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Abstract. In the present study, free vibration of an axially functionally graded (AFG) pile embedded in
Winkler-Pasternak elastic foundation is analyzed within the framework of the Euler-Bernoulli beam theory.
The material properties of the pile vary continuously in the axial direction according to the power-law
form. The frequency equation is obtained by using Lagrange’s equations. The unknown functions denoting
the transverse deflections of the AFG pile is expressed in modal form. In this study, the effects of
material variations, the parameters of the elastic foundation on the fundamental frequencies are examined.
It is believed that the tabulated results will be a reference with which other researchers can compare their
results.
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1. Introduction

 
Functionally graded materials (FGMs) are special composites whose material properties vary

continuously through their thickness. FGMs are usually made of mixture of ceramic and metal, and
can thus resist high-temperature environments while maintaining toughness. The technology of
FGMs was an original material fabrication technology proposed in Japan in 1984 by Sendai Group.
FGMs are used in very different applications, such as reactor vessels, fusion energy devices,
biomedical sectors, aircrafts, space vehicles, defense industries and other engineering structures.
Because of the wide material variations and applications of FGMs, it is important to study the static
and dynamic analysis of FG structures, such as beams and plates. Sankar (2001) gave an elasticity
solution based on the Euler-Bernoulli beam theory for functionally graded beam subjected to static
transverse loads by assuming that Young’s modulus of the beam vary exponentially through the
thickness. Chakraborty et al. (2003) proposed a new beam finite element based on the first-order
shear deformation theory to study the thermoelastic behavior of functionally graded beam structures.
Aydogdu and Taskin (2007) investigated the free vibration behavior of a simply supported FG beam
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by using Euler-Bernoulli beam theory, parabolic shear deformation theory and exponential shear
deformation theory. In a recent study by Yang et al. (2008), free and forced vibrations of cracked
FG beams subjected to an axial force and a moving load were investigated by using the modal
expansion technique. Pradhan and Sarkar (2009) carried out bending, buckling and vibration
analyses of functionally graded tapered beam using Eringen’s nonlocal elasticity theory and
Rayleigh-Ritz method. im ek and Kocatürk (2009) have investigated the free and forced vibration
characteristics of an FG Euler-Bernoulli beam under a moving harmonic load. im ek (2009)
studied the static analysis of an FG beam under uniformly distributed load within the framework of
the higher-order shear deformation beam theory by Ritz method. Thermal post-buckling behavior of
uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz (RR)
formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper by
Anandrao et al. (2010). In a recent study, im ek (2010a) has studied the dynamic deflections and
the stresses of an FG simply-supported beam subjected to a moving mass by using Euler-Bernoulli,
Timoshenko and the parabolic shear deformation beam theory. im ek (2010b) studied the free
vibration of FG beams having different boundary conditions by using different higher order shear
deformation beam theories. im ek (2010c) performed the non-linear dynamic analysis of a
functionally graded beam with immovable supports under a moving harmonic load. Kocatürk et al.
(2011) investigated the large displacement static analysis of a cantilever Timoshenko beam
composed of functionally graded material.

It is anticipated that axially functionally graded (AFG) materials will be developed in the near
future, they will allow a tailored fit to a special purpose, i.e., with the static deflection not
exceeding a specific level, or the buckling load not being less than a pre-specified level, or the
natural frequency either exceeding or to being less than a pre-specified frequency (Elishakoff 2005).
It is anticipated that the best functional grading will combine that both in axial and thickness
directions (Elishakoff 2005). In spite of the fact that there exist many studies on the analysis of FG
beams in thickness direction, however, the research effort devoted to free vibration of AFG beams
has been very limited. For instance, the functional grading in the axial direction (i.e., the variation
of the elastic modulus along the axis) in the free vibration analysis of beams was studied by Candan
and Elishakoff (2001), Elishakoff and Candan (2001). Wu et al. (2005) used the semi-inverse
method to find the solutions to the dynamic equation of axially functionally graded simply
supported beams. Aydogdu (2008) analyzed the vibration and buckling of axially functionally
graded simply-supported beam by using semi-inverse method. Huang and Li (2010) presented a
new approach for free vibration of axially functionally non-uniform graded beams. Alshorbagy et al.
(2011) have investigated the dynamic characteristics of non-uniform graded beams with material
graduation in axially or transversally thorough the thickness. Shahba et al. (2011) studied free
vibration and stability analysis of AFG tapered Timoshenko beams by using finite element method.

im ek et al. (2011) investigated the dynamic behavior of an AFG beam under a moving harmonic
load.

The analysis of structures on elastic foundations is of considerable interest and widely used in
several engineering fields, such as foundation, pavement and railroad, pipeline, and some aero-space
structures applications (Civalek and Öztürk 2010). Many problems in the engineering related to soil-
structure interaction can be modeled by means of a beam or a beam-column on an elastic
foundation. Winkler foundation model is extensively used by engineers and researchers because of
its simplicity. Generally, the foundation is considered to be an array of springs uniformly distributed
along the length of the beam. There are many studies on beam-column type structures on elastic
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foundation in the literature (i.e., Doyle and Pavlovic 1982, Zhaohua and Cook 1983, Yankelevsky
and Eisenberger 1986, Yokoyama 1991, Matsunaga 1999, Celep and Demir 2007, Vu and Leon
2008, Kim 2009, Yesilce and Catal 2009, Balkaya et al. 2010, Ozturk and Coskun 2011).

This paper is motivated by the lack of the contribution of the existing literature to the axially
functionally graded beam-type structures on elastic foundation. In the present study, the free
vibration of an AFG pile embedded in Winkler-Pasternak elastic foundation is investigated within
the framework of the Euler-Bernoulli beam theory. The material properties of the pile vary
continuously in the axial direction according to the power-law form. The frequency equation is
obtained by using Lagrange’s equations. In this study, the effects of material variations, the
parameters of the elastic foundation on the fundamental frequencies are examined. 

 
 

 2. Formulation

2.1 Functionally graded materials

 
An axially functionally graded (AFG) pile having the length L, the diameter d is shown in Fig. 1

and the pile is embedded in two-parameter elastic medium modeled as a Winkler-Pasternak
foundation with spring constant kw and kp. 

Fig. 1 A simply supported AFG pile embedded in Winkler-Pasternak elastic medium 
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In this study, it is assumed that the material properties of the axially functionally graded (AFG)
pile vary continuously in the axial direction according to a function of the volume fractions of the
constituents. According to the rule of mixture, the effective material properties P (i.e., Young’s
modulus E and mass density ρ) can be expressed as

(1)
 

where PB, PT are the effective material properties of the AFG pile at the bottom and the top end of
the pile, and VB and VT are the volume fractions of the constituents and related by

 
(2)

 
The effective material properties of the AFG pile are defined by the power-law form. The volume

fraction of the constituent at the bottom end of the pile is assumed by
 

(3)
 

where k is the non-negative parameter (power-law exponent) which dictates the material variation
profile along the length of the pile. Fig. 2 shows variation of the volume fraction VB along the
length of the pile. 

Therefore, from Eqs. (1)-(3), the effective material properties of the AFG pile can be expressed as
 

(4a)

(4b)
 
It is evident from Eq. (4) that when x = 0, ,  and when .
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Fig. 2 The variation of the volume fraction of the constituent at the bottom end of the AFG pile 
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2.2 Frequency equation

 
Based on Euler-Bernoulli beam theory, the potential energy of the AFG pile can be written in the

following form
 

(5)
 

where w is the transverse deflections of any point on the neutral axis, E is the modulus of elasticity,
I is the second moment of the beam cross-section and t denotes time. The potential energy induced
by the elastic medium is given by

 
(6)

 

where kw and kp are the spring constants of the Winkler and Pasternak elastic medium, respectively.
Considering the rotary inertia, the kinetic energy of the pile can be expressed as

 
(7)

 
where ρ is the mass density of the beam and A is the area of the cross-section. Frequency equation
of the problem will be derived by using Lagrange’s equations. It is well-known that Hamilton’s
principle can be expressed as Lagrange’s equations when the functions of infinite dimensions can be
expressed in terms of generalized coordinates qi(t). Therefore, the transverse displacement of the
pile can be approximated as

 
 (8)

 
where qi(t) are the unknown generalized coordinates to be determined and  are the test
functions which are expressed for pinned-pined pile as

 
(9)

 
The Lagrange’s equations are given as follows
 
 (10)
 

where the overdot stands for the partial derivative with respect to time. After substituting Eq. (9)
into Eq. (8) and then using the Lagrange’s equations given by Eq. (10) yields the following
equations of motion

 
 (11)

 
where [K] is the stiffness matrix and [M] is the mass matrix. For free vibration analysis, the time-
dependent generalized displacement coordinates can be expressed as follows
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 (12)
 

where ω is the natural frequency of the beam. Introducing the following non-dimensional variables 

  (13)
 

and after some mathematical manipulations with the aid of Eq. (12), the following algebraic
equation (frequency equation) is obtained which can be expressed in the following matrix form

 
 (14)

 
In Eq. (14), the following abbreviations have been introduced

(15a)

(15b)

The non-dimensional frequencies (eigenvalues) λ are found from the condition that the
determinant of the coefficients’ matrix of Eq. (14) must vanish.

 

3. Numerical results and discussion

 
In numerical analysis, free vibration frequencies of AFG pile with pinned ends are given for

various values of modulus ratio , the power-law exponent k, Winkler and Pasternak parameters
for the slenderness ratio ξ = 20. Although convergence study performed is not shown here, when
more than 12 terms are used in the displacement function, the numerical accuracy of the responses
is satisfactory. Therefore, the number of terms in the displacement function is set to 14 in the
subsequent calculations. 

The numerical results are compared with the previous works to demonstrate the performance of
the present study. To this end, the first three natural frequencies of the simply-supported AFG beam
are compared with results of Alshorbagy et al. (2011) obtained by Finite Element method (FEM).
Computations have been carried out for various values of modulus ratio and the power-law
exponent. The foundation parameters are taken as zero for the comparison purpose. As seen from
Tables 1-3, the present results are in good agreement with that the results of Alshorbagy et al.

(2011). It is seen from these tables that as  increases, the dimensionless frequencies increase,
and  is more effective on the dimensionless frequencies for small values of k than large values
of k. As the values of k increase, the effect of increase of  on the natural frequencies decreases.
For instance, when k = 0, λ1 is 2.2203 and 4.4406 for = 0.25 and = 4, respectively. On
the other hand, when k = 10, λ1 is 3.1266 and 3.1725 for the same values of . As an expected
result, the beam is homogeneous for = 1, and the frequencies are independent of the power-
law exponent. 

Fig. 3 shows the variation of the first non-dimensional frequency with the power-law exponent for
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Table 1 The first dimensionless frequency parameters λ1 for different values of the modulus ratio and the
power-law exponent and for ρratio = 1, ξ = 20, KW = KP = 0

 Eratio  Source k = 0  k = 0.1 k = 0.2 k = 0.5 k = 1 k = 2 k = 5 k = 10

 0.25
 Present  2.2203  2.3285  2.4106  2.5821  2.7532  2.9278  3.0834  3.1266

 Alshorbagy et al. (2011)  2.2203  2.3285  2.4106  2.5821  2.7533  2.9278  3.0834  3.1265

 0.50
 Present  2.6403  2.6867  2.7257  2.8147  2.9104  3.0122  3.1052  3.1316

 Alshorbagy et al. (2011)  2.6404  2.6868  2.7258  2.8148  2.9104  3.0122  3.1052  3.1316

 1.0
 Present  3.1399  3.1399  3.1399  3.1399  3.1399  3.1399  3.1399  3.1399

 Alshorbagy et al. (2011)  3.14  3.14  3.14  3.14  3.14  3.14  3.14  3.14

 2.0
 Present  3.7340  3.6987  3.6653  3.5757  3.4611  3.3243  3.1922  3.1530

 Alshorbagy et al. (2011)  3.7341  3.6988  3.6653  3.5758  3.4611  3.3244  3.1923  3.1531

 4.0
 Present  4.4406  4.3768  4.3144  4.1387  3.8937  3.5794  3.2667  3.1725

 Alshorbagy et al. (2011)  4.4406  4.3768  4.3144  4.1387  3.8937  3.5795  3.2668  3.1726

Table 2 The second dimensionless frequency parameters λ2 for different values of the modulus ratio and the
power-law exponent and for ρratio = 1, ξ = 20, KW = KP = 0

 Eratio  Source k = 0  k = 0.1 k = 0.2 k = 0.5 k = 1 k = 2 k = 5 k = 10

 0.25
 Present  4.4338  4.6692  4.8373  5.1674  5.4729  5.7675  6.0639  6.1991

 Alshorbagy et al. (2011)  4.4338  4.6693  4.8374  5.1675  5.4730  5.7674  6.0636  6.1987

 0.50
 Present  5.2727  5.3751  5.4572  5.6326  5.8047  5.9739  6.1459  6.2264

 Alshorbagy et al. (2011)  5.2727  5.3752  5.4573  5.6327  5.8048  5.9739  6.1459  6.2263

 1.0
 Present  6.2703  6.2703  6.2703  6.2703  6.2703  6.2703  6.2703  6.2703

 Alshorbagy et al. (2011)  6.2703  6.2703  6.2703  6.2703  6.2703  6.2703  6.2703  6.2703

 2.0
 Present  7.4567  7.3774  7.3039  7.1176  6.9030  6.6782  6.4482  6.3363

 Alshorbagy et al. (2011)  7.4567  7.3774  7.3039  7.1176  6.9031  6.6783  6.4483  6.3365

 4.0
 Present  8.8675  8.7236  8.5854  8.2114  7.7399  7.2208  6.6900  6.4299

 Alshorbagy et al. (2011)  8.8676  8.7236  8.5853  8.2113  7.7399  7.2209  6.6902  6.4302

Table 3 The third dimensionless frequency parameters λ3 for different values of the modulus ratio and the
power-law exponent and for ρratio = 1, ξ = 20, KW = KP = 0

 Eratio  Source k = 0  k = 0.1 k = 0.2 k = 0.5 k = 1 k = 2 k = 5 k = 10

0.25
Present 6.6338 6.9948 7.2468 7.7329 8.1753 8.5992 9.0270 9.2318

Alshorbagy et al. (2011) 6.6338 6.9949 7.2470 7.7330 8.1753 8.5989 9.0262 9.2305

0.50
Present 7.8890 8.0471 8.1714 8.4316 8.6813 8.9246 9.1710 9.2905

Alshorbagy et al. (2011) 7.8890 8.0472 8.1715 8.4317 8.6814 8.9246 9.1708 9.2901

1.0
Present 9.3816 9.3816 9.3816 9.3816 9.3816 9.3816 9.3816 9.3816

Alshorbagy et al. (2011) 9.3817 9.3817 9.3817 9.3817 9.3817 9.3817 9.3817 9.3817

2.0
Present 11.156 11.033 10.920 10.638 10.323 10.000 9.6733 9.5136

Alshorbagy et al. (2011) 11.157 11.033 10.920 10.638 10.324 10.001 9.6735 9.5139

4.0
Present 13.267 13.043 12.829 12.258 11.561 10.814 10.059 9.6937

Alshorbagy et al. (2011) 13.268 13.043 12.829 12.258 11.562 10.815 10.059 9.6942
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Fig. 3 Variation of non-dimensional fundamental
frequency with power-law exponent k for the
different Young’s modulus ratio, ρratio = 1, ξ =
20, KW = KP = 0

Fig. 4 Variation of the non-dimensional fundamental
frequency with Young’s modulus ratio for the
different power-law exponent k, ρratio = 1, ξ =
20, KW = KP = 0

Fig. 5 Variation of the non-dimensional fundamental frequency with the Winkler parameter for the different
Young’s modulus ratio and for k = 1, ρratio = 1, ξ = 20, (a) KP = 0, (b) KP = 10, (c) KP = 100 
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different values of . It is seen from Fig. 3 that the first dimensionless frequency increases with
increase in the power-law exponent k when  is smaller than unity, whereas the first
dimensionless frequency decreases as the power-law exponent increases when  is larger than
unity. For both situations, it is clear that the first dimensionless frequency of the AFG beam
approaches the first dimensionless frequency of the homogeneous beam as the power-law exponent
k increases. In Fig. 4, the variation of the first frequency with  for the different values of the
power-law exponent k is displayed. Similar figures can be given for the two other consecutive
frequencies. It is clearly seen from this figure that dimensionless frequencies increases with increase
in , as discussed before and the curves for various variable k intersect each other when

= 1.
Fig. 5 shows the variation of the fundamental frequency of the AFG pile with the Winkler

parameter for the various values of Young’s modulus ratio. It is obviously observed from Fig. 5 that
the increasing the value of KW has an important effect on the frequencies, and increase in the
Winkler parameter KW of the pile causes increase in the fundamental frequency. This is because
increasing the Winkler parameter makes the pile becomes stiffer. Also, note the variation of the
fundamental frequency with the Winkler parameter is nearly linear. 

Fig. 6 displays the variation of the fundamental frequency with the Pasternak parameter for the
various values of Young’s modulus ratio. It is shown that the increase in the Pasternak parameter KP

Eratio

Eratio

Eratio

Eratio

Eratio

Eratio

Fig. 6 Variation of the non-dimensional fundamental frequency with the Pasternak parameter for the different
Young’s modulus ratio and for k = 1, ρratio = 1, ξ = 20, (a) KW = 0, (b) KW = 10, (c) KW = 100  
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of the pile causes also increase in the fundamental frequency. The most important observation from
this figure that as the Pasternak parameter increases, the effect of  on the frequencies
decreases. The variation of the fundamental frequency with the Pasternak parameter is nonlinear.
Also, comparing Fig. 5 and Fig. 6 reveals that the effect of the Winkler parameter on frequencies is
less than the Pasternak parameter.

In Table 4, the first three frequency parameters of the AFG pile with = 2, =  1, k = 1
are given for various values of the foundation parameters. It is seen that the foundation parameters
play an important role on the dynamic behavior of the pile. 

 

4. Conclusions

 
In the present study, free vibration of an AFG pile embedded in Winkler-Pasternak elastic

foundation is investigated within the framework of the Euler-Bernoulli beam theory. The material
properties of the pile vary continuously in the axial direction according to the power-law form. The
frequency equation is obtained by using Lagrange’s equations. In this study, the effects of material
variations, the parameters of the elastic foundation on the fundamental frequencies are examined.
From the numerical results, the above-mentioned effects have a great influence on the dynamic
characteristics of the AFG pile.
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