of 1000 kg/m3. The viscosity and compressibility of water were neglected

in both the theoretical calculations and finite element analyses.

Finite element analyses using a commercial computer code, ANSYS software (release 11), were

performed to obtain the natural frequencies and mode shapes of the rectangular tanks partially filled

with water for the several boundary conditions as mentioned above. Three–dimensional finite

element models were constructed with contained fluid elements (FLUID80) and elastic shell

elements (SHELL63) of ANSYS software. The liquid movement along the bottom rigid wall was

restricted to the vertical direction only to realize Eq. (48). The displacement of the liquid element

nodes adjacent to the surface of the wetted rectangular tanks coincided to that of the rectangular

tanks so that the finite element model can simulate Eqs. (57) and (58) in the range of . The

smaller facing rectangular plates of the tanks were divided into 2880 (48 × 60) elastic shell elements

with the same size, and the larger facing rectangular plates were divided into 4320 (72 × 60) elastic

shell elements with the same size. Therefore, the total number of shell elements for the tanks was

14400. On the other hand, the liquid region of the finite element model consisted of 103680

(36 × 60 × 48) fluid elements with an identical size to build a 50% liquid depth ratio. Several

classical boundary conditions were considered such as clamped, simply supported, and clamped-free

boundary conditions along the top and bottom edges of the tanks in the finite element model. The

total number of 50 modal frequencies and corresponding mode shapes were extracted and plotted in

the finite element analyses, which employs the Block Lanczos method.

3.2 Comparison of theoretical and finite element results

The theoretical natural frequencies of the rectangular tanks for the dry condition are listed and

0 z d≤ ≤

Table 1 Natural frequencies of a dry rectangular tank with the clamped boundary condition at both ends

 Serial mode
 Mode  Natural frequency (Hz)  Discrepancy

(%) x–z plane  y–z plane  Theory  ANSYS

 1  S (0,0)  S (0,0)  193.6  193.5  0.05

 2  S (0,0)  A (1,0)  214.0  213.5  0.23

 3  A (1,0)  S (0,0)  263.2  262.4  0.31

 4  S (0,0)  S (0,0)  301.7  301.2  0.17

 5  S (0,1)  S (0,1)  419.8  419.6  0.05

 6  S (0,1)  A (1,1)  429.4  429.0  0.09

 7  A (1,0)  A (1,0)  454.9  446.0  2.00

 8  A (1,1)  S (0,1)  478.0  477.4  0.13

 9  S (0,1)  S (0,1)  498.6  497.8  0.16

 10  A (1,0)  S (0,0)  505.0  498.0  1.41

Note : The symbol “A” represents antisymmetric modes and the symbol “S” indicates symmetric modes. The
numbers indicate the number of nodal lines.
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compared with the finite element analysis results in Tables 1~3 for the clamped, simply supported,

and clamped-free boundary conditions, respectively. The number in the tables indicates the number

of nodal lines with respect to the lateral and vertical directions.

 It was found that the discrepancies between the theoretical and finite element analyses results are

less than approximately 4% within the 10th serial mode for the dry condition. These results indicate

that the combination of orthogonal polynomials can appropriately approximate the mode shapes of

the dry rectangular tank for such classical boundary conditions. Since each mode shape is symmetric or

Table 2 Natural frequencies of the dry rectangular tank with the simply supported boundary condition at both
ends

 Serial Mode
 Mode  Natural frequency (Hz)  Discrepancy

(%) x–z plane  y–z plane  Theory  ANSYS

 1  S (0,0)  S (0,0)  149.6  149.6  0.00

 2  S (0,0)  A (1,0)  175.4  174.5  0.52

 3  A (1,0)  S (0,0)  230.2  228.7  0.66

 4  S (0,0)  S (0,0)  273.7  273.2  0.18

 5  S (0,1)  S (0,1)  314.1  314.0  0.03

 6  S (0,1)  A (1,1)  326.9  326.3  0.18

 7  A (1,1)  S (0,1)  384.0  383.1  0.24

 8  S (0,1)  S (0,1)  409.6  408.8  0.20

 9  A (1,0)  A (1,0)  432.2  421.4  2.56

 10  A (1,0)  S (2,0)  484.9  477.3  1.59

Note : The symbol “A” represents antisymmetric modes and the symbol “S” indicates symmetric modes. The
numbers indicate the number of nodal lines.

Table 3 Natural frequencies of the dry rectangular tank with the clamped–free boundary condition

 Serial mode
 Mode  Natural frequency (Hz)  Discrepancy

(%) x–z plane  y–z plane  Theory  ANSYS

 1  S (0,0)  S (0,0)  109.6  109.8  -0.18

 2  S (0,0)  A (1,0)  142.9  142.0  0.63

 3  A (1,0)  S (0,0)  194.3  192.3  1.04

 4  S (0,1)  S (0,1)  224.5  224.6  -0.05

 5  S (0,1)  A (1,1)  242.2  241.9  0.12

 6  S (0,0)  S (0,0)  245.6  244.6  0.41

 7  A (1,1)  S (0,1)  298.6  299.1  -0.17

 8  S (0,1)  S (0,1)  331.9  332.3  -0.12

 9  A (1,0)  A (1,0)  392.6  378.4  3.75

 10  A (1,0)  S (2,0)  450.9  441.1  2.22

Note : The symbol “A” represents antisymmetric modes and the symbol “S” indicates symmetric modes. The
numbers indicate the number of nodal lines.
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antisymmetric with respect to y = b/2 or x = a/2, the admissible functions were selected from the

corresponding symmetric and antisymmetric modes so that the matrix sizes in the theoretical

calculation could be reduced.

The natural frequencies of the rectangular tanks filled with water for the liquid depth d = 180 mm

are listed in Tables 4~6 within the 10th serial modes for the typical boundary conditions. It was

found that the theoretical wet natural frequencies agreed well with the finite element results within

approximately a 4% error range for the 50% liquid level, except one mode with the simply

Table 4 Natural frequencies of the clamped rectangular tank filled with water (50% water level)

 Serial mode
 Mode  Natural frequency (Hz)  Discrepancy

(%) x–z plane  y–z plane  Theory  ANSYS

 1  S (0,0)  S (0,0)  93.2  92.9 -0.32

 2  S (0,0)  A (1,0)  104.5  104.2 -0.29

 3  S (0,0)  S (0,0)  124.5  120.8 -3.06

 4  A (1,0)  S (0,0)  131.0  128.5 -1.91

 5  A (1,0)  S (0,1)  246.0  225.0 -3.66

 6  A (1,0)  A (1,0)  232.7  232.8  0.04

 7  S (0,1)  S (0,1)  279.8  275.7 -1.48

 8  S (0,1)  A (1,0)  276.9  276.1 -1.03

 9  S (2,0)  S (0,1)  319.9  316.6 -1.04

 10  A (1,1)  S (0,1)  337.6  327.0 -3.06

Note : The symbol “A” represents antisymmetric modes and the symbol “S” indicates symmetric modes. The
numbers indicate the number of nodal lines.

Table 5 Natural frequencies of the simply supported rectangular tank filled with water (50% water level)

 Serial mode
 Mode  Natural frequency (Hz)  Discrepancy

(%) x–z plane  y–z plane  Theory  ANSYS

 1  S (0,0)  S (0,0)  69.1  68.5 -0.87

 2  S (0,0)  A (1,0)  80.0  79.7 -0.37

 3  S (0,0)  S (0,0)  99.8  97.1 -2.78

 4  A (1,0)  S (0,0)  107.8  104.7 -2.96

 5  A (1,0)  S (0,1)  222.0  201.0 -10.44

 6  A (1,0)  A (1,0)  204.1  209.7  2.67

 7  S (0,1)  S (0,1)  215.5  212.2 -1.55

 8  S (0,1)  A (1,0)  217.8  216.7 -0.51

 9  S (2,1)  S (0,1)  269.3  267.5 -0.67

 10  A (1,1)  S (0,1)  278.6  270.3 -3.07

Note : The symbol “A” represents antisymmetric modes and the symbol “S” indicates symmetric modes. The
numbers indicate the number of nodal lines.
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supported boundary condition, and that most of the theoretical natural frequencies overestimated the

finite element results slightly. It was observed that the wet natural frequencies decrease with the

water depth due to an increase of hydrodynamic mass, as is well known.

3.3 Mode shapes

The typical dry and wet mode shapes of the tanks with 50% water level were illustrated in Figs.

4~9 for the various boundary conditions. Figs. 4~6 show the dry mode shapes of the rectangular

tanks with the clamped, simply supported, and clamped-free boundary conditions, respectively. The

dry mode shapes of each plate in the tanks are almost identical to the dry mode shapes of a single

plate. However, the relative deformations of connected neighboring plates are not identical to each

other due to the difference in the flexural rigidity between the neighboring plates of the tanks. It

could be noted that the wet mode shapes of the tanks are slightly distorted from the classical dry

mode shapes of the rectangular plates due to the hydrodynamic effect of water. In particular, it was

found that the higher wet mode shapes are too severely distorted from the corresponding dry mode

shapes. The dry and wet mode shapes of the clamped tank are very similar to those of the simply

supported tank, as shown in Figs. 4, 5, 7, and 8. Just as the mode shapes of a clamped uniform

beam are similar to those of a simply supported beam, the mode shapes of the clamped tank

resembled those of the simply supported tank.

In the rectangular tanks, two apparently similar modes, not only the 1st and 4th modes in Figs. 4

and 5, but also the 1st and 3rd modes in Fig. 7 and 8, were observed in the S-S modes. Although

these two simplest mode shapes had zero nodal lines in width and length, they had different phases.

The fundamental mode in Figs. 5 and 6 showed an out-of-phase mode of an oval type; on the other

hand, the 4th mode showed an out-of-phase mode of a bulging type. That is, the fundamental mode

shapes in Figs. 4, 5, 7, and 8 correspond to a typical mode with a circumferential wave number n =

2 in a circular cylindrical shell. However, the 4th mode shapes in Figs. 4 and 5 correspond to the

Table 6 Natural frequencies of the clamped–free rectangular tank filled with water (50% water level)

 Serial mode
 Mode  Natural frequency (Hz)  Discrepancy

(%) x–z plane  y–z plane  Theory  ANSYS

 1  S (0,0)  S (0,0)  84.2  82.8  1.66

 2  S (0,0)  A (1,0)  99.1  98.2  0.91

 3  S (0,1)  S (0,0)  111.7  111.5  0.18

 4  A (1,0)  S (0,0)  127.5  125.1  1.88

 5  S (0,1)  S (0,1)  146.9  145.7  0.82

 6  S (0,1)  A (1,0)  159.5  160.4 -0.56

 7  A (1,0)  S (0,1)  202.6  202.4  0.10

 8  A (1,0)  A (1,0)  227.0  231.4 -0.94

 9  A (1,1)  S (0,1)  251.3  243.7  3.02

 10  S (0,0)  S (0,1)  249.3  248.8  0.20

Note : The symbol “A” represents antisymmetric modes and the symbol “S” indicates symmetric modes. The
numbers indicate the number of nodal lines.
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Fig. 4 Mode shapes of a dry rectangular tank with the clamped boundary condition at both ends

Fig. 5 Mode shapes of a dry rectangular tank with the simply supported boundary condition at both ends
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Fig. 6 Mode shapes of a dry rectangular tank with the clamped–free boundary condition

Fig. 7 Mode shapes of a clamped wet rectangular tank with a half liquid level
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Fig. 8 Mode shapes of a simply supported wet rectangular tank with a half liquid level

Fig. 9 Mode shapes of a clamped-free wet rectangular tank with a half liquid level
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typical mode shape with the circumferential wave number n = 0 in the circular cylindrical shell.

This explains why the fundamental natural frequency of the tank is lower than the 4th natural

frequency in Figs. 4 and 5. Generally, it was observed that the discrepancies between the theoretical

natural frequencies and those of the finite element analyses for the antisymmetric modes were

slightly larger than those for the symmetric modes. It is highly probable that the edge deformation

of the tanks can appear in the finite element model, although the edge deformation is assumed to be

zero in the theoretical formulation.

3.4 Liquid depth effect

It was observed that the mode shapes and natural frequencies change according to the liquid level.

The wet fundamental natural frequencies of the tanks, which are all symmetric with respect to the

centerlines, decrease to 48.0%, 45.8%, and 75.4% from those of dry tanks for the clamped, simply

supported and clamped-free boundary conditions, respectively, when the liquid level is 50%. This

shows that the hydrodynamic effect on the tank with a half-liquid level is largest for the simply

supported boundary condition. However, the hydrodynamic effect on the tank will drastically

increase when the liquid level changes from 50% to 100% for the clamped-free boundary condition.

As shown in Figs. 4 and 7, it is noted that the order of modes changed according to the liquid

level. For example, the 3rd (A-S mode) and 4th serial modes (S-S mode) in the dry condition were

Fig. 10 Liquid depth effect on the natural frequencies of the clamped rectangular tank filled with water
( , S-S mode; , A-S mode; , S-A mode; ; S-S mode)
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switched to the 4th (A-S mode) and 3rd serial modes (S-S mode) in the wet condition, respectively,

as shown in Figs. 4 and 7 for the clamped boundary condition. Figs. 10 and 11 illustrate the natural

frequencies of the clamped tank as a function of the liquid depth ratio. All the natural frequencies of

the tank decreased with the liquid depth, as is well known. The decrease of natural frequencies was

not linear but L shaped for the modes with zero horizontal nodal line, as illustrated in Fig. 10. The

effect of the number of horizontal nodal lines on the natural frequencies is shown in Fig. 11. We

could observe that one horizontal nodal line in the modes of the clamped tank makes one transition

plateau in Fig. 11. This is the same phenomenon as two rectangular plates partially coupled with a

liquid (Jeong and Kim 2009), or a single circular shell partially filled with a liquid (Jeong and Lee

1998).

4. Conclusions

An analytical method based on the Rayleigh-Ritz approach for calculating natural frequencies of

rectangular tanks partially contained with a liquid was developed for several classical boundary

conditions of the tanks. The wet dynamic displacement of the tanks was approximated by combining the

orthogonal polynomial functions satisfying the boundary conditions at the top and bottom edges of

the tanks. The liquid displacement potentials satisfying the liquid boundary conditions and the

Laplace equation were derived, and the wet dynamic modal functions of the tanks were expanded in

Fig. 11 Liquid depth effect on the natural frequencies of the clamped rectangular tank filled with water
( , S-S mode; , A-A mode; , S-S mode)
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terms of the finite Fourier series for a compatibility requirement along the contacting surface

between the tanks and liquid. From the appropriate liquid displacement potentials and admissible

modal functions, the total kinetic and potential energies of the liquid coupled system were extracted.

Finally, the Rayleigh-Ritz method led to an eigenvalue problem to calculate the wet natural

frequencies of the rectangular tanks. The proposed analytical method was verified by observing an

excellent agreement with three-dimensional finite element analysis results. It was shown that the

dynamic characteristics of the partially liquid-filled tanks show a similarity to those of a circular

cylindrical shell partially filled with water.
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Appendix A: Displacement potentials and kinetic energies of liquid

 

A.1 Liquid boundary conditions

A.2 Displacement potentials
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A.3  Coefficients in displacement potentials

A.4  Kinetic energies of liquid
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-------------------------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫ ΛnrΛvr

Jr
---------------

1

2
---ρo quvqmn

Ωms

αrsCs

------------
κurs 1–( )s 1+

cosh αrsb 2⁄( )
------------------------------- Ωustanh

αrsb

2
----------⎝ ⎠
⎛ ⎞+

⎩ ⎭
⎨ ⎬
⎧ ⎫

s 1=

∞

∑
r 1=

∞

∑
v 1=

N

∑
u 1=

M

∑
n 1=

N

∑
m 1=

M

∑

+
εms

σrs∆s

------------
εus

tanh σrsc 2⁄( )
------------------------------

θurs 1–( )s 1+

sinh σrsc 2⁄( )
------------------------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫ ΛnrΛvr

Jr
---------------

1

2
---ρo quvqmn

ϕms

αrsEs

------------
κurs 1–( )s 1+

cosh αrsb 2⁄( )
------------------------------- ϕustanh αrsb 2⁄( )+

⎩ ⎭
⎨ ⎬
⎧ ⎫

s 1=

∞

∑
r 1=

∞

∑
v 1=

N

∑
u 1=

M

∑
n 1=

N

∑
m 1=

M

∑

+
εms

σrs∆s

------------ εustanh
σrsc

2
---------⎝ ⎠
⎛ ⎞ ϑurs 1–( )s 1+

cosh σrsc 2⁄( )
-------------------------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫ ΛnrΛvr

Jr
---------------
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where

Γms Hm x( )cos τsx( ) x,d
0

b 2⁄

∫= χurs Hu x( )cosh αrsx( ) x,d
0

b 2⁄

∫=

εms Hm x( )sin τsx( ) x,d
0

b 2⁄

∫= κurs Hu x( )sinh αrsx( ) x,d
0

b 2⁄

∫=

Ωms Hm y b 2⁄+( )cos βsy( ) y,d
0

c 2⁄

∫= θurs Hu y b 2⁄+( )cosh σrsy( ) y,d
0

 c 2⁄

∫=

ϕms Hm y b 2⁄+( )sin βsy( ) y,d
0

c 2⁄

∫= ϑurs Hu y b 2⁄+( )sinh σrsy( ) y,d
0

 c 2⁄

∫=

Ds cos
2
τsx( ) x,d

0

 b 2⁄

∫=  Cs cos
2
βsy( ) y,   d

0

 c 2⁄

∫=

∆s sin
2

τsx( ) x,d
0

b 2⁄

∫= Es sin
2

βsy( ) y,  d
0

 c 2⁄

∫=

Λnr Fn z( )cos λrz( ) z,d
0

 d

∫= Jr cos
2
λrz( ) z.            d

0

 d

∫=
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